
CHAPTER 7

GENERAL PROOF SYSTEMS

1 Introduction

Proof systems are built to prove statements. They can be thought as an infer-
ence machine with special statements, called provable statements, or sometimes
theorems being its final products. The starting points are called axioms of the
system. We distinguish two kinds of axioms: logicalLA and specific SX.

When building a proof system for a given language and its semantics i.e. for a
logic defined semantically we choose as a set of logical axioms LA some subset
of tautologies, i.e. statements always true. This is why we call them logical
axioms. A proof system with only logical axioms LA is also called a logic proof
system.

If we build a proof system for which there is no known semantics, like it has
happened in the case of classical, intuitionistic, and modal logics, we think
about the logical axioms as statements universally true. We choose as axioms
(finite set) the statements we for sure want to be universally true, and whatever
semantics follows they must be tautologies with respect to it. Logical axioms are
hence not only tautologies under an established semantics, but they also guide
us how to establish a semantics, when it is yet unknown. For the set of specific
axioms SA we choose these formulas of the language that describe our knowledge
of a universe we want to prove facts about. They are not universally true, they
are true only in the universe we are interested to describe and investigate. This
is why we call them specific axioms. A proof system with logical axioms LA
and specific axioms SA is called a formal theory.

The inference machine is defined by a finite set of rules, called inference rules.
The inference rules describe the way we are allowed to transform the informa-
tion within the system with axioms as a staring point. The process of this
transformation is called a formal proof and can be depicted as follows:
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AXIOMS

↓ ↓ ↓

RULES applied to AXIOMS

↓ ↓ ↓

Provable formulas

↓ ↓ ↓

RULES applied to any expressions above

↓ ↓ ↓

NEW Provable formulas

↓ ↓ ↓

. . . . . . . . . . . . . . . . . . . . . . etc. . . . . . . . . . . . . . . . . . . . . .

The provable formulas for which we have a formal proof are called consequences
of the axioms, or theorem, or just simple provable formulas. When building a
proof system we choose not only axioms of the system, but also specific rules
of inference. The choice of rules is often linked, as was the choice of axioms,
with a given semantics. We want the rules to preserve the truthfulness of what
we are proving, i.e. generating from axioms via the rules. Rules with this
property are called sound rules and the system a sound proof system. The
theorem establishing the soundness of a given proof system is called Soundness
Theorem. It states in a case of a logic proof system S that for any formula A of
the language of the system S, A is provable in a (logic) proof system S, then A
is a tautology.

A proof system S with logical axioms LA and specific axioms SA is called a
formal theory with specific axioms SA, based on a logic defined by the axioms
LA. We denote a formal theory by T HS(SA), or T H(SA) when the proof
system S is fixed.

In a case of a formal theory T H(SA) the Soundness Theorem says: for any
formula A of the language of the theory T H(SA), if a formula A is provable in
the theory T H(SA), then A is true in any model of the set of specific axioms
SA.

Any proof system can be sound under one semantics, and not sound under
the other. For example a set of axioms and rules sound under classical logic
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semantics might not be sound under  L logic semantics, or K logic semantics, or
others. This is why we talk about proof systems for classical logic, for modal
logic, for intuitionistic logic, etc. In general there are many proof systems that
are sound under a given semantics, i.e. many sound proof systems for a given
logic. We present some examples at the end of the chapter.

Given a logic system S with logical axioms LA that is sound under a given
semantics M . Let TM be a set of all tautologies defined by the semantics M ,
i.e.

TM = {A : |=M A}.

A natural questions arises: are all tautologies defined by the semantics M ,
provable in the system S that is sound under the semantics M . The positive
answer to this question is called completeness property of the system S. Because
we ask the completeness property question for sound systems only we put it in
a form of a following theorem.

Completeness Theorem (for a logic system S, under a semantics M . For any
A (of the language of S)),

A is provable in S if and only if A is a tautology under the semantics M .

We write it symbolically as:

`S A iff |=M A.

The Completeness Theorem is composed from two parts: the Soundness
Theorem and the completeness part that proves the completeness property of
a sound system.

Proving the Soundness Theorem of S under a semantics M is usually a
straightforward and not a very difficult task. We first prove that all logical
axioms are tautologies, and then that all inference rules of the system preserve
the notion of the truth (model).

Proving the completeness part of the Completeness Theorem is always a
very difficult, and a crucial task. We will study two proofs of the Complete-
ness Theorem for classical propositional Hilbert style proof system in the next
chapter, and a constructive proofs for automated theorem proving systems for
classical logic the the following chapter.

Observe that we formulated all these basic theorems linking semantics and syn-
tax (provability) in a general manner. In this part of the book we consider
only propositional languages, and hence Completeness Theorems for propo-
sitional logics as examples. The case of Predicate Logics will be discussed in
the second part of the book.
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2 Proof Systems and Proofs

In this section we formulate a general definition of a proof system and all its
components. We also define the notion of a formal proof (in a given proof
system), and give simple examples of different proof systems.

When defining a proof system S we specify, as the first step, the language L we
work with. It can be a propositional language, but it can be any other formal
language.

Component: Language L of S

Usually, as in the propositional case, the language L consists of its alpha-
bet A and a set of formulas, denoted here by F , i.e.

L = (A,F).

We assume that the both sets A and F are enumerable, i.e. we will deal
here with enumerable languages only.

Given a set F of well formed formulas, of the language L, we often extend this
set (and hence the language L to some set E of expressions build out of the
language L, and some additional symbols, if needed.

For example, as we will see later, we might consider the set of all finite sequences
of formulas, or sets of formulas, or other expressions, called Gentzen sequents, or
sets of clauses in the case of the resolution based systems as the basic expressions
of our proof system S under consideration.

Component: Expressions E

Given a language L. We assume that E is enumerable and primitively recursive
set built out of the alphabet of L and some additional symbols, if needed. I.e.
we assume that there is an effective procedure to determine whether a given
expression is, or is not in E .

The expressions are often built out of the formulas F of the language L and
some, if needed, extra symbols. In many proof system we choose the set of
formulas F as expressions, i.e. F = E .

Semantical Link We always have to extend our semantics of the language L
(if given) from the set of formulas, to the set of expressions. I.e. we have to
define, for any expression E ∈ E what does it mean that E is a tautology
under the semantics of L.

We often do it by establishing a semantic equivalency of E and the set
of all formulas F of L. It means we prove that for a given semantics M
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under which we build our proof system S, and for any expression E ∈ E
there is a formula A ∈ F , such that E≡MA.

Example 1

In the automated theorem proving system RS we study in chapter 10, our
basic expressions are finite sequences of formulas of L = L¬,∩,∪,⇒. We extend
our classical semantics for L to the set F∗ of all finite sequences of formulas
as follows: for any v : V AR −→ {F, T} and any ∆ ∈ F∗, ∆ = A1, A2, ..An,
v∗(∆) = v∗(A1, A2, ..An) = v∗(A1)∪ v∗(A2)∪ ....∪ v∗(An), i.e. ∆ ≡ (A1 ∪A2 ∪
... ∪An). This means that the sequence

∆ = A1, A2, ..An

which is an expression of E is semantically equivalent to the formula

A = (A1 ∪A2 ∪ ... ∪An)

The proof system acts as an inference machine, with provable formulas being its
final products. This inference machine is defined by first setting, as a starting
point a certain non-empty, proper subset AX of F , called a set of axioms of the
system S.

Component: Axioms Given a non- empty set E of expressions of a language
L. Any proper, non-empty, primitively recursive subset AX of the set E
is called a set of axioms of S. I.e. there is an effective procedure to
determine whether a given expression A ∈ E is in AX or not.

Semantical link : For a given semantics M for L and its extension to E , we
usually choose as AX a subset of expressions that are tautologies under
the semantics M .

Component: Rules of Inference

The production of provable formulas is to be done by the means of inference
rules. The inference rules transform an expression, or finite string of expres-
sions, called premisses, into another expression, called conclusion. At this stage
the rules don’t carry any meaning - they define only how to transform strings
of symbols of our language into another string of symbols. This is a reason why
the proof system investigations are often called syntactic methods as opposed
to semantic methods, which deal with the semantics of the language only. The
semantical connection does exists and is established by Soundness and Com-
pleteness theorems and will be discussed in detail later.

We assume that a proof system contains only a finite number of inference
rules. The set of rules of inference is denoted by R.
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We assume additionally that each rule has a finite number of premisses and one
conclusion, i.e. is defined by a certain relation, which assigns a single expression,
called conclusion, to a finite string of expressions, called its premisses.

Moreover, we also assume that one can effectively decide, for any rule, whether
a given string of expressions form its premisses and conclusion or not, i.e. that
all relations r ∈ R are primitively recursive.

More formally, we say that:

(1) for each r ∈ R, there is a number m, called the number of premisses of r,
such that r is a relation defined in Em with values in E , i.e.

r ⊆ Em × E

(2) all r ∈ R are primitively recursive relations.

We put it in a formal definition as follows.

Definition 2.1 (Rule of Inference) Given a non- empty set E of expressions
of a language L of S.

Any primitively recursive relation

r ⊆ Em × E , m ≥ 1

is called a rule of inference.

For any (P1, ..., Pm, A) ∈ r, P1, ..., Pm are called the premisses, A is called the
conclusion, and m the number of premisses of r.

We usually write the inference rules in a following convenient way.

If r is a one premiss rule and (A,B) ∈ r, then we write it as

(r)
A

B
,

where A is a premiss, and B is a conclusion of r.

If r is a two premisses rule and (P1, P2, A) ∈ r, then we write it as

(r)
P1 ; P2

A
,

where P1, P2 are the premisses of r and A is its conclusion. P1 is called a left
premiss of r and P2 is called a right premiss.
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If r is a three premisses rule and (P1, P2, P3, A) ∈ r, then we write it accordingly
as

(r)
P1 ; P2 ; P3

A
,

where P1, P2, P3 are the premisses of r and A is its conclusion.

In general, if r is an m- premisses rule and (P1, P2, ...Pm, A) ∈ r, then we will
write it as

(r)
P1 ; P2 ; .... ; Pm

A
,

where P1, P2, ..., Pm are the premisses of r and A is its conclusion.

Semantical link: For a given semantic M for L, and E , we chose for S rules
which preserve truthfulness under the semantics M , i.e. we prove that the rules
of the system S are sound.

Now we are ready to define formally a proof system.

Definition 2.2 ( Proof system S) By a proof system we understand a triple

S = (L, E , AX,R),

where

L = {A,F} is a formal language, called the language of S with a set F of
formulas.

E is a set of expressions of L,

AX is a set of axioms of the system. It is a non-empty, proper, primitively
recursive subset of the set of expressions E,

R is a finite set of rules of inference (as defined in definition 2.1).

Finitely Axiomatizable Systems When the set AX of axioms of S is fi-
nite we say that the system S has a finite axiomatization, or is finitely
axiomatizable.

Infinitely Axiomatizable Systems are system that are not finitely axioma-
tizable, i.e. systems with infinitely many axioms.

In our book we consider only finitely axiomatizable systems.
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Provable expressions of a system S are final products of a single or multiple use
of the inference rules, with axioms taken as a starting point. A single use of an
inference rule is called a direct consequence, a multiple application of rules of
inference is called a proof. Formal definitions are as follows.

Direct consequence

A conclusion of a rule of inference is called a direct consequence of its
premisses. I.e. for any rule of inference r, if

(P1, ...Pn, A) ∈ r,

then A is called a direct consequence of P1, ...Pn by virtue of r.

Proof of A in S

A proof of an expression A ∈ E in a proof system S is a sequence

A1, ...An

of expressions from E , such that,

A1 ∈ AX, An = A

and for each i, 1 ≤ i ≤ n, either Ai is an axiom of the system or Ai is a
direct consequence of some of the preceding expressions by virtue of one
of the rules of inference.

We write
`S A

to denote that A has a proof in S. When the proof system S is fixed we write

` A.

Provable expressions of S

Any expression A such that A has a proof in S, i.e.

`S A

is called a provable expression of S.

The set of all provable expressions of S is denoted by PS , i.e.

PS = {A ∈ E : `S A}.

While proving expressions, we often need to use some extra information avail-
able, besides the axioms of the proof system. To describe formally this process
we introduce the notions of a proof from a given set of expressions.
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Proof of A from Γ in S

Given a set Γ of expressions of a proof system, by a proof of A from Γ we
will understand a proof where the expressions from Γ are added to the set
LA of the axioms of the system.

Definition 2.3 A proof of A from Γ is a sequence

A1, ...An

of expressions, such that
(i) An = A, and
(ii) for each i, 1 ≤ i ≤ n, either Ai is an axiom of the system, or
(iii) Ai is in Γ, or
(iii) Ai is a direct consequence of some of the preceding expressions by virtue
of one of the rules of inference.

We write
Γ `S A

to denote that A has a proof from Γ in S and

Γ ` A,

when the system S is fixed.

The set of all expressions provable from Γ (and logical axioms LA in S is denoted
by PS(Γ), i.e.

PS(Γ) = {A ∈ E : Γ `S A}.

Hypothesis

If Γ `S A then the expressions of Γ are called hypotheses of the proof of
A from Γ.

Finite Γ

If Γ is a finite set and Γ = {B1, B2, ..., Bn}, then we write

B1, B2, ..., Bn `S A

instead of {B1, B2, ..., Bn} `S A.

Empty Γ

The case of Γ = ∅ is a special one. By the definition of a proof of A from
Γ, ∅ ` A means that in the proof of A only axiomsLA of S were used. We
hence write
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`S A

to denote that A has a proof from empty Γ.

Consequence of Γ

If Γ `S A then A is called a consequence of Γ in S.

Consequence operation in S is a function CnS which to every set Γ ⊆ E ,
assigns a set of all its consequences. I.e.

CnS : 2E −→ 2E

such that for every Γ ∈ 2E

CnS(Γ) = {A ∈ E : Γ `S A}.

The consequence operation CnS has the following properties.

Monotonicity

For any sets Γ,∆ of expressions of S,

if Γ ⊂ ∆ then CnS(Γ) ⊆ CnS(∆).

The monotonicity is often expressed as a fact that adding new information to
the system do not invalidate old provable formulas.

Transitivity

For any sets Γ1,Γ2,Γ3 of expressions of S,

if Γ1 ⊆ CnS(Γ2) and Γ2 ⊆ CnS(Γ3), then Γ1 ⊆ CnS(Γ3).

The transitivity property is often stated in the following way: if A is a conse-
quence of a set ∆, such that all elements of ∆ are consequences of Γ, then A is
also a consequence of Γ.

Finiteness

For any expression A ∈ F and any set Γ ⊆ F ,

A ∈ CnS(Γ) if and only if there is a finite subset Γ0 of Γ such that
A ∈ CnS(Γ0).

10



Even if the set of axioms and the inference rules of the proof system are prim-
itively recursive it doesn’t mean that the notion of ”provable expression” is
also primitively recursive, i.e. that there always will be an effective, mechani-
cal method (effective procedure) for determining, given any expression A of the
system, whether there is a proof of A.

Decidable system A proof system, for which there is a mechanical method
for determining, given any expression A of the system, whether there is
a proof of A, is called a decidable proof system, otherwise it is called
undecidable.

Observe that the above notion of decidability of the system does not re-
quire to find a proof, it requires only a mechanical procedure of deciding
whether there is a proof of any expression of the system.

Example 1

A Hilbert style proof system for classical propositional logic is an example of a
decidable, but not syntactically, or automatically decidable proof system. We
conclude its decidability from the Completeness Theorem and the decidability
of the notion of classical tautology.

The proof system such that a mechanical procedure of finding proofs for its
expressions will be called syntactically decidable, or an automated proof system.

Syntactically decidable system A proof system S, for which there is a
mechanical method for determining, given any expression A of the system,
not only whether there is a proof of A, but which also generates a proof, is
called syntactically decidable or automatically decidable, or an automated
system; otherwise S is not not syntactically decidable.

Example 2

The Gentzen proof system, the RS system presented here later, and Resolution
style proof systems for classical propositional logic are the examples of both
decidable and syntactically decidable proof systems, or automated proof systems.

3 Some Examples

The notion of a proof in a system S usually carries a semantical meaning via
the Soundness Theorem but it is nevertheless purely syntactical in its nature.

The rules of inference of a proof system define only how to transform strings
of symbols of our language into another string of symbols. The definition of a
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formal proof says that in order to prove an expression A of a system one has
to construct of s sequence of proper transformations, defined by the rules of
inference.

Example 1

System S1

Let S1 be the following proof system:

S1 = (L{P,⇒}, E = F AL = {(A⇒ A)}, (r)
B

PB
),

where A,B are any formulas of the propositional language L{P,⇒}.

Observe that even the system S1 has only one axiom, it represents an infinite
number of formulas. We call such an axiom axiom schema.

The following system S2, even if it looks very much alike the system S1, will
produce, as we will see, a different set of provable formulas.

Example 2

System S2

Let S2 be the following proof system:

S2 = (L{P,⇒}, E = F (a⇒ a), (r)
B

PB
),

where a ∈ V AR and B is any formulas of the propositional language L{P,⇒}.

Observe that for example a formula ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))) is of
the form A⇒ A for A being (Pa⇒ (b⇒ c)), and hence is an axiom of S1, but
is not an axiom of the system S2, as this systems permits axioms of the form:
(a⇒ a) for a being a propositional variable.

Here are some examples of provable formulas and formal proofs in both systems.

1. Of course,
`S1

((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c)))

and the axiom

((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c)))

forms a formal proof of itself in S1.
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2. The formulas P (a ⇒ a), and PP (a ⇒ a) are provable formulas of both,
S1 and S2, i.e.

`P (a⇒ a),

`PP (a⇒ a

for S1 and S2.

The formal proofs in both systems of above formulas are identical and are as
follows.

The formal proof of P (a⇒ a) in S1 and S2 is:

(a⇒ a), P (a⇒ a).
axiom rule application

for B = (a⇒ a)

The formal proof of PP (a⇒ a) in S1 and S2 is:

(a⇒ a), P (a⇒ a), PP (a⇒ a).
axiom rule application rule application

for B = (a⇒ a) for B = P (a⇒ a)

3. The formula PPP ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))) is a theorem of S1

i.e.

`S1
PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))),

but it is not a theorem of S2, i.e.

6`S1
PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).

The formal proof of PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))) in S2 is:

((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))), P ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))),
axiom rule r application

PP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))), PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).
rule r application rule r application

Let’s now search for a proof of our formula in S2. If it had the proof, the only
last step in this proof would be the application of the rule r to the formula
PP ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))). This formula, in turn, if it had
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the proof, the only last step in its proof would be the application of the rule
r to the formula P ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))). And again, this
one could be obtained only from the formula ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒
(b ⇒ c))) by the virtue of the rule r. Here the search process stops; the rule r
puts P in front of the formulas, hence couldn’t be applied here. The formula
((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))) isn’t an axiom of S2, what means that
the only possible way of finding the proof has failed, i.e. we have proved that
6`S1

PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).

The above procedure is an effective, automatic procedure of searching for a proof
of our formula in both our proof systems. If the search ends with an axiom, we
have a proof, if it doesn’t end with an axiom it means that the proof does not
exists. We have described it, as an example, for one particular formula. It can
be easily extended to any formula A of L{P,⇒} as follows.

Step : Check the main connective of A.

If main connective is P , it means that A was obtained by the rule r.

Erase the main connective P .

Repeat until no P left.

If the main connective is ⇒,check if a formula A is an axiom.

If it is an axiom , STOP and YES, we have a proof.

If it is not an axiom , STOP and NO, proof does not exist.

It is an effective, automatic procedure of searching for a proof of our formula in
both our proof systems. This proves the following.

Fact Proof systems S1 and S2 are syntactically decidable.

Observe also, that the systems S1 and S2 are such that we can easily describe
the general form of their provable formulas, namely we have the following.

PRS1
= {Pn(A⇒ A) : n ∈ N,A ∈ F},

PRS2
= {Pn(a⇒ a) : n ∈ N, a ∈ V AR},

where Pn denotes n-iteration of P .

Obviously we have that PRS1 6= PRS2 , and PRS2 ⊆ PRS1 .
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The proof systems S1 and S2 are very simple, indeed. Here is an example of
another two, slightly more complex proof systems.

Semantical link : We haven’t defined a semantics for the language L{⇒,P}
of systems S1, S2, so we can’t talk about the soundness of these systems
yet. But all known modal semantics extend the classical semantics,i.e.
are the same as the classical one on non-modal connectives so the axiom
in both cases would be a sound axiom. Hence to assure the soundness of
both systems we must have a modal semantics M such that the rule

(r)
B

PB

is sound, i.e. such that
|=M (B ⇒ PB).

Otherwise they will not be sound.

Example 3

Systems S3 and S4

Consider two proof systems S3 and S4 of the language L{∪,¬} with the set of
expressions E = F and is defined as follows;

S3 = (L{∪,¬}, F , {(A ∪ ¬A)}, B

(B ∪ (A ∪ ¬A))
, for any A, B ∈ F)

S4 = (L{∪,¬}, F , {(A ∪ ¬A)}, (A ∪ ¬A)

(B ∪ (A ∪ ¬A))
, for any A,B ∈ F).

1. Describe the sets of provable formulas of S3 and S4.

2. Do they produce the same sets of provable formulas? I.e. is it true/ false
that

{A : `S3
A} = {A : `S4

A}.

If yes, prove it, if not give a formula which is a theorem of one system and
is not a theorem of other system.

3. Are the systems S3 and S4 decidable?

Let’s first describe the set of provable formulas of both systems.
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System S3 Obviously, `S3
(A∪¬A). One application of the inference rule gives

us the proof of ((A ∪ ¬A) ∪ (A ∪ ¬A)). The next application of the rule
(to the already produced formula) will give us the proof of (((A ∪ ¬A) ∪
(A ∪ ¬A)) ∪ (A ∪ ¬A)). It is easy to see that all provable formulas of S3

will be of the form of the disjunction of the axiom of S3, what we denote
as follows:

PRS3 = {
⋃

n
(A ∪ ¬A)n : n ∈ N,A ∈ F},

where
⋃

n(A ∪¬A)n denotes a disjunction of n formulas of the form (A ∪
¬A).

System S4 Obviously, as before, `S4
(A∪¬A). One application of the inference

rule gives us the proof of (B ∪ (A ∪ ¬A)), where B is a certain formula
from F . The rule can’t be, by its definition, applied to already produced
theorem (except for a theorem which is the axiom), so the multiple ap-
plication of the rule means application to the axiom and producing all
possible formulas of the form (B ∪ (A ∪ ¬A)), where B’s are different for
different applications. Hence

PRS4
= {(B ∪ (A ∪ ¬A)) : A,B ∈ F} ∪ {(A ∪ ¬A) : A ∈ F}.

Provable formulas of S3 and S4 Obviously, PRS3
⊆ PRS4

, as we have, by
definition, that

⋃
n(A∪¬A)n =

⋃
n−1(A∪¬A)n−1∪(A∪¬A) and

⋃
n−1(A∪

¬A)n−1 is a formula of L{∪,¬}. We can denote it by B. I.e. we have proved
that any theorem of S3 is an axiom or has a form (B ∪ (A ∪ ¬A)) for a
certain B ∈ F .

The formula ((a ∪ ¬b) ∪ (a ∪ ¬a)) has a proof in S4, i.e.

`S4((a ∪ ¬b) ∪ (a ∪ ¬a)),

but obviously
6 `S3

((a ∪ ¬b) ∪ (a ∪ ¬a)).

The above proves that

PRS3
⊆ PRS4

and PRS3
6= PRS4

.

Syntactically Decidable It follows immediately form the form of the sets
PRS3

and PRS4
that both systems are syntactically decidable. The design

of the proper proof searching procedure is left to the reader as an exercise.

Semantical link 1 : Both systems are sound under classical semantics.

It follows from the fact that

|= (A ∪ ¬A),
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and the rules
B

(B ∪ (A ∪ ¬A))
,

(A ∪ ¬A)

(B ∪ (A ∪ ¬A))

are sound because
|= (B ⇒ (A ∪B)).

Semantical link 2 : Both systems are not sound under  L, K, H, B seman-
tics.

It follows from the fact that

6 |=M (A ∪ ¬A)

for M =  L,K,H,B.

The following natural questions arise.

Q1 Are all proof systems syntactically decidable?

Q2 Can we give an example of a proof system for a given logic which is de-
cidable and not syntactically decidable, but the logic does have (another)
syntactically decidable system?

The answers are straightforward: no, not all the systems are syntactically de-
cidable, or even decidable. Moreover, as we will see, the most ”natural” and his-
torically first developed proof systems for classical propositional logic (it means
was a complete proof system with respect to classical semantics) is not syntac-
tically decidable. Any proof system for classical predicate logic is not decidable.
There are however, in a case of propositional classical logic syntactically sys-
tems. The proof of their decidability, undecidability, syntactical decidability
will be presented later. They are neither obvious nor straightforward.

4 Soundness and Completeness

Proof systems always have some semantical links. Sometimes they are developed
for a language with a given semantics, sometimes they are developed in order
to axiomatically characterize an unknown yet semantics. In first case the future
goal is to prove how a known semantics relates to the proof system. In the
second case the goal is first to develop a semantics, and then to prove how it
relates to the proof system. The relationship between proof system S and its
semantics is always stated in form of two theorems: Soundness Theorem and
Completeness Theorem.
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5 Exercises and Homework Problems

Exercise 1

Given a proof system:

S = (L{¬,⇒}, E = F AX = {(A⇒ A), (A⇒ (¬A⇒ B))}, (r)
(A⇒ B)

(B ⇒ (A⇒ B))
).

1. Prove that S is sound under classical semantics.

2. Prove that S is not sound under K semantics.

3. Write a formal proof in S with 2 applications of the rule (r).

Solution of 1.

Definition: System S is sound if and only if

(i) Axioms are tautologies and

(ii) rules of inference are sound, i.e lead from all true premisses to a true con-
clusion.

We verify the conditions (i), (ii) of the definition as follows.

(i) Both axioms of S are basic classical tautologies.

(ii) Consider the rule of inference of S.

(r)
(A⇒ B)

(B ⇒ (A⇒ B))
).

Assume that its premise (the only premise) is True, i.e. let v be any truth
assignment, such that v∗(A ⇒ B) = T . We evaluate logical value of the
conclusion under the truth assignment v as follows.

v∗(B ⇒ (A⇒ B)) = v∗(B)⇒ T = T

for any B and any value of v∗(B).

Solution of 2. System S is not sound under K semantics because axiom
(A⇒ A) is not a K semantics tautology.

Solution of 3. There are many solutions. Here is one of them.

Required formal proof is a sequence A1, A2, A3, where
A1 = (A⇒ A)

18



(Axiom)
A2 = (A⇒ (A⇒ A))
Rule (r) application 1 for A = A, B = A.
A3 = ((A⇒ A)⇒ (A⇒ (A⇒ A)))
Rule (r) application 2 for A = A,B = (A⇒ A).

Exercise 2

Prove, by constructing a formal proof that

`S ((¬A⇒ B)⇒ (A⇒ (¬A⇒ B))),

where S is the proof system from Exercise 1.

Solution: Required formal proof is a sequence A1, A2, where
A1 = (A⇒ (¬A⇒ B))
Axiom
A2 = ((¬A⇒ B)⇒ (A⇒ (¬A⇒ B)))
Rule (r) application for A = A,B = (¬A⇒ B).

Observe that we needed only one application of the rule (r). One more appli-
cation of the rule (r) to A2 gives another solution to Exercise 1, namely a
proof A1, A2, A3 for A1, A2 defined above and
A3 = ((A⇒ (¬A⇒ B))⇒ (¬A⇒ B)⇒ (A⇒ (¬A⇒ B)))
Rule (r) application for A = (¬A⇒ B) and B = (A⇒ (¬A⇒ B)).

Exercise 3

Given a proof system:

S = (L{∪,⇒}, E = F AX = {A1, A2}, R = {(r)} ),

where
A1 = (A⇒ (A ∪B)), A2 = (A⇒ (B ⇒ A))

and

(r)
(A⇒ B)

(A⇒ (A⇒ B))

Prove that S is sound under classical semantics.

Solution: Axioms of S are basic classical tautologies. The proof of soundness
of the rule of inference is the following.
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Assume (A ⇒ B) = T . Hence the logical value of conclusion is (A ⇒
(A⇒ B)) = (A⇒ T ) = T for all A.

Exercise 4

Determine whether S from the Exercise 3 is sound or not sound under K
semantics.

Solution 1: S is not sound under K semantics. Let’s take truth assignment
such that A =⊥, B =⊥. The logical value of axiom A1 is as follows.
(A⇒ (A ∪B)) = (⊥⇒ (⊥ ∪ ⊥)) =⊥ and 6 |=K(A⇒ (A ∪B)).

Observe that the v such that A =⊥, B =⊥ is not the only v that makes
A1 6= T , i.e. proves that 6 |=K A1.
(A⇒ (A∪B)) 6= T if and only if (A⇒ (A∪B)) = F or (A⇒ (A∪B)) =⊥.
The first case is impossible because A1 is a classical tautology.
Consider the second case. (A⇒ (A ∪B)) =⊥ in two cases.

c1 A =⊥ and (A ∪B) = F , i.e. (⊥ ∪B) = F , what is impossible.

c2 A = T and (A ∪B) =⊥, i.e. (T ∪B) =⊥, what is impossible.

c3 A =⊥ and (A ∪ B) =⊥, i.e. (⊥ ∪B) =⊥. This is possible for B =⊥ or
B = F , i.e when A =⊥, B =⊥ or A =⊥, B = F .

From the above Observation we get second solution.

Solution 2: S is not sound under K semantics. Axiom A1 is not K seman-
tics tautology. There are exactly two truth assignments v, such that
v 6|= A1. One is, as defined in Solution 1: A =⊥, B =⊥. The second
is A =⊥, B = F .

Exercise 5

Write a formal proof A1, A2, A3 in S from the Exercise 3 with 2 applications
of the rule (r) that starts with axiom A1, i.e such that A1 = A1.

Solution: The formal proof A1, A2, A3 is as follows.
A1 = (A⇒ (A ∪B))
Axiom
A2 = (A⇒ (A⇒ (A ∪B)))
Rule (r) application for A = A and B = (A ∪B)
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A3 = (A⇒ (A⇒ (A⇒ (A ∪B))))
Rule (r) application for A = A and B = (A⇒ (A ∪B)).

Exercise 6

Use results from Exercise 4 to determine whether |=K A3.

Solution 1: We use the two v from QUESTION 3 to evaluate the logical value
of A3. Namely we evaluate: v∗(A⇒ (A⇒ (A⇒ (A∪B)))) = (⊥⇒ (⊥⇒
(⊥⇒ (⊥ ∪ ⊥)))) =⊥, or v∗(A ⇒ (A ⇒ (A ⇒ (A ∪ B)))) = (⊥⇒ (⊥⇒
(⊥⇒ (⊥ ∪F )))) =⊥. Both cases prove that 6 |=K A3.

Solution 2: We know that S is not sound, because there is v for which A1 =
A1 =⊥, as evaluated in Exercise 4. We prove that the rule (r) preserves
the logical value ⊥ under any v such that A1 =⊥. as follows.
Let the premiss (A⇒ B) =⊥, the logical value of the conclusion is hence
(A⇒⊥) =⊥ for A =⊥, T and (A⇒⊥) = T for A = F .
The case A = F evaluates the premiss (A⇒ B) = (F ⇒ B) = T for all B,
what contradicts the assumption that (A⇒ B) =⊥. We must hence have
A =⊥. But all possible v for which A1 =⊥ are such that A =⊥, what end
the proof.
It means that any A such that A has proof that starts with axiom A1 and
then multiple applications of the rule (r) is evaluated to ⊥ under all v,
such that v∗(A1) =⊥. Hence, in particular, 6 |=K A3.

Exercise 7

Write a formal proof A1, A2 in S from the Exercise 3 with 1 application of the
rule (r) that starts with axiom A2, i.e such that A1 = A2.

Solution: The formal proof A1, A2 is as follows.
A2 = (A⇒ (B ⇒ A))
Axiom
A2 = (A⇒ (A⇒ (B ⇒ A)))
Rule (r) application for A = A and B = (B ⇒ A).

Exercise 8

Use results from Exercise 3 to determine whether |= A2.

Solution: System S is sound under classical semantics, hence by the Sound-
ness Theorem we get that |= (A⇒ (A⇒ (B ⇒ A))), as it has a proof in
S.
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Exercise 9

Prove, by constructing a formal proof in S from the Exercise 3 that

`S (A⇒ (A⇒ (A⇒ (A⇒ A)))).

Solution: A2 = (A⇒ (A⇒ A))
Axiom for B = A
A2 = (A⇒ (A⇒ (A⇒ A)))
Rule (r) application for A = A and B = (A⇒ A).
(A⇒ (A⇒ (A⇒ (A⇒ A)))
Rule (r) application for A = A and B = (A⇒ (A⇒ A)).
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