
CHAPTER 13

PREDICATE LANGUAGES

1 Predicate Languages

Propositional Languages are also called Zero Order Languages, as opposed to
Predicate Languages that are called First Order Languages. The same applies
to the use of terms Propositional and Predicate Logic; they are often called zero
Order and First Order Logics and we will use both terms equally.

We will work with several different predicate languages, depending on what ap-
plications we have in mind. All of those languages have some common features,
and we begin with these.

Propositional connectives We define the set of propositional connectives

CON

in the same way as in the case of the propositional languages. It means
that we assume the following.

1. The set of connectives is non-empty and finite, i.e.

0 < cardCON < ℵ0.

2. We consider only the connectives with one or two arguments.

Quantifiers We adopt two quantifiers; ∀ (for all, the universal quantifier) and
∃ (there exists, the existential quantifier), i.e. we have the following set of
quantifiers

Q = {∀,∃}.

In a case of the classical logic and the logics that extend it, it is possible
to adopt only one quantifier and to define the other in terms of it and
propositional connectives. It is impossible in a case of some non-classical
logics, for example the intuitionistic logic. But even in the case of classical
logic two quantifiers express better common intuition, so we assume that
we have two of them.

Parenthesis. As in the propositional case, we adopt the signs (and) for our
parenthesis., i.e. we define a set PAR as

PAR = {(,)}.

1

Variables We assume that we always have a countably infinite set V AR of
variables, i.e. we assume that

cardV AR = ℵ0.

We denote variables by x, y, z, ..., with indices, if necessary, what we often
express by writing

V AR = {x1, x2,}.

The set of propositional connectives CON defines a propositional part of the
predicate logic language. What really differ one predicate language from the
other is the choice of additional symbols to the symbols described above. These
are called predicate symbols, function symbols, and constant symbols. i.e. a
particular predicate language is determined by specifying the following sets of
symbols.

Predicate symbols Predicate symbols represent relations. We assume that
we have an non empty, finite or countably infinite set

P

of predicate, or relation symbols. i.e. we assume that

0 < cardP ≤ ℵ0.

We denote predicate symbols by P,Q,R, ..., with indices, if necessary.

Each predicate symbol P ∈ P has a positive integer #P assigned to it;
if #P = n then say P is called an n-ary (n - place) predicate (relation)
symbol.

Function symbols We assume that we have a finite (may be empty) or count-
ably infinite set

F

of function symbols. I.e. we assume that

0 ≤ cardF ≤ ℵ0.

When the set F is empty we say that we deal with a language without
functional symbols.

We denote functional symbols by f, g, h, ..., with indices, if necessary.

Similarly, as in the case of predicate symbols, each function symbol f ∈ F
has a positive integer #f assigned to it; if #f = n then say f is called an
n-ary (n - place) function symbol.

2

Constant symbols We also assume that we have a finite (may be empty) or
countably infinite set

C

of constant symbols. I.e. we assume that

0 ≤ cardC ≤ ℵ0.

The elements of C are denoted by c, d, e..., with indices, if necessary, what
we often express by writing

C = {c1, c2, ...}.

When the set C is empty we say that we deal with a language without
constant symbols.

Sometimes the constant symbols are defined as 0-ary function symbols,
i.e. C ⊂ F. We single them out as a separate set for our convenience.

Disjoint sets We assume that all of the above sets are disjoint.

Alphabet The union of all of above disjoint sets is called the alphabet A of
the predicate language, i.e.

A = V AR ∪ CON ∪ PAR ∪Q ∪P ∪ F ∪C.

Observe, that once the set of propositional connectives is fixed, the predicate
language is determined by the sets P, F and C, so we use the notation

L(P,F,C)

for the predicate language L determined by P, F and C. If there is no danger
of confusion, we may abbreviate L(P,F,C) to just L. If for some reason we
need to stress the set of propositional connectives involved, we will also use the
notation

LCON (P,F,C)

to denote the predicate language L determined by P, F, C and the set of
propositional connectives CON .

We sometimes allow the same symbol to be used as an n-place relation symbol,
and also as an m-place one; no confusion should arise because the different uses
can be told apart easily. Similarly for function symbols.

Having defined the basic elements of syntax, the alphabet, we can now complete
the formal definition of the predicate language by defining two more complex
sets: the set T of all terms and the set F of all well formed formulas of the
language L(P,F,C).

3

Terms The set
T

of terms of the predicate language L(P,F,C) is the smallest set T ⊂ A∗
meeting the conditions:

1. any variable is a term, i.e. V AR ⊆ T ;

2. any constant symbol is a term, i.e. C ⊆ T ;

3. if f is an nplace function symbol, i.e. f ∈ F and #f = n and
t1, t2, ..., tn ∈ T , then f(t1, t2, ..., tn) ∈ T .

Example If f ∈ F,#f = 1, i.e. f is a one place function symbol, x, y are
variables, c, d are constants, i.e. x, y ∈ V AR, c, d ∈ C, then the following are
terms:

x, y, f(x), f(y), f(c), f(d), ff(x), ff(y), ff(c), ff(d), ...etc.

Example If F = ∅,C = ∅, then the set T of terms consists of variables only,
i.e.

T = V AR = {x1, x2,}.

From the above we get the following observation.

Remark 1.1 For any predicate language L(P,F,C), the set T of its terms is
always non-empty.

Example If f ∈ F,#f = 1, g ∈ F,#g = 2, x, y ∈ V AR, c, d ∈ C, then some
of the terms are the following:

f(g(x, y)), f(g(c, x)), g(ff(c), g(x, y)), g(c, g(x, f(c))).

From time to time, the logicians are and we may be informal about how we
write terms. For instance, if we denote a two place function symbol g by +, we
may write x+ y instead +(x, y). Because in this case we can think of x+ y as
an unofficial way of designating the ”real” term +(x, y), or even g(x, y).

Before we define the set of formulas, we need to define one more set; the set of
atomic, or elementary formulas. They are the ”smallest” formulas as were the
propositional variables in the case of propositional languages.

Atomic formulas An atomic formula of a predicate language L(P,F,C) is
any element of A∗ of the form

R(t1, t2, ..., tn),

4

where R ∈ P,#R = n, i.e. R is n-ary relational symbol and t1, t2, ..., tn
are terms. The set of all atomic formulas is denoted by AF and is defines
as

AF = {R(t1, t2, ..., tn) ∈ A∗ : R ∈ P, t1, t2, ..., tn ∈ T, #R = n, n ≥ 1}.

Example Consider a language

L(∅, {P}, ∅),

for #P = 1, i.e. a language without neither functional, nor constant symbols,
and with one, one-place predicate symbol P . The set of atomic formulas contains
all formulas of the form P (x), for x any variable, i.e.

AF = {P (x) : x ∈ V AR}.

Example Let now
L = L({f, g}, {R}, {c, d}),

for #f = 1, #g = 2 , #R = 2, i.e. L has two functional symbols: one -place
symbol f and two-place symbol g; one two-place predicate symbol R, and two
constants: c,d. Some of the atomic formulas in this case are the following.

R(c, d), R(x, f(c)), R(f(g(x, y)), f(g(c, x))), R(y, g(c, g(x, f(c)))).

Now we are ready to define the set F of all well formed formulas of the language
L(P,F,C).

Formulas The set
F

of all well formed formulas, called shortly set of formulas, of the language
L(P,F,C) is the smallest set meeting the following conditions:

1. any atomic formula of L(P,F,C) is a formula, i.e.

AF ⊆ F ;

2. if A is a formula of L(P,F,C), 5 is a one argument propositional
connective, then 5A is a formula of L(P,F,C), i.e. if the following
recursive condition holds

if A ∈ F ,5 ∈ C1, then 5A ∈ F ;

3. if A,B are formulas of L(P,F,C), ◦ is a two argument propositional
connective, then (A◦B) is a formula of L(P,F,C), i.e. if the following
recursive condition holds

if A ∈ F ,5 ∈ C2, then (A ◦B) ∈ F ;

5

4. if A is a formula of L(P,F,C) and x is a variable, then ∀xA, ∃xA are
formulas of L(P,F,C), i.e. if the following recursive condition holds

if A ∈ F , x ∈ V AR, ∀,∃ ∈ Q then ∀xA, ∃xA ∈ F .

Scope of the quantifier In ∀xA, ∃xA, A is in the scope of the quantifier ∀, ∃,
respectively.

Example Let L be a language of the previous example, with the set of con-
nectives {∩,∪,⇒,¬} i.e.

L = L{∩,∪,⇒,¬}({f, g}, {R}, {c, d}),

for #f = 1, #g = 2 , #R = 2. Some of the formulas of L are the following.

R(c, d), ∃xR(x, f(c)), ¬R(x, y), (∃xR(x, f(c))⇒ ¬R(x, y)),

(R(c, d) ∩ ∃xR(x, f(c))), ∀yR(y, g(c, g(x, f(c)))), ∀y¬∃xR(x, y).

The formula R(x, f(c)) is in a scope of the quantifier ∃x in ∃xR(x, f(c)). The
formula (∃xR(x, f(c)) ⇒ ¬R(x, y)) isn’t in a scope of any quantifier. The
formula (∃xR(x, f(c)) ⇒ ¬R(x, y)) is in the scope of ∀ in ∀z(∃xR(x, f(c)) ⇒
¬R(x, y)).

Now we are ready to define formally a predicate language.

Predicate language Let A, T,F be the alphabet, the set of terms and the
set of formulas as defined above. A predicate language L is a triple

L = (A, T,F).

As we have said before, the language L is determined by the choice of the
symbols of its alphabet, namely of the choice of connectives, predicate,
function, and constant symbols. If we want to specifically mention this
choice, we write

L = LCON (P,F,C) or L = L(P,F,C).

Given a predicate language L = (A, T,F), we must distinguish between formulas
like

P (x, y), ∀xP (x, y) and ∀x∃yP (x, y).

This is done by introducing the notion of free and bound variables, open and
closed formulas (sentences).

6

Informally, in the formula
P (x, y)

both variables x and y are called free variables. They are not in the scope
of any quantifier. The formula of that type (without quantifiers) is an open
formula.

In the formula
∀yP (x, y)

the variable x is free, the variable y is bound . The variable y is in the scope, is
bounded by the quantifier ∀.

In the formula
∀zP (x, y)

both x and y are free. In the formulas

∀zP (z, y), ∀xP (x, y)

only the variable y is free.

In the formula
∀x(P (x)⇒ ∃yQ(x, y))

there is no free variables, but in

(∀xP (x)⇒ ∃yQ(x, y))

the variable x (in Q(x, y)) is free.

Sometimes in order to distinguish more easily which variable is free and which
is bound in the formula we might use the bold face type for the quantifier bound
variables, i.e. to write the last formulas as

(∀xP (x)⇒ ∃yQ(x,y)).

The formal definition of the set of free variables of a formula is the following.

Free variables The set FV (A) of free variables of a formula A is defined by
the induction of the degree of the formula as follows.

1. If A is an atomic formula, i.e. A ∈ AF , then FV (A) is just the set
of variables appearing in the expression A;

2. for any unary propositional connective, i.e any 5 ∈ C1,

FV (5A)= FV (A),

i.e. the free variables of 5A are the free variables of A;

7

3. for any binary propositional connective, i.e any ◦ ∈ C2,

FV (A ◦B)= FV (A) ∪ FV (B),

i.e. the free variables of (A ◦ B) are the free variables of A together
with the free variables of B;

4. FV (∀xA) = FV (∃xA) = FV (A)− {x},
i.e. the free variables of ∀xA and ∃xA are the free variables of A,
except for x.

Bound variables A variable is called bound if it is not free.

Sentence A formula with no free variables is called a sentence

Open formula A formula with no bound variables is called an open formula.

Example The formulas

∃xQ(c, g(x, d)), ¬∀x(P (x)⇒ ∃y(R(f(x), y) ∩ ¬P (c)))

are sentences.

Example The formulas

Q(c, g(x, d)), ¬(P (x)⇒ (R(f(x), y) ∩ ¬P (c)))

are open formulas.

Example The formulas

∃xQ(c, g(x, y)), ¬(P (x)⇒ ∃y(R(f(x), y) ∩ ¬P (c)))

are neither sentences nor open formulas. They contain some free and some
bound variables; the variable y is free in the first formula, the variable x is free
in the second.

It is common practice to use the notation

A(x1, x2, ..., xn)

to indicate that FV (A) ⊆ {x1, x2, ..., xn} without implying that all of x1, x2, ..., xn
are actually free in A. This is similar to the practise in algebra of writing
p(x1, x2, ..., xn) for a polynomial p in the variables x1, x2, ..., xn without imply-
ing that all of them have nonzero coefficients.

Replacing x by t in A If A(x) is a formula, and t is a term then

A(t/x)

or, more simply,
A(t)

8

denotes the result of replacing all occurrences of the free variable x by the term
t throughout.

Notation When using the notation

A(t)

we always assume that none of the variables in t occur as bound variables in A.

The assumption that none of the variables in t occur as bound variables in A
is essential, otherwise by substituting t on the place of x we would distort the
meaning of A(t).

Example Let t = y and A(x) is ∃y(x 6= y), i.e. the variable y in t is bound in
A. The substitution of t for x produces a formula A(t) of the form ∃y(y 6= y),
which has a different meaning than ∃y(x 6= y).

But if t = z, i.e. the variable z in t is not bound in A, then A(t/x) = A(t) is
∃y(z 6= y) and express the same meaning as A(x).

Remark that if for example t = f(z, x) we obtain ∃y(f(z, x) 6= y) as a result of
substitution of t = f(z, x) for x in ∃y(x 6= y).

This notation is convenient because we can agree to write as

A(t1, t2, ..., tn) or A(t1/x1, t2/x2, ..., tn/xn)

a result of substituting in A the terms t1, t2, ..., tn for all free occurrences (if
any) of x1, x2, ..., xn, respectively.

But when using this notation we always assume that none of the variables in
t1, t2, ..., tn occur as bound variables in A.

The above assumption that none of the variables in t1, t2, ..., tn occur as bound
variables in A is often expressed using the notion: t1, t2, ..., tn are free for all
theirs variables in A which is defined formally as follows.

Term t is free for y in A

If A ∈ F and t is a term, then t is said to be free for y if no free occurrence
of y lies within the scope of any quantifier bounding variables in t.

Example Let A , B be the formulas

∀yP (f(x, y), y), ∀yP (f(x, z), y),

respectively. The term t = f(x, y) is free for x and is not free for y in A. The
term t = f(x, z) is free for x and z in B. The term t = y is not free neither for
x nor for z in A, B.

9

Example Let A be a formula

(∃xQ(f(x), g(x, z)) ∩ P (h(x, y), y)).

The term t1 = f(x) is not free for x in A; the term t2 = g(x, z) is free for z only,
term t3 = h(x, y) is free for y only because x occurs as a bound variable in A.

Notation If A(x), A(x1, x2, ..., xn) ∈ F and t, t1, t2, ..., tn ∈ T , then

A(t/x), A(t1/x1, t2/x2, ..., tn/xn)

or, more simply just
A(t), A(t1, t2, ..., tn)

denotes the result of replacing all occurrences of the free variables x, x1, x2, ..., xn,
by the terms t, t, t1, t2, ..., tn, respectively, assuming that t, t1, t2, ..., tn are free
for all theirs variables in A.

2 Gentzen Style Proof System for Classical Pred-
icate Logic - The System QRS

System QRS Definition

Let F denote a set of formulas of a Predicate (first Order) Logic Language

L(P,F,C) = L{∩,∪,⇒,¬}(P,F,C)

for P, F, C countably infinite sets of predicate, functional, and constant symbols
respectively.

The rules of inference of our system QRS will operate, as in the propositional
case, on finite sequences of formulas, i.e. elements of F∗, instead of just plain
formulas F , as in Hilbert style formalizations. We will denote the sequences of
formulas by Γ,∆,Σ, with indices if necessary.

that the truth assignment v makes it true if and only if it makes the formula of
the form of thetrue.

The intuitive meaning of a sequence Γ ∈ F∗ is that it represents a disjunction
of all formulas of Γ, i.e. if Γ is a sequence

A1, A2, ..., An

then by δΓ we will understand the disjunction of all formulas of Γ.

As we know, the disjunction in classical logic is commutative, i.e., for any for-
mulas A,B,C, A∪(B∪C) ≡ (A∪B)∪C, we w will denote any of those formulas
by A ∪B ∪ C = δ{A,B,C}. Similarly, we will write δΓ = A1 ∪A2 ∪ ...,∪An.

10

The sequence Γ is said to be satisfiable (falsifiable) if the formula δΓ = A1 ∪
A2 ∪ ...,∪An is satisfiable (falsifiable).

The sequence Γ is said to be a tautology if the formula δΓ = A1 ∪A2 ∪ ...,∪An

is a tautology.

The system QRS consists of one axiom and eleven rules of inference. They
form two groups. First is similar to the propositional case and called propo-
sitional connectives group. Each rule of this group introduces a new logical
connective or its negation, so we will name them, as in the propositional case:
(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), and (¬¬). The second group deals with the
quantifiers. It consists of four rules. Two of them introduce the universal and
existential quantifiers, and are named (∀) and (∃), respectively. The two others
correspond to the De Morgan Laws and deal with the negation of the universal
and existential quantifiers, and ere named (¬∀) and (¬∃), respectively.

As the axiom we adopt, as in propositional case, any sequence which contains
any formula and its negation, i.e any sequence of the form

Γ1, A,Γ2,¬A,Γ3

or of the form
Γ1,¬A,Γ2, A,Γ3,

for any formula A ∈ F and any sequences of formulas Γ1,Γ2,Γ3 ∈ F∗.

We will denote the axioms by
AX ∗.

The proof system

QRS = (F∗,AX ∗, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬), (¬∀), (¬∃), (∀), (∃))

will be called a Gentzen- style formalization of classical predicate calculus.

In order to define the rules of inference of QRS we need to introduce some def-
initions. They are straightforward modification of the corresponding definitions
for the propositional logic.

We will form now, as in the propositional case, a special subset LIT ⊆ F of
formulas, called a set of all literals, which is defined now as follows.

LIT = {A ∈ F : A ∈ AF} ∪ {¬A ∈ F : A ∈ AF},

where AF ⊆ F is the set of all atomic (elementary) formulas of the first order
language, i.e. AF = {P (t1,, tn) : P ∈ P is any n-argument predicate
symbol, and ti ∈ T are terms }.

11

The elements of the first set of the above union are called positive literals and
the elements of the second set of the above union are called negative literals. I.e
atomic (elementary) formulas are called positive literals and the negation of an
atomic (elementary) formula is called a negative literal.

Indecomposable formulas

Literals are also called the indecomposable formulas.

Now we form finite sequences out of formulas (and, as a special case, out of
literals). We need to distinguish the sequences formed out of literals from the
sequences formed out of other formulas, so we adopt exactly the same notation
as in the propositional case. We will denote by Γ

′
, ∆

′
, Σ

′
finite sequences

(empty included) formed out of literals i.e. out of the elements of LIT i.e. we
assume that Γ

′
, ∆

′
, Σ

′ ∈ LIT ∗.

We will denote by Γ,∆,Σ the elements of F∗ i.e the finite sequences (empty
included) formed out of elements of F .

We define the inference rules of QRS as follows.

Group 1: Propositional Inference rules

Disjunction rules

(∪)
Γ

′
, A,B,∆

Γ′ , (A ∪B),∆
, (¬∪)

Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′ ,¬(A ∪B),∆

Conjunction rules

(∩)
Γ

′
, A,∆ ; Γ

′
, B,∆

Γ′ , (A ∩B),∆
, (¬∩)

Γ
′
,¬A,¬B,∆

Γ′ ,¬(A ∩B),∆

Implication rules

(⇒)
Γ

′
,¬A,B,∆

Γ′ , (A⇒ B),∆
, (¬ ⇒)

Γ
′
, A,∆ : Γ

′
,¬B,∆

Γ′ ,¬(A⇒ B),∆

Negation rule

12

(¬¬)
Γ

′
, A,∆

Γ′ ,¬¬A,∆

where Γ
′ ∈ F∗,∆ ∈ F ′∗, A,B ∈ F .

Group 2: Quantifiers Rules

(∃)
Γ

′
, A(t),∆,∃xA(x)

Γ′ ,∃xA(x),∆

where t is an arbitrary term.

(∀)
Γ

′
, A(y),∆

Γ′ ,∀xA(x),∆

where y is a free individual variable which
does not appear in any formula in the con-
clusion, i.e. in the sequence Γ

′
,∀xA(x),∆.

(¬∀)
Γ

′
,∃x¬A(x),∆

Γ′ ,¬∀xA(x),∆

(¬∃)
Γ

′
,∀x¬A(x),∆

Γ′ ,¬∃xA(x),∆

Γ
′ ∈ LIT ∗,∆ ∈ F∗, A,B ∈ F .

Note that A(t), A(y) denotes a formula obtained from A(x) by writing t, y,
respectively, in place of all occurrences of x in A. The variable y in (∀) is called
the eigenvariable. The condition: where y is a free individual variable which
does not appear in any formula in the conclusion is called the eigenvariable
condition.

All occurrences of y in A(y) of the rule (∀) are fully indicated.

We define the notion of a formal proof in QRS as in any proof system, i.e., by
a formal proof of a sequence Γ in the proof system

13

QRS = (F∗,AX ∗, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬), (¬∃), (¬∀),∃), (∀))

we understand any sequence Γ1Γ2....Γn of sequences of formulas (elements of
F∗, such that Γ1 ∈ AX ∗, Γn = Γ, and for all i (1 < i ≤ n) Γi ∈ AX ∗, or Γi is a
conclusion of one of the inference rules of QRS with all its premisses placed in
the sequence Γ1Γ2....Γi−1.

As the proof system under consideration is fixed, we will write, as usual,

` Γ

to denote that Γ has a formal proof in QRS.

As the proofs in QRS are sequences (definition of the formal proof) of sequences
of formulas (definition of GQ) we will not use ”,” to separate the steps of the
proof, i.e. will write the sequence the formal proof as a sequence Γ1Γ2....Γn

instead of Γ1,Γ2,,Γn, but usually we will use, as in the propositional case,
the proof trees to represent the formal proofs. The leafs of the proof-tree are
axioms, nodes are sequences such that each sequence on the tree follows from
the ones immediately preceding it by one of the rules. The root is a sequence
(formula). We will picture, and write our proof-trees with the node on the top,
and leafs on the very bottom, instead of more common way, where the leafs are
on the top and root is on the bottom of the tree.

In particular cases, as in the propositional case, we will write our proof- trees
indicating additionally the name of the inference rule used at each step of the
proof. For example, if the proof of a theorem from 3 axioms used subsequently
the rules (∩), (∃), (∀), (∩), (¬∃), (¬¬), and (⇒), we will represent it as the fol-
lowing tree

Sequence(Formula)

| (⇒)

conclusion of (¬¬)

| (¬¬)

conclusion of (¬∃)

| (¬∃)

conclusion of (∩)∧
(∩)

14

conclusion of (∩)

| (∀)

axiom

conclusion of (∃)

| (∃)

conclusion of (∩)∧
(∩)

axiom axiom

Remark that the derivation trees don’t represent a different definition of a
formal proof. This remains the same in the Gentzen - style systems. Trees
represent a certain visualization for those proofs and any formal proof in any
system can be represented in a tree form. It is easy to define the tree-proofs
precisely, as well as a general transformation procedure between the tree and
the sequence form of the proofs, but we will explain it here on few examples
only.

2.1 QRS Decomposition Trees

Given a formula A ∈ F , we define its decomposition tree TA in a similar way
as in the propositional case. Observe that the inference rules of QRS can be
divided in two groups: propositional connectives rules and quantifiers rules. The
propositional connectives rules are: (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), and (¬¬).
The quantifiers rules are: (∀), (∃), (¬∀) and (¬∃). We define the decomposition
tree in the case of the propositional rules and the rules (¬∀), (¬∃) in the exactly
the same way as in the propositional case. The case of the rules (∀) and (∃) is
more complicated, as the rules contain the specific conditions under which they
are applicable.

To define the way of decomposing the sequences of the form Γ
′
,∀xA(x),∆ or

Γ
′
,∃xA(x),∆, i.e. to deal with the rules (∀) and (∃) in a way which would

preserve the property of the uniqueness of the decomposition tree, we assume
that all terms form a one-to one sequence

t1, t2,, tn, (1)

Observe, that by the definition, all free variables are terms, hence all free vari-
ables appear in the sequence 1. Let Γ be a sequence on the tree with ∀ as a main
connective, i.e. Γ is of the form Γ

′
,∀xA(x),∆. We write a sequence Γ

′
, A(x),∆

below it on the tree, as its child, where the variable x has to fulfill the following

[∀]: x is the first free variable in the sequence 1 such that x does not appear in
any formula in Γ

′
,∀xA(x),∆.

15

Observe, that the condition 2.1 corresponds to the restriction put on the appli-
cation of the rule (∀).

If the main connective of Γ, i.e. the main connective of the first formula in
Γ which is not an literal, is (∃). In this case Γ is of the form Γ

′
,∃xA(x),∆,

we write a sequence Γ
′
, A(t),∆ as its child, where the term t has to fulfill the

following

[∃]:

t is the first term in the sequence 1 such that the formula A(t) does not appear
in any sequence which is placed above Γ

′
, A(t),∆ on the tree.

The fact that the sequence 1 is one- to - one and the fact that, by the condi-
tions 2.1 and 2.1, we always chose the first appropriate term (variable) from
this sequence, guarantee that the decomposition process is also unique in the
case of the quantifiers rules (∀) and (∃).

From all above, and we conclude the following.

Theorem 2.1 (Uniqueness) For any formula A ∈ F , its decomposition tree
TA is unique. If TA is finite and all its leaves are axioms, then ` A and TA is
a tree-proof of A in QRS. If TA is finite and contains a non-axiom leaf or is
infinite, then 6` A.

2.1.1 Examples of Decomposition Trees

In all the examples below, the formulas A(x), B(x) represent any formula. But
there is no indication about their particular components, so they are treated as
indecomposable formulas.

The decomposition tree of the de Morgan Law (¬∀xA(x) ⇒ ∃x¬A(x)) is the
following.

(¬∀xA(x)⇒ ∃x¬A(x))

| (⇒)

¬¬∀xA(x),∃x¬A(x)

| (¬¬)

∀xA(x),∃x¬A(x)

| (∀)

A(x1),∃x¬A(x)

16

where x1 is a first free variable in the sequence 1 such that x1 does not appear in

∀xA(x), ∃x¬A(x)

| (∃)

A(x1),¬A(x1),∃x¬A(x)

where x1 is the first term (variables are terms) in the sequence 1 such that ¬A(x1) does not

appear on a tree above A(x1),¬A(x1), ∃x¬A(x)

Axiom

The above tree ended with an axiom, so it represents a proof of (¬∀xA(x) ⇒
∃x¬A(x)) in QRS, i.e.

`(¬∀xA(x)⇒ ∃x¬A(x))

The decomposition tree of (∀xA(x)⇒ ∃xA(x)) is the following.

(∀xA(x)⇒ ∃xA(x))

| (⇒)

¬∀xA(x),∃xA(x)

| (¬∀)
¬∀xA(x),∃xA(x)

∃x¬A(x),∃xA(x)

| (∃)
¬A(t1),∃xA(x),∃x¬A(x)

where t1 is the first term in the sequence 1, such that ¬A(t1) does not appear on the tree above

¬A(t1), ∃xA(x), ∃x¬A(x)

| (∃)

¬A(t1), A(t1),∃x¬A(x),∃xA(x)

where t1 is the first term in the sequence 1, such that A(t1) does not appear on the tree above

¬A(t1), A(t1), ∃x¬A(x), ∃xA(x)

Axiom

17

The above tree also ended with the axiom, hence

` (∀xA(x)⇒ ∃xA(x))

The decomposition tree of (∃xA(x)⇒ ∀xA(x)) is the following.

(∃xA(x)⇒ ∀xA(x))

| (⇒)

¬∃xA(x),∀xA(x)

| (¬∃)

∀x¬A(x),∀xA(x)

| (∀)

¬A(x1),∀xA(x)

where x1 is a first free variable in 1 such that x1 does not appear in ∀x¬A(x), ∀xA(x)

| (∀)

¬A(x1), A(x2)

where x2 is a first free variable in 1 such that x2 does not appear in ¬A(x1), ∀xA(x), the

sequence 1 is one-to- one, hence x1 6= x2

Non - axiom

The decomposition tree, for any formula A is unique, so we conclude from the
fact that the above tree has a non-axiom branch that

6 `(∃xA(x)⇒ ∀xA(x)).

The decomposition tree of ∃xA(x) is the following.

∃xA(x)

| (∃)

18

A(t1),∃xA(x)

where t1 is the first term in the sequence 1, such that A(t1) does not appear on the tree above

A(t1), ∃xA(x)

| (∃)

A(t1), A(t2),∃xA(x)

where t2 is the first term in the sequence 1, such that A(t2) does not appear on the tree above

A(t1), A(t2), ∃xA(x), i.e. t2 6= t1

| (∃)

A(t1), A(t2), A(t3),∃xA(x)

where t3 is the first term in the sequence 1, such that A(t3) does not appear on the tree above

A(t1), A(t2), A(t3), ∃xA(x), i.e. t3 6= t2 6= t1

| (∃)

A(t1), A(t2), A(t3), A(t4),∃xA(x)

| (∃)

.....

| (∃)

.....

Obviously, the above decomposition tree is infinite, what proves that

6 `∃xA(x).

We will find now the proof of the distributivity law (∃x(A(x)∩B(x))⇒ (∃xA(x)∩
∃xB(x))) and show that we can’t prove in QRS the inverse implication ((∃xA(x)∩
∃xB(x)) ⇒ ∃x(A(x) ∩ B(x))). The decomposition tree of the first formula is
the following.

(∃x(A(x) ∩B(x))⇒ (∃xA(x) ∩ ∃xB(x)))

| (⇒)

¬∃x(A(x) ∩B(x)), (∃xA(x) ∩ ∃xB(x))

19

| (¬∃)
∀x¬(A(x) ∩B(x)), (∃xA(x) ∩ ∃xB(x))

| (∀)
¬(A(x1) ∩B(x1)), (∃xA(x) ∩ ∃xB(x))

where x1 is a first free variable in the sequence 1 such that x1 does not appear in

∀x¬(A(x) ∩ B(x)), (∃xA(x) ∩ ∃xB(x))

| (¬∩)

¬A(x1),¬B(x1), (∃xA(x) ∩ ∃xB(x))∧
(∩)

¬A(x1),¬B(x1),∃xA(x)

| (∃)

¬A(x1),¬B(x1), A(t1),∃xA(x)

where t1 is the first term in the sequence 1, such

that A(t1) does not appear on the tree above

¬A(x1),¬B(x1), A(t1), ∃xA(x) Observe, that it

is possible that t1 = x1, as A(x1) does not ap-

pear on the tree above. By the definition of the

sequence 1, x1 is placed somewhere in it, i.e.

x1 = ti, for certain i ≥ 1. It means that after i

applications of the step (∃) in the decomposition

tree, we will get a step:

| (∃)

¬A(x1),¬B(x1), ...A(x1),∃xA(x)

¬A(x1),¬B(x1),∃xB(x)

| (∃)

¬A(x1),¬B(x1), B(t1),∃xB(x)

| (∃)

...

| (∃)

¬A(x1),¬B(x1), ...B(x1),∃xB(x)

All leaves of the above tree are axioms, what means that

`(∃x(A(x) ∩B(x))⇒ (∃xA(x) ∩ ∃xB(x))).

Let’s now construct, as the last example, a decomposition tree of

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩B(x))).

We will adopt, as on the right branch of the above tree, the shorthand notation
used on this branch instead of the reasoning performed on the left branch, when
the reasoning is similar to the one presented above. The decomposition tree is
the following.

20

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩B(x)))

| (⇒)

¬(∃xA(x) ∩ ∃xB(x))∃x(A(x) ∩B(x))

| (¬∩)

¬∃xA(x),¬∃xB(x),∃x(A(x) ∩B(x))

| (¬∃)

∀x¬A(x),¬∃xB(x),∃x(A(x) ∩B(x))

| (∀)

¬A(x1),¬∃xB(x),∃x(A(x) ∩B(x))

| (¬∃)

¬A(x1),∀x¬B(x),∃x(A(x) ∩B(x))

| (∀)

¬A(x1),¬B(x2),∃x(A(x) ∩B(x))

By the reasoning similar to the reasonings in the previous examples we get that x1 6= x2

| (∃)

¬A(x1),¬B(x2), (A(t1) ∩B(t1)),∃x(A(x) ∩B(x))

where t1 is the first term in the sequence 1, such that (A(t1) ∩ B(t1)) does not appear on the tree

above ¬A(x1),¬B(x2), (A(t1) ∩ B(t1)), ∃x(A(x) ∩ B(x)) Observe, that it is possible that t1 = x1,

as (A(x1) ∩ B(x1)) does not appear on the tree above. By the definition of the sequence 1, x1 is

placed somewhere in it, i.e. x1 = ti, for certain i ≥ 1. For simplicity, we assume that t1 = x1 and

get the sequence:

¬A(x1),¬B(x2), (A(x1) ∩B(x1)),∃x(A(x) ∩B(x))∧
(∩)

21

¬A(x1),¬B(x2),

A(x1),∃x(A(x) ∩B(x))

Axiom

¬A(x1),¬B(x2),

B(x1),∃x(A(x) ∩B(x))

| (∃)

¬A(x1),¬B(x2), B(x1),

(A(x2) ∩B(x2)),∃x(A(x) ∩B(x))

where x2 = t2 (x1 6= x2) is the

first term in the sequence 1, such that

(A(x2) ∩ B(x2)) does not appear on the

tree above ¬A(x1),¬B(x2), (B(x1), (A(x2) ∩

B(x2)), ∃x(A(x) ∩ B(x)). We assume that t2 =

x2 for the reason of simplicity.∧
(∩)

¬A(x1),

¬B(x2),

B(x1), A(x2),

∃x(A(x) ∩B(x))

| (∃)

...∧
(∩)

...

| (∃)

...

| (∃)

Infinite branch

¬A(x1),

¬B(x2),

B(x1), B(x2),

∃x(A(x) ∩B(x))

Axiom

The above decomposition tree contains an infinite branch what means that

6` ((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩B(x))).

22

2.2 Completeness Theorem for QRS

Given a first order language L with the set of variables V AR and the set of
formulas F . We have defined a notion of a model and counter- model of a
formula A of L as follows.

Definition 2.1 (Model) A structure M = [M, I] is called a model of A ∈ F
if and only if

(M, v) |= A

for all valuations v : V AR −→M .

M is called a universe of the model, I the interpretation.

Definition 2.2 (Counter - Model) A structureM = [M, I] is called a counter-
model of A ∈ F if and only if there is a valuation v : V AR −→M , such that

(M, v) 6|= A.

The definition of the first order logic tautology is the following.

Definition 2.3 (Tautology) For any A ∈ F , A is called a tautology and de-
noted by |= A, if and only if all structures M = [M, I] ate models of A, i.e.

|= A if and only if (M, v) |= A

for all structures M = [M, I] and all valuations v : V AR −→M .

Directly from the above definition we get the following, simple fact.

Fact 2.1 (Not Tautology) For any A ∈ F , A is not a tautology (6|= A) if and
only if there is a counter - model M = [M, I] of A, i.e. we can define M, I, and
v such that ([M, I], v) 6|= A.

As our proof system is fixed, we will continue to use the notation ` A (` Γ) to
denote that a formula A (a sequence Γ) has a proof in QRS.

Our goal now is to prove the Completeness Theorem for QRS. We do it, as in
the propositional case, in two steps. First, we will prove the Soundness Lem-
mma:

Lemma 2.1 (Soundness Lemmma for QRS) For any Γ ∈ F∗,

if ` Γ then |= Γ,

23

and in particular, for any A ∈ F ,

if ` A then |= A.

The proof is by step by step verification, similar to the propositional case and
is left as an exercise. To complete the proof of the following

Theorem 2.2 (Completeness Theorem for QRS) For any Γ ∈ F∗,

` Γ if and only if |= Γ,

and in particular, for any A ∈ F ,

` A if and only if |= A.

we have to prove the inverse implication to the Soundness Lemmma. We prove
the formula case only and show that the case of sequences can be reduced to
the formula case. I.e. we prove that the implication: If |= A then ` A is
true. We do it, as in the propositional case, by proving the opposite implication
to it, instead. I. e. we prove that the implication:

If 6` A then 6|= A

is true. This means that we prove that for any formula A, if we know that
from the fact that A does not have a proof in QRS (6` A), we will be able to
define its counter- model. The counter- model is defined, as in the propositional
case, via the proof search (decomposition) tree. As we know, each formula A,
generates its unique decomposition tree TA and A has a proof only if this tree
is finite and all its end sequences (leaves) are axioms. It means that if 6` A
then we have two cases to consider: tree TA contains a leaf which is not axiom
or is infinite. We will show how in both cases to construct a counter- model for
A, determined by the infinite branch or non-axiom leaf of the decomposition
tree TA. Before describing a general method of constructing the counter-models
determined by the decomposition tree let’s look at some examples. Example
1

Let’s consider a particular case of the formula

(∃xA(x)⇒ ∀xA(x)),

i.e. let A be a formula

(∃x(P (x) ∩R(x, y))⇒ ∀x(P (x) ∩R(x, y)))

for P , R one and two argument predicate symbols, respectively. The decom-
position tree TA is the following:

24

(∃x(P (x) ∩R(x, y))⇒ ∀x(P (x) ∩R(x, y)))

| (⇒)

¬∃x(P (x) ∩R(x, y)),∀x(P (x) ∩R(x, y))

| (¬∃)

∀x¬(P (x) ∩R(x, y)),∀x(P (x) ∩R(x, y))

| (∀)

¬(P (x1) ∩R(x1, y)),∀x(P (x) ∩R(x, y))

where x1 is a first free variable in 1 such that x1 does not appear in

∀x¬(P (x) ∩ R(x, y)), ∀x(P (x) ∩ R(x, y))

| (¬∩)

¬P (x1),¬R(x1, y),∀x(P (x) ∩R(x, y))

| (∀)

¬P (x1),¬R(x1, y), (P (x2) ∩R(x2, y))

where x2 is a first free variable in the sequence 1 such that x2 does not appear in

¬P (x1),¬R(x1, y), ∀x(P (x) ∩ R(x, y)), the sequence 1 is one-to- one, hence x1 6= x2

∧
(∩)

¬P (x1),¬R(x1, y), P (x2)

x1 6= x2, Non-axiom

¬P (x1),¬R(x1, y), R(x2, y)

x1 6= x2, Non-axiom

There are two non-axiom leaves, to define a counter- model for A we need to
chose only one of them, for example, let’s choose

¬P (x1),¬R(x1, y), P (x2).

We define a counter - model for A, i.e. a structure M = [M, I] and a valuation
v, such that (M, v) 6|= A as follows.

1. M = T , i.e. the universe is the set of all terms of our language.

2. We define the relations PI and RI in the set of all terms T as follows: for
any term t ∈ T ,

25

PI(t) HOLDS iff the negation ¬P (t) of the formula P (t) appears on the non-
axiom leaf, and PI(t) DOES NOT HOLD otherwise.

RI is defined similarly: for any terms t, s ∈ T ,

RI(t, s) HOLDS iff the negation ¬R(t, s) of the formula R(t, s) appears on the
non-axiom leaf, and RI(t, s) DOES NOT HOLD otherwise.

It is easy to see that in particular case of our non-axiom leaf: PI(x1) holds,
R(x1, y) holds for any variable y, and P (x2) does not hold.

3. We define the valuation v : V AR −→ T as IDENTITY, i.e., we put v(x) = x
for any x ∈ V AR.

Obviously, for such defined structure [M, I] and valuation v we have that ([M, I], v) |=
P (x1), ([M, I], v) |= R(x1, y), and ([M, I], v) 6|= P (x2) and hence we obtain that

([M, I], v) 6|= ¬P (x1),¬R(x1, y), P (x2).

This proves that such defined structure [M, I] is a counter model for a non-
axiom leaf, and hence, by the fact that if one premiss of a rule of inference is
false, so is the conclusion, it is a counter-model for all sequences on the branch
which ends with this leaf, and hence in particular, it is a counter - model for A.

The case of the infinite tree is similar, even if a little bit more complicated.
Observe first that the rule (∃) is the the only rule of inference (decomposition)
which can ”produce” an infinite branch. We first show how to construct the
counter-model in the case of the simplest application of this rule, i.e. in the case
of the formula

∃xA(x)

where A is an one argument relational symbol. All other cases are similar
to this one. The infinite branch Bin this case consists elements of the whole
decomposition tree:

∃xA(x)

| (∃)

A(t1),∃xA(x)

where t1 is the first term in the sequence 1, such that A(t1) does not appear on the tree above

A(t1), ∃xA(x)

| (∃)

A(t1), A(t2),∃xA(x)

26

where t2 is the first term in the sequence 1, such that A(t2) does not appear on the tree above

A(t1), A(t2), ∃xA(x), i.e. t2 6= t1

| (∃)

A(t1), A(t2), A(t3),∃xA(x)

where t3 is the first term in the sequence 1, such that A(t3) does not appear on the tree above

A(t1), A(t2), A(t3), ∃xA(x), i.e. t3 6= t2 6= t1

| (∃)

A(t1), A(t2), A(t3), A(t4),∃xA(x)

| (∃)
.....

| (∃)
.....

i.e.
B = {∃xA(x), A(t1), A(t2), A(t2), A(t4),}

where t1, t2, is a one - to one sequence of all elements of the set of terms T .

This means that the infinite branch B contains with the formula ∃xA(x) all its
instances A(t), for all terms t ∈ T .

We define the structure [M, I] and valuation v in a similar way as in the previous
example, i.e. we take as the universe M the set of all terms T , we define AI as
follows: AI(t) HOLDS if ¬A(t) ∈ B and AI(t) DOES NOT HOLDS if A(t) ∈ B.
We take, as before, the identity function, as the valuation, v(x) = x for any
x ∈ V AR and define the interpretation I for functional symbols as follows. For
any constant c, we put cI = c, for any variable x, xI = v(x) = x, and for any
n-argument functional symbol f , we have still to define fI : Tn −→ T . Observe
that by definition, the function fI has to assign a certain term to a sequence of
terms t1, t2,, tn and the interpretation I says how we do it. Let’s define:

fI(t1, t2,, tn) = f(t1, t2,, tn).

It is easy to see that for any formula A(t) ∈ B,

([T, I], v) 6|= A(t).

But the A(t) ∈ B are all instances ∃xA(x), hence

([T, I], v) 6|= ∃xA(x).

27

Problems:

1. Give an example of 4 formulas with finite or infinite proof search trees
(decomposition trees). 2. Construct counter-models for the formulas in 1. Do
it in two ways: find your own structure, follow the above examples, i.e. give a
counter-model determined by the proof search tree.

2. Write the proof of completeness theorem for QRS. I.e. Follow the above
examples to show the implication:

If 6` A then 6|= A

for ANY formula A.

28

