
Paul Fodor

CSE316: Fundamentals of Software

Development

Stony Brook University

http://www.cs.stonybrook.edu/~cse316

Software Design using the

Unified Modeling Language (UML)

1

http://www.cs.stonybrook.edu/~cse316

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Software Development Lifecycle
 Remember the Waterfall Model:

2

Design, then code

UML is used for software

design

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Design Principles for Software Engineering

 Software/System Design: design, then code
 Separate phase in the Software Engineering Software Lifetime:

 Use basic OO principles like encapsulation and inheritance to make

your software more reusable, flexible, easier to maintain.

 Make sure each of your classes is cohesive: Each class should do

ONE THING and do it well

 Review your design many times before your start coding

 If a design is bad, then CHANGE IT!

 Sometimes you might have to scrap all code and restart

o Don't be afraid to do it. It will save you time and lead to a better

implementation.

3

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Unified Modeling Language (UML)
 UML unifies a number of visual design methodologies

in software engineering, business modeling and

management, database design, and others.

UML Class diagrams are a subset of UML that is suitable

for conceptual modeling of classes and databases

 Most used type of UML diagrams

 UML is also a graphic language for modeling dynamic aspects of a

systems behavior

 Because UML is graphic it is particularly appropriate for

communicating between the analyst and the customer and

between various members of the implementation team

4

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Design Principles for Software Engineering

 We covered UML Class Diagrams with Databases ER diagrams,

but there are some details that we should address about design:

 Design Principles:

 Encapsulate classes for 2 reasons:

 show only the simplified public API

o Classes are about behavior and functionality

 hide the gory details

 Code to an Interface!

 Standardization of interaction for all members of a collection of

classes.

 Never delete functionality from a class because users of that class will

not update their way of interacting with that class

 If you need to change a class, you can add behavior, not remove it
5

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Design
The Principles of Software Design:

OCP – Open to extension, closed to

modification

DRY – Don’t Repeat Yourself

SRP – Single Responsibility Principle

LSP – Liskov Substitution Principle for OO

inheritance

6

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Design
OCP – Open to extension, closed to modification

Once functionality is established, coded, and working,

the method should not be changed (closed to

modification)

Methods should be allowed to be extended (open for

extension) to:

 handle cases where behavior must be different

 Use subclasses

 Subclass method can also reuse parent method code by

calling it

7

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Design
DRY – Don’t Repeat Yourself

Do not have duplicate functionality in different

methods or classes (that are not inherited)

Move 1 copy of the class to a place where it can

be accessed by everyone

Improves ‘Maintainability’

8

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Design
 SRP – Single Responsibility Principle

Every object should have a Single responsibility

All contained services should be focused on that

responsibility

9

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Design
 LSP – Liskov Substitution Principle

Make sure a subclass can be substituted for its parent

Methods in subclass with same name should be

overwritten (not overloaded)

10

Barbara Liskov, Professor at MIT, the first women to be granted a
doctorate in computer science in the United States and a Turing
Award winner who developed the Liskov substitution principle

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Design Principles for Software Engineering

There are many consideration in designing a large

project:

Context of the system with respect to users,

boundaries with other systems

Process of interaction with externals

Structural design of the internals needed for the

project

 Static design: package and class diagrams

Dynamic design: interaction with users, with objects,

reacting to events
11

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

UML Context Models
 Context models illustrate the operational context of a system

 Architectural model to show the system and its relationship with other

systems

 Also show what lies outside the system boundaries

 System boundaries define what is inside and what is outside the

system

 Show other systems that are used/depend on system being developed

 Position of the system boundary has a profound effect on the system

requirements

 Defining a system boundary is a political judgment

 May be pressures to develop system boundaries that increase/decrease the

influence/workload of different parts of an organization

12

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

UML Context Model Example

13

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Process Perspective
 Context models

do not who how the system being developed is used

in the environment

 Process models reveal how system being developed is

used in broader business processes

UML activity diagrams may be used to define business

process models

14

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Process Model Example as

a UML Activity Diagram

15

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Structural Models
 Structural models of software display organization of a

system in terms of the components that make up that

system and their relationships

Static models ➔ show structure of the system design

Dynamic models ➔ show organization of the system

when it’s executing

 Structural models of a system are created when

discussing and designing system architecture

16

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Static Models
 Class Diagrams:

 Used when developing an object-oriented system model

 Shows the classes in a system

 Shows the associations between these classes

17

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Static Models
 Class Diagram

Details of a class:

18

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Static Models
 Generalization: a technique used to manage complexity:

 Place the common attributes in more general classes

 Lower-level classes (subclasses) inherit attributes and operations from

their superclasses

 Lower-level classes then add more specific attributes and operations

or in more detail

19

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Behavioral Models
 Models of the dynamic behavior of a system as it executes

 Shows what happens (or what is supposed to happen) when a system

responds to stimulus from its environment

 Two types of stimuli:

 Data➔ Some data arrives that has to be processed by the system

 Events➔ Some event happens that triggers system processing

 Events may have associated data but this is not always the case

 Data-driven models can be represented by:

 Use case diagrams

 Activity Models

 Sequence Diagrams

20

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Use Case Diagrams
 UML provides a graphic way to display all the use cases

in an application

 These diagrams can be used to communicate with the

Customer to determine if the current set of use cases

is adequate

Developers to determine what the system is

supposed to do from the customer’s viewpoint

Always included in the Requirements Analysis

Specification document in the Waterfall Model

21

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

StudentGrade

Authentication

Register

Deregister

Student
Faculty

Member

GetGradeHistory

GetRegistered

Courses

GetEnrolled

Courses

EndOfSession

OLAP Query

Room

GetClassRoster

EndOfSemester

Course

Information

Student/Faculty

Information

Use Case Diagram

for the Student

Registration System

22

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Behavioral Models
 Activity Models

An Activity Model of Insulin Pump Operation:

23

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

UML Sequence Diagrams
 A graphic display of the temporal ordering of the

interactions between the actors in a use case and the

other modules in the system

 Sometimes it is part of the plan for preparing the

Specification Document to expand each use case into

the set of interactions

 It is always part of the Design document in Waterfall

model, together with the UML Class diagrams

24

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

DatabaseWeb ServerStudent or Faculty Member

Validate Login

Return Status

Enter URL

Display Welcome

Page

Enter ID & Password

Click OK

[Status=Student] Display

Student Options Page

[Status=Faculty] Display

Faculty Options [Page

[Status=Error] Display

Authentication Error Page

[Status=Fail] Click OK

[Status=Fail] Display

Welcome Page

A Sequence Diagram for the

Authentication Use Case

25

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Sequence Diagrams
The actors and pertinent modules are labelled at

the top of the diagram

Time moves downward

The boxes show when a module or actor is active

The horizontal lines show the actions taken by the

modules or actors

Note the notation for conditional actions

[status=student] Display Student Options Page

26

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Behavioral Models
Event-Driven Modeling:
Real-time systems are often event-driven, with

minimal data processing.

 Example: a landline phone switching system responds to

events such as ‘receiver off hook’ by generating a dial tone

Event-driven modeling

 Shows how a system responds to external and internal

events

1.A system usually has a finite number of states

2.Events (stimuli) may cause a transition from one state to

another
27

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Behavioral Models
 State Machine Models:

Models the behavior of a system in response to

external and internal events

Shows system states as nodes and events as arcs

between these nodes

 When an event occurs, system moves from one state to

another.

UML Statecharts:

 Used to represent state machine models

28

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Behavioral Models
UML Statechart Example of a Microwave Oven

 transition labels are events: like click Full power button

29

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Behavioral Models
States for Microwave:

30

State Description

Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘Half power’.

Full power The oven power is set to 600 watts. The display shows ‘Full power’.

Set time The cooking time is set to the user’s input value. The display shows the

cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on. Display

shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows ‘Ready

to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the timer

countdown. On completion of cooking, the buzzer is sounded for five

seconds. Oven light is on. Display shows ‘Cooking complete’ while

buzzer is sounding.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Behavioral Models
Stimuli/Events for Microwave:

31

Stimulus Description

Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Summary
 Models of application systems help us:

Understand, present, design and discuss applications

with customers and other software developers

 UML diagrams are visual ways to document the

requirements and design applications

 Software may be documented from several different perspectives:

 Conceptual view

 Process view

 Development view

32

