
CHAPTER 11

Two Gentzen Style Proof Systems for Classical
Logic

Hilbert style systems are easy to define and admit a simple proof of the Com-
pleteness Theorem but they are difficult to use. By humans, not mentioning
computers. Their emphasis is on logical axioms, keeping the rules of inference
at a minimum.

Gentzen systems reverse this situation by emphasizing the importance of infer-
ence rules, reducing the role of logical axioms to an absolute minimum. They
may be less intuitive then the Hilbert-style systems, but they will allow us to
give an effective automatic procedure for proof search, what was impossible in
a case of the Hilbert-style systems.

The first idea of this type was presented by G. Gentzen in 1934. He dealt with
a complicated structure, called sequents. We present here a version (without
structural rules) of his original formalization. His exact formalizations for clas-
sical logic and for intuitionistic logic are presented in the next chapter.

The other automated proof system presented here is due to H. Rasiowa and
R. Sikorski and appeared for the first time in 1961. It is inspired by Gentzen
original system and is equivalent to it (like may others), so all of them are called
Gentzen style proof systems.

The Rasiowa and Sikorski system (RS System) is more elegant and easier to
understand, so we present it first.

1 The Gentzen Style System RS

Language

Let F denote a set of formulas of L = L{¬,⇒,∪,∩}. The rules of inference of our
system RS will operate on finite sequences of formulas, i.e. elements of F∗,
instead of just plain formulas F , as in Hilbert style formalizations. It means
that we adopt as the set of expressions E of RS the set F∗, i.e

E = F∗.

We will denote the finite sequences of formulas by Γ,∆,Σ, with indices if nec-
essary.

Meaning of Sequences

1

The intuitive meaning of a sequence Γ ∈ F∗ is that the truth assignment v
makes it true if and only if it makes the formula of the form of the disjunction
of all formulas of Γ true.

As we know, the disjunction in classical logic is associative and commutative,
i.e., for any formulas A,B,C ∈ F , the formulas A ∪ (B ∪ C), (A ∪ B) ∪ C,
A ∪ (C ∪ B), (B ∪ A) ∪ C, C ∪ (B ∪ A), C ∪ (A ∪ B), (C ∪ A) ∪ B, etc... are
logically equivalent. We adopt hence a notation

δ{A,B,C} = A ∪B ∪ C

to denote any disjunction of formulas A,B,C.

In a general case, for any sequence Γ ∈ F∗, if Γ is of a form

A1, A2, ..., An (1)

then by δΓ we will understand any disjunction of all formulas of Γ, i.e.

δΓ = A1 ∪A2 ∪ ... ∪An.

Formal Semantics for RS

Let v : V AR −→ {T, F} be a truth assignment, v∗ its extension to the set of
formulas F , we formally extend v to the set F∗ of all finite sequences of F as
follows. For any sequence Γ ∈ F∗, if Γ is of the form 1, then we define:

v∗(Γ) = v∗(δΓ) = v∗(A1) ∪ v∗(A2) ∪ ... ∪ v∗(An).

Model

The sequence Γ is said to be satisfiable if there is a truth assignment v :
V AR −→ {T, F} such that v∗(Γ) = T . Such a truth assignment is also called a
model for Γ.

Counter- Model The sequence Γ is said to be falsifiable if there is a truth
assignment v, such that v∗(Γ) = F . Such a truth assignment is also called a
counter-model for Γ.

Tautology

The sequence Γ is said to be a tautology if v∗(Γ) = T for all truth assignments
v : V AR −→ {T, F}.

Example

Let Γ be a sequence

2

a, (b ∩ a),¬b, (b⇒ a).

The truth assignment v for which v(a) = F and v(b) = T falsifies Γ, as shows
the following computation.

v∗(Γ) = v∗(δΓ) = v∗(a)∪v∗(b∩a)∪v∗(¬b)∪v∗(b⇒ a) = F ∪(F ∩T)∪F ∪(T ⇒
F) = F ∪ F ∪ F ∪ F = F.

Example

Let Γ be a sequence
a, (¬b ∩ a),¬b, (a ∪ b)

and let v be a truth assignment for which v(a) = T . Directly from the the
definition, we get that

v∗(Γ) = v∗(δΓ) = v∗(a) ∪ v∗(¬b ∩ a) ∪ v∗(¬b) ∪ v∗(a ∪ b) = T ∪ v∗(¬b ∩ a) ∪
v∗(¬b) ∪ v∗(a ∪ b) = T.

This proves that v is a model for Γ and Γ is satisfiable.

Assume now that Γ is falsifiable i.e. that we have a truth assignment v for
which

v∗(Γ) = v∗(δΓ) = v∗(a) ∪ v∗(¬b ∩ a) ∪ v∗(¬b) ∪ v∗(a ∪ b) = F

This is possible only when (in short-hand notation)

a ∪ (¬b ∩ a) ∪ ¬b ∪ a ∪ b = F,

what is impossible as (¬b∪ b) = T for all v. This contradiction proves that Γ is
a tautology.

Axioms and Rules of Inference

The rules of inference of RS are of the form:

Γ1

Γ
or

Γ1 ; Γ2

Γ
,

where Γ1,Γ2 and Γ are sequences Γ1,Γ2 are called premisses and Γ is called the
conclusion of the rule of inference.

Each rule of inference introduces a new logical connective, or a negation of a
logical connective.

We denote the rule that introduces the logical connective ◦ in the conclusion
sequent Γ by (◦). The notation (¬◦) means that the negation of the logical
connective ◦ is introduced in the conclusion sequence Γ.

3

As our language contains the connectives: ∩,∪,⇒ and ¬, so we we are going to
define seven inference rules: (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), and (¬¬).

We denote, as usual, the set of all axioms by AX.

In order to define the axioms AX and the set of rules of inference of RS we
need to introduce some definitions.

Literals

We form a special subset F ′ ⊆ F of formulas, called a set of all literals, which
is defined as follows.

F
′

= V AR ∪ {¬a : a ∈ V AR}.

The variables are called positive literals and the elements of the second set
of the above union are called negative literals. I.e propositional variables are
called positive literals and the negation of a variable is called a negative literal,
a variable or a negation of propositional variable is called a literal.

Indecomposable formulas

Literals are also called the indecomposable formulas.

Now we form finite sequences out of formulas (and, as a special case, out of
literals). We need to distinguish the sequences formed out of literals from the
sequences formed out of other formulas, so we adopt the following notation.

We denote by Γ
′
, ∆

′
, Σ

′
finite sequences (empty included) formed out of literals

i.e. out of the elements of F ′
i.e. we assume that Γ

′
, ∆

′
, Σ

′ ∈ F ′∗ ⊆ F∗.

We will denote by Γ,∆,Σ the elements of F∗ i.e the finite sequences (empty
included) formed out of elements of F .

Axioms of RS

As the axiom of RS we adopt any sequence of literals which contains any
propositional variable and its negation, i.e any sequence of the form

Γ
′

1, a,Γ
′

2,¬a,Γ
′

3 (2)

or of the form
Γ

′

1,¬a,Γ
′

2, a,Γ
′

3 (3)

for any variable a ∈ V AR and any sequences Γ
′

1,Γ
′

2,Γ
′

3 ∈ F ′
∗
.

Inference rules of RS

We define formally the inference rules of RS as follows.

4

Disjunction rules

(∪)
Γ

′
, A,B,∆

Γ′ , (A ∪B),∆
, (¬∪)

Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′ ,¬(A ∪B),∆

Conjunction rules

(∩)
Γ

′
, A,∆ ; Γ

′
, B,∆

Γ′ , (A ∩B),∆
, (¬∩)

Γ
′
,¬A,¬B,∆

Γ′ ,¬(A ∩B),∆

Implication rules

(⇒)
Γ

′
,¬A,B,∆

Γ′ , (A⇒ B),∆
, (¬ ⇒)

Γ
′
, A,∆ : Γ

′
,¬B,∆

Γ′ ,¬(A⇒ B),∆

Negation rule

(¬¬)
Γ

′
, A,∆

Γ′ ,¬¬A,∆

where Γ
′ ∈ F∗,∆ ∈ F ′∗, A,B ∈ F .

The Proof System RS

Formally we define:

RS = (L, E , AX, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬))

where (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬) are the inference rules defined above
and AX is the axiom of the system defined by the schemas 2 and 3.

We define the notion of a formal proof in RS as in any proof system, i.e., by a
formal proof of a sequence Γ in the proof system RS = (F∗, AX, (∪), (¬∪), (∩), (¬∩), (⇒
), (¬ ⇒), (¬¬)) we understand any sequence

Γ1Γ2....Γn

of sequences of formulas (elements of F∗, such that Γ1 ∈ AX, Γn = Γ, and for
all i (1 < i ≤ n) Γi ∈ AL, or Γi is a conclusion of one of the inference rules of
RS with all its premisses placed in the sequence Γ1Γ2....Γi−1.

As the proof system under consideration is fixed, we will write, as usual,

` Γ

5

instead of `RS Γ to denote that Γ has a formal proof in RS.

As the proofs in RS are sequences (definition of the formal proof) of sequences
of formulas (definition of RS) we will not use ”,” to separate the steps of the
proof, or will write sometimes the formal proof (i. e. the sequence Γ1 Γ2 Γn)
in a vertical form

Γ1

Γ2

...
Γn.

We write, however, the formal proofs in RS in a form of trees rather then in a
form of sequences, ie. in a form of a tree, where leafs of the tree are axioms,
nodes are sequences such that each sequence on the tree follows from the ones
immediately preceding it by one of the rules. The root is a theorem. We
picture, and write our tree-proofs with the node on the top, and leafs on the
very bottom, instead of more common way, where the leafs are on the top and
root is on the bottom of the tree. We adopt hence the following definition.

Proof Tree

By a proof tree, or RS-proof of Γ we understand a tree TΓ of sequences satisfying
the following conditions:

1. The topmost sequence, i.e the root of TΓ is Γ,

2. all leafs are axioms,

3. the nodes are sequences such that each sequence on the tree follows from
the ones immediately preceding it by one of the rules.

We picture, and write our proof trees with the node on the top, and leafs on
the very bottom, instead of more common way, where the leafs are on the top
and root is on the bottom of the tree.

In particular cases we write our proof trees indicating additionally the name of
the inference rule used at each step of the proof. For example, if the proof of
a given formula A from 3 axioms was obtained by the subsequent use of the
rules (∩), (∪), (∪), (∩), (∪), (¬¬), and (⇒), we represent it as the following proof
tree:

A (conclusion of (⇒))

6

| (⇒)

conclusion of (¬¬)

| (¬¬)

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

conclusion of (∩)

| (∪)

axiom

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

axiom axiom

The proof trees are often called derivation trees and we will use this notion as
well. Remark that the derivation trees don’t represent a different definition of
a formal proof. Trees represent a certain visualization for the proofs and any
formal proof in any system can be represented in a tree form.

Example

The proof tree in RS of the de Morgan law (¬(a ∩ b) ⇒ (¬a ∪ ¬b)) is the
following.

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (⇒)

¬¬(a ∩ b), (¬a ∪ ¬b)
| (¬¬)

(a ∩ b), (¬a ∪ ¬b)∧
(∩)

a, (¬a ∪ ¬b)

| (∪)

a,¬a,¬b

b, (¬a ∪ ¬b)

| (∪)

b,¬a,¬b

7

To obtain a ”linear ” formal proof (written in a vertical form) of it we just write
down the tree as a sequence, starting from the leafs and going up (from left to
right) to the root. The formal proof (with comments) thus obtained will be the
following sequence of elements of F∗:

a,¬a,¬b (axiom)

b,¬a,¬b (axiom)

a, (¬a ∪ ¬b) (rule(∪))

b, (¬a ∪ ¬b) (rule(∪))

(a ∩ b), (¬a ∪ ¬b) (rule(∩))

¬¬(a ∩ b), (¬a ∪ ¬b) (rule(¬¬))

(¬(a ∩ b)⇒ (¬a ∪ ¬b)) (rule(⇒)).

2 Search for Proofs and Decomposition Trees

The main advantage of our system and the the Gentzen style systems in general
lies not in a way we generate proofs in them, but in the way we can search for
proofs in them. That happens to be deterministic and automatic.

Before we describe the general proof search procedure, let us consider few ex-
amples.

Example

Consider now a formula A of the form of another de Morgan law

(¬(a ∪ b)⇒ (¬a ∩ ¬b)).

Obviously it should have a proof in RS. The search for it consists of building a
certain tree, called a decomposition tree. We proceed as follows.

Observe that the main connective of A is ⇒. So, if it had a proof in RS it
would have come from the only possible rule used in its last step, namely the
rule (⇒) applied to a sequence ¬¬(a∪b), (¬a∩¬b). So the last step in the proof
of A would look as follows.

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

| (⇒)

¬¬(a ∪ b), (¬a ∩ ¬b)

8

Now, if the sequence ¬¬(a∪ b), (¬a∩¬b) (and hence also had our formula) had
a proof in RS its only step at this stage would have been the application of
the rule (¬¬) to a sequence (a ∪ b), (¬a ∩¬b). So, if A had a proof, its last two
steps would have been:

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

| (⇒)

¬¬(a ∪ b), (¬a ∩ ¬b)

| (¬¬)

(a ∪ b), (¬a ∩ ¬b)

Again, if the sequence (a∪ b), (¬a∩¬b) had a proof in RS its only step at this
stage would have been the application of the rule (∪) to a sequence a, b, (¬a∩¬b).
So, if A had a proof, its last three steps would have been as follows.

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

| (⇒)

¬¬(a ∪ b), (¬a ∩ ¬b)

| (¬¬)

(a ∪ b), (¬a ∩ ¬b)

| (∪)

a, b, (¬a ∩ ¬b)

Now, if the sequence a, b, (¬a∩¬b) had a proof in RS its only step at this stage
would have been the application of the rule (∩) to the sequences a, b,¬a and
a, b,¬b as its left and right premisses, respectively. Both sequences are axioms
and the following tree is a proof of A in RS.

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

| (⇒)

¬¬(a ∪ b), (¬a ∩ ¬b)

9

| (¬¬)

(a ∪ b), (¬a ∩ ¬b)

| (∪)

a, b, (¬a ∩ ¬b)∧
(∩)

a, b,¬a a, b,¬b

From the above proof tree of A we construct, if we want, its formal proof, written
in a vertical manner, by writing the two axioms, which form the two premisses of
the rule (∩) one above the other. All other sequences remain the same. I.e. the
following sequence of elements of F∗ is a formal proof of (¬(a∪b)⇒ (¬a∩¬b))
in RS.

a, b,¬b

a, b,¬a

a, b, (¬a ∩ ¬b)

(a ∪ b), (¬a ∩ ¬b)

¬¬(a ∪ b), (¬a ∩ ¬b)

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

Example

Given a formula A of the form

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

Observe that the main connective of A is ∪. So, if it had a proof in RS it
would have come from the only possible rule used in its last step, namely the
rule (∪) applied to a sequence ((a ⇒ b) ∩ ¬c), (a ⇒ c). So the last step in the
proof of A would have been:

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

| (∪)

((a⇒ b) ∩ ¬c), (a⇒ c)

10

Now, if the sequence ((a⇒ b) ∩ ¬c), (a⇒ c) (and hence also had our formula)
had a proof in RS its only step at this stage would have been the application
of the rule (∩) to the sequences (a⇒ b), (a⇒ c) and ¬c, (a⇒ c) as its left and
right premisses, respectively. So, if A had a proof, its last two steps would have
been:

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

| (∪)

((a⇒ b) ∩ ¬c), (a⇒ c)∧
(∩)

(a⇒ b), (a⇒ c)
¬c, (a⇒ c)

Now, if the sequences (a⇒ b), (a⇒ c) and ¬c, (a⇒ c) had proofs in RS, then
their last, and the only steps would have been the the separate application of
the rule (⇒) to the sequences ¬a, b, (a ⇒ c) and ¬c,¬a, c, respectively. The
sequence ¬c,¬a, c is an axiom, so we stop the search on this branch. The
sequence ¬a, b, (a⇒ c) is not an axiom, so the search continues. In this case we
can go one step further: if ¬a, b, (a ⇒ c) had a proof it would have been only
by the application of the rule (⇒) to a sequence ¬a, b,¬a, c which is not an
axiom and the search ends.

The tree generated by this search is called a decomposition tree and is the
following.

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

| (∪)

((a⇒ b) ∩ ¬c), (a⇒ c)∧
(∩)

(a⇒ b), (a⇒ c)

| (⇒)

¬a, b, (a⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a⇒ c)

| (⇒)

¬c,¬a, c

11

As the tree generated by this search contains a non-axiom leaf and hence is not
a proof.

2.1 Decomposition Trees

The process of searching for the proof of a formula A in RS consists of building
a certain tree, called a decomposition tree whose root is the formula A, nodes
correspond to sequences which are conclusions of certain rules (and those rules
are well defined at each step by the way the node is built), and leafs are axioms or
are sequences of a non- axiom literals. We prove that each formula A generates
its unique, finite decomposition tree, TA such that if all its leafs are axioms,
the tree constitutes the proof of A in RS. If there is a leaf of TA that is not
an axiom, the tree is not a proof, moreover, the proof of A does not exist.

Before we give a proper definition of the proof search procedure by building a
decomposition tree we list few important observations about the structure of
the rules of the system RS.

Introduction of Connectives

The rules of RS are defined in such a way that each of them introduces
a new logical connective, or a negation of a connective to a sequence in
its domain (rules (∪), (⇒), (∩)) or a negation of a new logical connective
(rules (¬∪), (¬∩), (¬ ⇒), (¬¬)).

The rule (∪) introduces a new connective ∪ to a sequence Γ
′
, A,B,∆ and

it becomes, after the application of the rule, a sequence Γ
′
, (A ∪ B),∆.

Hence a name for this rule is (∪).

The rule (¬∪) introduces a negation of a connective, ¬∪ by combining
sequences Γ

′
,¬A,∆ and Γ

′
,¬B,∆ into one sequence (conclusion of the

rule) Γ
′
,¬(A ∪B),∆. Hence a name for this rule is (¬∪).

The same applies to all remaining rules of RS, hence their names say which
connective, or the negation of which connective has been introduced by
the particular rule.

Decomposition Rules Building a proof search decomposition tree consists
of using the inference rules in an inverse order; we transform them into
rules that transform a conclusion into its premisses. We call such rules
the decomposition rules. Here are all of RS decomposition rules.

Disjunction decomposition rules

(∪)
Γ

′
, (A ∪B),∆

Γ′ , A,B,∆
, (¬∪)

Γ
′
,¬(A ∪B),∆

Γ′ ,¬A,∆ : Γ′ ,¬B,∆

Conjunction decomposition rules

12

(∩)
Γ

′
, (A ∩B),∆

Γ′ , A,∆ ; Γ′ , B,∆
, (¬∩)

Γ
′
,¬(A ∩B),∆

Γ′ ,¬A,¬B,∆

Implication decomposition rules

(⇒)
Γ

′
, (A⇒ B),∆

Γ′ ,¬A,B,∆
, (¬ ⇒)

Γ
′
,¬(A⇒ B),∆

Γ′ , A,∆ : Γ′ ,¬B,∆

Negation decomposition rule

(¬¬)
Γ

′
,¬¬A,∆

Γ′ , A,∆

where Γ
′ ∈ F ′∗,∆ ∈ F∗, A,B ∈ F .

We write the decomposition rules in a visual tree form as follows.

Tree Decomposition Rules

(∪) rule:

Γ
′
, (A ∪B),∆

| (∪)

Γ
′
, A,B,∆

(¬∪) rule:

Γ
′
,¬(A ∪B),∆∧

(¬∪)

Γ
′
,¬A,∆ Γ

′
,¬B,∆

(∩) rule:

Γ
′
, (A ∩B),∆∧

(∩)

Γ
′
, A,∆ Γ

′
, B,∆

13

(¬∪) rule:

Γ
′
,¬(A ∩B),∆

| (¬∩)

Γ
′
,¬A,¬B,∆

(⇒) rule:

Γ
′
, (A⇒ B),∆

| (∪)

Γ
′
,¬A,B,∆

(¬ ⇒) rule:

Γ
′
,¬(A⇒ B),∆∧

(¬ ⇒)

Γ
′
, A,∆ Γ

′
,¬B,∆

(¬¬) rule:

Γ
′
,¬¬A,∆

| (¬¬)

Γ
′
, A,∆

Observe that we use the same names for the inference and decomposition
rules, as once the we have built the decomposition tree (with use of the
decomposition rules) with all leaves being axioms, it constitutes a proof
of A in RS with branches labeled by the proper inference rules.

Now we still need to introduce few useful definitions and observations.

A sequence Γ
′

built only out of literals, i.e. Γ ∈ F ′∗ is called an in-
decomposable sequence. A formula that is not a literal is called a
decomposable formula. A sequence Γ that contains a decomposable
formula is called a decomposable sequence.

14

Observation 1

For any decomposable sequence, i.e. for any Γ 6∈ F ′∗ there is exactly
one decomposition rule that can be applied to it. This rule is determined
by the first decomposable formula in Γ, and by the main connective of
that formula.

Observation 2

If the main connective of the first decomposable formula is ∪,∩, or⇒, then
the decomposition rule determined by it is (∪), (∩), or (⇒), respectively.

Observation 3

If the main connective of the first decomposable formula is ¬, then the
decomposition rule determined by it is determined by the second con-
nective of the formula. If the second connective is ∪,∩,¬, or ⇒, then
corresponding decomposition rule is (¬∪), (¬∩), (¬¬) and (¬ ⇒).

Because of the importance of the above observations we write them in a form
of the following

Lemma 2.1 (Unique Decomposition) For any sequence Γ ∈ F∗,

Γ ∈ F ′∗ or Γ is in the domain of only one of the RS Decomposition Rules.

2.1.1 Decomposition Tree Definition

Decomposition Tree TA

For each formula A ∈ F , a decomposition tree TA is a tree build as follows.

Step 1. The formula A is the root of TA and for any node Γ of the tree we
follow the steps below.

Step 2. If Γ is indecomposable, then Γ becomes a leaf of the tree.

Step 3. If Γ is decomposable, then we traverse Γ from left to right to identify
the first decomposable formula B and identify the unique (Lemma 2.1) de-
composition rule determined by the main connective of B. We put its left and
right premisses as the left and right leaves, respectively.

Step 4. We repeat steps 2 and 3 until we obtain only leaves.

15

Decomposition Tree TΓ

For each Γ ∈ F∗, a decomposition tree TΓ is a tree build as follows.
Step 1. The sequence Γ is the root of TΓ and for any node ∆ of the tree we
follow the steps bellow.
Step 2. If ∆ in indecomposable, then ∆ becomes a leaf of the tree.
Step 3. If ∆ is decomposable, then we traverse ∆ from left to right to identify
the first decomposable formula B and identify the unique (Lemma 2.1) de-
composition rule determined by the main connective of B. We put its left and
right premisses as the left and right leaves, respectively.
Step 4. We repeat steps 2 and 3 until we obtain only leaves.

2.1.2 Decomposition Tree Properties

We prove now the basic properties of the Decomposition Tree. They are essential
to the proof of the Completeness Theorem for RS¿

Theorem 2.1 For any sequence Γ ∈ F∗ the following conditions hold.

1. TΓ is finite and unique.

2. TΓ is a proof of Γ in RS if and only if all its leafs are axioms.

3. 6 `RS if and only if TΓ has a non- axiom leaf.

proof The tree TΓ is unique by Lemma 2.1. It is finite because there is a
finite number of logical connectives in Γ and all decomposition rules diminish
the number of connectives. If the tree has a non- axiom leaf it is not a proof by
definition. By the its uniqueness it also means that the proof does not exist.

Example Let’s construct, as an example a decomposition tree TA of the fol-
lowing formula A.

A = ((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

The formula A forms a one element decomposable sequence. The first decom-
position rule used is determined by its main connective. We put a box around
it, to make it more visible. The first and only rule applied is (∪) and we can
write the first segment of our decomposition tree TA:

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

16

| (∪)

((a ∪ b)⇒ ¬a), (¬a⇒ ¬c)

Now we decompose the sequence ((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)). It is a decom-
posable sequence with the first, decomposable formula ((a ∪ b) ⇒ ¬a). The
next step of the construction of our decomposition tree is determined by its
main connective ⇒ (we put the box around it), hence the only rule determined
by the sequence is (⇒). The second stage of the decomposition tree is now as
follows.

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a⇒ ¬c)

| (⇒)

¬(a ∪ b),¬a, (¬a⇒ ¬c)

The next sequence to decompose is the sequence ¬(a ∪ b),¬a, (¬a ⇒ ¬c) with
the first decomposable formula ¬(a ∪ b). Its main connective is ¬, so to find
the appropriate rule we have to examine next connective, which is ∪. The rule
determine by this stage of decomposition is (¬∪) and now the next stage of the
decomposition tree TA is as follows.

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a⇒ ¬c) ¬b,¬a, (¬a⇒ ¬c)

Now we have two decomposable sequences: ¬a,¬a, (¬a⇒ ¬c) and ¬b,¬a, (¬a⇒
¬c). They both happen to have the same first decomposable formula (¬a⇒ ¬c).
We decompose it and obtain the following:

17

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a⇒ ¬c)
| (⇒)

¬ (a ∪ b),¬a, (¬a⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c)

| (⇒)

¬a,¬a,¬¬a,¬c

¬b,¬a, (¬a ⇒ ¬c)

| (⇒)

¬b,¬a,¬¬a,¬c

It is easy to see that we need only one more step to complete the process of
constructing the unique decomposition tree of TA, namely, by decomposing the
sequences: ¬a,¬a,¬¬a,¬c and ¬b,¬a,¬¬a,¬c.

The complete decomposition tree TA is:

TA

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a⇒ ¬c)
| (⇒)

¬ (a ∪ b),¬a, (¬a⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c)

| (⇒)

¬a,¬a, ¬¬ a,¬c

| (¬¬)

¬a,¬a, a,¬c

¬b,¬a, (¬a ⇒ ¬c)

| (⇒)

¬b,¬a, ¬¬ a,¬c

| (¬¬)

¬b,¬a, a,¬c

18

All leafs are axioms, the tree represents a proof of A in RS

Example

Consider now the formula A = (((a⇒ b)∩¬c)∪ (a⇒ c)) and its decomposition
tree:

TA

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

| (∪)

((a⇒ b) ∩ ¬c), (a⇒ c)∧
(∩)

(a⇒ b), (a⇒ c)

| (⇒)

¬a, b, (a⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a⇒ c)

| (⇒)

¬c,¬a, c

The above tree TA is unique by the theorem 2.1 and represents the only possible
search for proof of the formula A = ((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) in RS. It has a
non-axiom leaf, hence the proof of A in RS does not exists.

We use this information to construct a truth assignment that would falsify the
formula A. Such a variable assignment is called a counter-model generated by
the decomposition tree.

Counter-model generated by the decomposition tree

Given a formula A = ((a⇒ b) ∩ ¬c) ∪ (a⇒ c)) and its decomposition tree TA.

Consider a non-axiom leaf ¬a, b,¬a, c of TA. Let v be any variable assignment
v : V AR −→ {T, F} such that

v(a) = T, v(b) = F, v(c) = F.

Obviously,
v∗(¬a, b,¬a, c) = ¬T ∪ F ∪ ¬T ∪ F = F.

19

Moreover, all our rules of inference are sound (to be proven formally in the next
section). It means that if one of premisses of a rule is false, so is the conclusion.
This proves that v, as defined above falsifies all sequences on the branch of TA

that ends with the non-axiom leaf ¬a, b,¬a, c. In particular, the formula A is
on this branch, hence

v∗(((a⇒ b) ∩ ¬c) ∪ (a⇒ c)) = F

and v is a counter-model for A. The variable assignments constructed in this
way are called the counter-model generated by the decomposition tree. We
represent this graphically as follows.

F ”climbs” the Tree TA.

TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) = F

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c) = F∧
(∩)

(a ⇒ b), (a ⇒ c) = F

| (⇒)

¬a, b, (a ⇒ c) = F

| (⇒)

¬a, b,¬a, c = F

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

Observe that the same construction applies to any other non-axiom leaf, if exists
and gives the other ”F climbs the tree” picture, and hence other counter- model
for A. By the uniqueness of the Decomposition Tree (Theorem 2.1 all possible
counter-models (restricted) for A are those generated by the non- axioms leaves
of the TA. In our case the formula A has only one non-axiom leaf, and hence
only one (restricted) counter model.

Exercises

Write 10 formulas, build their decomposition trees and find for each case when
there is a non-axiom leaf a counter-model determined by the tree.

3 Completeness of RS

We prove first the Soundness Theorem for RS; and then the completeness part
of the Completeness Theorem.

20

Theorem 3.1 (Soundness Theorem 1) For any Γ ∈ F∗,

if `RS Γ, then |= Γ.

We prove here as an example the soundness of two of inference rules (⇒) and
(¬∪). We leave the proof for the other rules as an exercise.

We show even more, that the premisses and conclusion of both rules are logically
equivalent, i.e. that for all v, v∗(Premiss(es)) = T , implies that v∗(Conclusion) =
T . We hence show the following.

Equivalency: If P1, (P2) are premiss(es) of any rule of RS, C is its conclusion,
then v∗(P1) = v∗(C) in case of one premiss rule and v∗(P1) ∩ v∗(P2) = v∗(C),
in case of the two premisses rule.

Consider the rule (∪).

(∪)
Γ

′
, A,B,∆

Γ′ , (A ∪B),∆
.

By the definition:

v∗(Γ
′
, A,B,∆) = v∗(δ{Γ′ ,A,B,∆}) = v∗(Γ

′
) ∪ v∗(A) ∪ v∗(B) ∪ v∗(∆) = v∗(Γ

′
) ∪

v∗(A ∪B) ∪ v∗(∆) = v∗(δ{Γ′ ,(A∪B),∆}) = v∗(Γ
′
, (A ∪B),∆).

Consider the rule (¬∪).

(¬∪)
Γ

′
,¬A,∆ : Γ

′
,¬B,∆

Γ′ ,¬(A ∪B),∆
.

By the definition:

v∗(Γ
′
,¬A,∆)∩ v∗(Γ′

,¬B,∆) = (v∗(Γ
′
)∪ v∗(¬A)∪ v∗(∆))∩ (v∗(Γ

′
)∪ v∗(¬B)∪

v∗(∆)) = (v∗(Γ
′
,∆) ∪ v∗(¬A)) ∩ (v∗(Γ

′
,∆) ∪ v∗(¬B)) = by distributivity =

(v∗(Γ
′
,∆)∪ (v∗(¬A)∩ v∗(¬B)) = v∗(Γ

′
)∪ v∗(∆)∪ (v∗(¬A∩¬B)) = by the log-

ical equivalence of (¬A∩¬B) and ¬(A∪B) = v∗(δ{Γ′ ,¬(A∪B),∆} = v∗(Γ
′
,¬(A∪

B),∆)).

Proofs for all other rules of RS follow the above pattern (and proper logical
equivalencies).

From the above Soundness Theorem 1 3.1 we get as a corollary, in a case when
Γ is a one formula sequence, the following soundness Theorem for formulas.

Theorem 3.2 (Soundness Theorem 2)

21

For any A ∈ F ,

if `RS A, then |= A.

Theorem 3.3 (Completeness Theorem 1)

For any formula A ∈ F ,

`RS A if and only if |= A.

Theorem 3.4 (Completeness Theorem 2)

For any Γ ∈ F∗,

`RS Γ if and only if |= Γ.

Both proofs are carried by proving the contraposition implication to the Com-
pleteness Part, as the soundness part has been already proven.

Proof: as an example, we list the main steps in the proof of a contraposition
of the Completeness Theorem 1.

If 6 `RSA, then 6|= A.

To prove this we proceed as follows.

We define, for each A ∈ F its decomposition tree (section 2.1.1).

Prove that the decomposition tree is finite and unique (theorem 2.1) and has
the following property:

`GA iff all leafs of the decomposition tree of A are axioms.

What means that if 6 `RSA, then there is a leaf L of the decomposition tree
of A, which is not an axiom.

Observe, that by soundness, if one premiss of a rule of RS is FALSE, so is the
conclusion.

Hence by soundness and the definition of the decomposition tree any truth
assignment v that falsifies an non axiom leaf, i.e. any v such that v∗(L) =
F falsifies A, namely v∗(A) = F and hence constitutes a counter model
for A. This ends that proof that 6|= A.

Essential part:

Given a formula A such that 6 `RSA and its decomposition tree of A with a
non-axiom leaf L.

22

We define a counter-model v determined by the non- axiom leat L as follows:

v(a) =

 F if a appears in L
T if ¬a appears in L
any value if a does not appear in L

This proves that 6|= A and ends the proof of the Completeness Theorem for
RS.

4 Gentzen Sequent Calculus GL

We present here a proof system GL for the classical propositional logic that is
a version (without structural rules) of the original Gentzen systems LK.

We give a constructive of the completeness theorem for the system GL. The
proof is very similar to the proof of the completeness theorem for the system
RS.

The axioms, the rules of inference of the system GL operate, as in the original
system LK, on expressions called by Gentzen sequents, hence the name Gentzen
sequent calculus.

Language of GL

We adopt a propositional language L = L{∪,∩,⇒,¬} with the set of formulas
denoted by F and we add a new symbol

−→

called a Gentzen arrow, to it. As the next step we build expressions called
sequents. The sequents are built out of finite sequences (empty included) of
formulas, i.e. elements of F∗, and the additional sign −→.

We denote , as in the RS system, the finite sequences of formulas by Greek
capital letters Γ,∆,Σ, with indices if necessary. We define a sequent as follows.

Sequent

For any Γ,∆ ∈ F∗, the expression

Γ −→ ∆

is called a sequent. Γ is called the antecedent of the sequent, ∆ is called the
succedent, and each formula in Γ and ∆ is called a sequent-formula.

We denote the sequents by the letter S, with or without subscripts.

23

Semantics of sequents

Intuitively, a sequent A1, ..., An −→ B1, ..., Bm (where n,m ≥ 1) means: if
A1 ∩ ... ∩An then B1 ∪ ... ∪Bm.

The sequent A1, ..., An −→ (where n ≥ 1) means that A1 ∩ ... ∩An yields a
contradiction.

The sequent −→ B1, ..., Bm (where m ≥ 1) means that B1 ∪ ...∪Bm is true.

The empty sequent −→ means a contradiction.

Given non empty sequences Γ, ∆, we denote by

σΓ

any conjunction of all formulas of Γ, and by

δ∆

any disjunction of all formulas of ∆.

The intuitive semantics for a sequent Γ −→ ∆ (where Γ,∆ are nonempty) is
hence that it is logically equivalent to the formula (σΓ ⇒ δ∆), i.e.

Γ −→ ∆ ≡ (σΓ ⇒ δ∆).

Formal semantics for sequents

Formally, let v : V AR −→ {T, F} be a Boolean truth assignment, v∗ its exten-
sion to the set of formulas F . We extend v∗ to the set SEQ = { Γ −→ ∆ :
Γ,∆ ∈ F∗ } of all sequents as follows: for any sequent Γ −→ ∆ ∈ SEQ,

v∗(Γ −→ ∆) = v∗(σΓ)⇒ v∗(δ∆).

In the case when Γ = ∅ or ∆ = ∅ we define:

v∗(−→ ∆) = T ⇒ v∗(δ∆),

v∗(Γ −→) = v∗(σΓ)⇒ F.

Model

The sequent Γ −→ ∆ is satisfiable if there is a truth assignment v : V AR −→
{T, F} such that v∗(Γ −→ ∆) = T . Such a truth assignment is called a model
for Γ −→ ∆. We write

v |= Γ −→ ∆

24

to denote that v is a model for Γ −→ ∆.

Counter- model

The sequent Γ −→ ∆ is falsifiable if there is a truth assignment v, such that
v∗(Γ −→ ∆) = F . In this case v is called a counter-model for Γ −→ ∆ and
we write it as

v 6|= Γ −→ ∆.

Tautology

The sequent Γ −→ ∆ is a tautology if v∗(Γ −→ ∆) = T for all truth
assignments v : V AR −→ {T, F} and we write

|= Γ −→ ∆

to denote that Γ −→ ∆ is a tautology.

Example

Let Γ −→ ∆ be a sequent

a, (b ∩ a) −→ ¬b, (b⇒ a).

The truth assignment v for which v(a) = T and v(b) = T is a model for Γ −→ ∆,
as shows the following computation.

v∗(a, (b ∩ a) −→ ¬b, (b ⇒ a)) = v∗(σ{a,(b∩a)}) ⇒ v∗(δ{¬b,(b⇒a)}) = v(a) ∩
(v(b)∩ v(a))⇒ ¬v(b)∪ (v(b)⇒ v(a)) = T ∩TcapT ⇒ ¬T ∪ (T ⇒ T) = T ⇒
(F ∪ T) = T ⇒ T = T.

Observe that the only v for which v∗(Γ) = v∗(a, (b∩a) = T is the above v(a) = T
and v(b) = T that is a model for Γ −→ ∆. Hence it is impossible to find v
which would falsify it, what proves that Γ −→ ∆ is a tautology, i.e.

|= a, (b ∩ a) −→ ¬b, (b⇒ a).

The Proof System GL

The rules of inference of GL are of the form:

S1

S
or

S1 ; S2

S
,

where S1, S2 and S are sequents. S1, S2 are called premisses and S is called the
conclusion of the rule of inference.

25

Each rule of inference introduces a new logical connective to the antecedent or
to the succedent of the conclusion sequent.

We denote the rule that introduces the logical connective ◦ to the antecedent of
the conclusion sequent S by (◦ →). The notation (→ ◦) means that the logical
connective is introduced to the succedent of the conclusion sequent S.

As our language contains the connectives: ∩,∪,⇒ and ¬, we are going to adopt
the following inference rules: (∩ →) and (→ ∩), (∪ →) and (→ ∪), (⇒→) and
(→⇒), and finally, (¬ →) and (→ ¬).

We denote by Γ
′
, ∆

′
finite sequences formed out of positive literals i.e. out

of propositional variables only.

They are also called indecomposable sequents.

Γ, ∆ denote any finite sequences of formulas.

Axioms of GL

As the axioms of GL we adopt any indecomposable sequent sequent which
contains a positive literal a (variable) that appears on both sides of the sequent
arrow −→, i.e any sequent of the form

Γ′1, a,Γ
′
2 −→ ∆′1, a,∆

′
2, (4)

for any a ∈ V AR and any sequences Γ′1,Γ
′
2,∆

′
1,∆

′
2 ∈ V AR∗.

Inference rules of GL

The inference rules of GL are defined as follows.

Conjunction rules

(∩ →)
Γ

′
, A,B,Γ −→ ∆

′

Γ′ , (A ∩B),Γ −→ ∆′ , (→ ∩)
Γ −→ ∆, A,∆

′
; Γ −→ ∆, B,∆

′

Γ −→ ∆, (A ∩B),∆′ ,

Disjunction rules

(→ ∪)
Γ −→ ∆, A,B,∆

′

Γ −→ ∆, (A ∪B),∆′ , (∪ →)
Γ

′
, A,Γ −→ ∆

′
; Γ

′
, B,Γ −→ ∆

′

Γ′ , (A ∪B),Γ −→ ∆′ ,

Implication rules

(→⇒)
Γ

′
, A,Γ −→ ∆, B,∆

′

Γ′ ,Γ −→ ∆, (A⇒ B),∆′ , (⇒→)
Γ

′
,Γ −→ ∆, A,∆

′
; Γ

′
, B,Γ −→ ∆,∆

′

Γ′ , (A⇒ B),Γ −→ ∆,∆′ ,

26

Negation rules

(¬ →)
Γ

′
,Γ −→ ∆, A,∆

′

Γ′ ,¬A,Γ −→ ∆,∆′ , (→ ¬)
Γ

′
, A,Γ −→ ∆,∆

′

Γ′ ,Γ −→ ∆,¬A,∆′ .

Formally we define:

GL = (L, SQ,AX, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬))

where SQ = { Γ −→ ∆ : Γ,∆ ∈ F∗ }, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)
are the inference rules defined above and AX is the axiom of the system defined
by the schema 4.

We define the notion of a formal proof in GL as in any proof system, i.e., by a
formal proof of a sequent Γ −→ ∆ in the proof system GL we understand any
sequence

Γ1 −→ ∆1, Γ2 −→ ∆2,, Γn −→ ∆n

of sequents of formulas (elements of SEQ, such that Γ1 −→ ∆1 ∈ AX, Γn −→
∆n = Γ −→ ∆, and for all i (1 < i ≤ n) Γi −→ ∆i ∈ AL, or Γi −→ ∆i is a
conclusion of one of the inference rules of GL with all its premisses placed in
the sequence Γ1 −→ ∆1,Γi−1 −→ ∆i−1.

We write, as usual,
`GL Γ −→ ∆

to denote that Γ −→ ∆ has a formal proof in GL, or we write simply

` Γ −→ ∆

when the system GL is fixed.

We say that a formula A ∈ F , has a proof in GL and denote it by `GL A if the
sequent −→ A has a proof in GL, i.e. we define:

`GL A iff `GL −→ A. (5)

We write, however, the formal proofs in GL in a form of proof trees rather then
in a form of sequences.

Proof trees

A proof tree, or GL-proof of Γ −→ ∆ is a tree TΓ−→∆ of sequents satisfying
the following conditions:

1. The topmost sequent, i.e the root of TΓ−→∆ is Γ −→ ∆,

27

2. the leafs are axioms,

3. the nodes are sequents such that each sequent on the tree follows from the
ones immediately preceding it by one of the rules.

We picture, and write our proof-trees with the node on the top, and leafs on
the very bottom, instead of more common way, where the leafs are on the top
and root is on the bottom of the tree.

In particular cases we will write our proof- trees indicating additionally the
name of the inference rule used at each step of the proof.

For example, a proof-tree (in GL) of the de Morgan law (¬(a∩ b)⇒ (¬a∪¬b))
is the following.

−→ (¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (−→⇒)

¬(a ∩ b) −→ (¬a ∪ ¬b)
| (−→ ∪)

¬(a ∩ b) −→ ¬a,¬b
| (−→ ¬)

b,¬(a ∩ b) −→ ¬a
| (−→ ¬)

b, a,¬(a ∩ b) −→
| (¬ −→)

b, a −→ (a ∩ b)∧
(−→ ∩)

b, a −→ a b, a −→ b

Remark
Proof search, i.e. a decomposition tree for a given formula A and hence a
proof of A in GL is not always unique.

Exercise 1
Write all other proofs of ¬(a ∩ b)⇒ (¬a ∪ ¬b)) in GL.

Exercise 2:
Verify that the axiom and the rules of inference of GL are sound, i.e. that the
following theorem holds.

28

Theorem 4.1 (Soundness of GL)

For any sequent Γ −→ ∆ ∈ SEQ,

if `GL Γ −→ ∆ then |= Γ −→ ∆.

In particular, following the definition 5 we get the following.

Theorem 4.2 (Formula Soundness of GL)

For any formula A ∈ F ,

if `GL A then |= A.

There are the following two completeness theorems for GL. The second, called
formula completeness theorem is a particular case of the first theorem.

Theorem 4.3 (Completeness Theorem)

For any sequent Γ −→ ∆ ∈ SEQ,

`GL Γ −→ ∆ iff |= Γ −→ ∆.

Following the definition 5 we get, as a particular case of the above the following
theorem.

Theorem 4.4 (Formula Completeness Theorem)

For any formula A ∈ F ,
`GL A iff |= A.

The proof of the Completeness Theorem is similar to the proof for the RS
system and is assigned as an exercise.

29

