Database Design with The

Relational Normalization Theory

Paul Fodor
CSE316: Fundamentals of Software

Development

Stony Brook University

http: //www. cs.stonybrook.edu/ ~cse3 16

http://www.cs.stonybrook.edu/~cse316

: Limitations of E-R Designs)

® Provides a set of guidelines, does not resultin a

unique database schema

® Does not provide a way of evaluating alternative

schemas

® Normalization theory provides a mechanism for
analyzing and refining the schema produced by
an E-R design

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

" Redundancy

® Dependencies between attributes cause
redundancy

oEx. All addresses in the same town have the
same zip code

SSN Name Town ZIp
1234 Joe 11790 % Redundancy
4321 Mary | Stony Brook 11790

11790

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

" Redundancy

Set attributes can also cause redundancy.

In the ER Model:

1111 Joe 123 Main {biking, hiking}

But, they are represented as multiple tuples in the Relational Model:

SSN Name Address Hobby
< 1111 Joe 123 Main) biking
1111 Joe 123 Main | hiking

\L Redundancy J

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

/

a .
Anomalies

o Redundancy leads to anomalies:

° Update anomaly: A change in Address must be
made in several places in the example with hobbies

* Deletion anomaly: Suppose a person gives up all
hobbies. Do we:
Set Hobby attribute to null? No, since Hobby is part of key
Delete the entire row? No, since we lose other
information in the row.
So, we cannot represent this person.
* Insertion anomaly: Hobby value must be supplied
for any inserted row since Hobby is part of key.

@ So, we cannot inset a person without hobbies.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

4 .
Decomposition

e Solution for eliminating redundencies: we use
two relations to store Person information

®Personl(SSN, Name, Address)
*Hobbies(SSN, Hobby)

e The decomposition 1S more general: people
without hobbies can now be described

e No update anomalies:

e Name and address stored once

oA hobby can be separately supplied or

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

: Normalization Theory

® The result of E-R analysis need further
refinement!

* Appropriate decomposition can solve
problems!

®The underlying theory is referred to as
normalization tbeory and is based on functional
dependencies (and other kinds, like

multivalued dependencies)

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

’ : :
Functional Dependencies

® Definition: A functional dependency (FD) on a relation

schema R is a constraint X — Y, where X and Y are
subsets of attributes of R.

* Definition: An FD X — Y is satisfied in an instance r
of R if for every pair of tuples, t and s: if t and s agree
on all attributes in X then they must agree on all
attributes in Y

® Key constraint is a special kind of functional dependency: all
attributes of relation occur on the right-hand side of the FD:
SSN — SSN, Name, Address

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

’ : :
Functional Dependencies

® Address —> ijCode
* Stony Brook’s ZIP is 11733

® ArtistName — Birth Year

® Picasso was born in 1881

® Autobrand —> Manufacturer, Engine type
® Pontiac is built by General Motors with gasoline engine

® Volt is built by Chevy with electric engine

® Author, Title — PublicationDate
® Shakespeare’s Hamlet published in 1600

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

~ ™
Functional Dependency Running Example

® Consider a brokerage firm that allows multiple
clients to share an account, but each account is
managed from a single office and a client can have
no more than one account in an office.

® HasAccount(Acct Num, Clientld, Officeld)
keys are: (AcctNum, Clientld), (Clientld, Officeld)
® AcctNum, Clientld —> AcctNum, Clientld, Officeld
* Clientld, Officeld — AcctNum, Clientld, Officeld
AcctNum —> Officeld

e Thus. attribute values need not depend only on key values

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

4 I
Entailment, Closure, Equivalence

* Definition: If Fis a set of FDs on schema R and f is
another FD on R, then F entails | if every instance r of
R that satisties every FD in F also satisfies f
® Example: F = {A —>B,B—> C} and fisA—>C

It Town — Zip and Zip —> AreaCode then Town —> AreaCode

® Definition: The closure of F, denoted F™, is the set of

all FDs entailed by F

¢ Definition: F and G are equivalent if F entails G and G

entails F

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

e
E

™~
ntailment, Closure, Equivalence

® Satisfaction, entailment, and equivalence are
semantic concepts — defined in terms of the actual
relations in the “real world.”

® They define what these notions are, not how to
compute them

*Solution: find algorithmic, syntactic ways to
compute these notions

Important: The syntactic solution must be “correct”
with respect to the semantic definitions

Correctness has two aspects: soundness and
comp]eteness

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

e
Armstrong’s Axioms for FDs

* Reflexivity: If Y C X then X =Y (trivial FD)
® Name, Address —> Name

°* Augmentation: If X =Y then XZ—>YZ
olf Town — Zip then Town, Name —> Zip, Name

® Transitivity: If X =Y and Y — Zthen X — Z

® The Armstrong’s Axioms are the syntactic way of

computing and testing the various properties of
FDs.

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

" Soundness

® Armstrong’s axioms are sound: If an FD f: X—Y can be
derived from a set of FDs F using the axioms, then f

holds in every relation that satisfies every FD in F.

. Example: Given X—Y and X— Z then

X —> XY Augmentation by X
YX — YZ Augmentation by Y
X —>YZ Transitivity

® Thus, X—Y Z is satistied in every relation where both X—Y
and X—>7 are satistied

We have derived the union rule for FDs: we can take the union of the

@ RHSs of FDs that have the same LHS
.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

e
Completeness

® Armstrong’s Axioms are complete: If F entails f,

then f can be derived from F using the axioms

* A consequence of completeness is the following
(naive) algorithm to determining it F entails f:
® Algorithm: Use the axioms in all possible ways
to generate F' (the closure of F,i.e., the set of

possible FD’s is tinite so this can be done) and
see if f isin F"

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

™~

‘Correctness

® The notions of soundness and completeness link

the syntax (Armstrong’s axioms) with

al

semantics (the definitions in terms of

relational instances)

® This is a precise way of saying that the

algorithm for entailment based on the
axioms is “correct” with respect to the

definitions

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

Generating F*

F
AB>C
3 unlon ‘AB— BCD . decomp
A— D '“U'gAB—> BD trans AB— BCDE —AB— CDE
D—s E Y9 BCD —» BCDE -

Thus, AB— BD, AB —- BCD, AB — BCDE, and AB — CDE
are all elements of F* (part-of, there are other FDs: AC— CD,

AE— ED, etc.)

Very costly procedure for proving entailment.

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

a _ I
Attribute Closure

o Calculating attribute closure leads to a more efficient way
of checking entailment

® The attribute closure of a set of attributes, X, with respect
to a set of functional dependencies, F, (denoted X™p) is

the set of all attributes, 4, such that X — A is entailed by
F

® X T, isnot necessarily the same as X T, if FI #F2

® Attribute closure and entailment:

® Algorithm: Given a set of FDs, F, F entails X —Y if
and only if X", DY

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

e

™~

Computation of the Attribute Closure X',

closure := X; [l since X< X'
repeat
old := closure;
If there iIsan FD Z — V In F such that
/Z < closure and V N closure + @
then closure := closure U V
until old = closure

Entaillment algorithm:
If T X*=then X > T Is entailed by F

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

4 N
Example: Computation of Attribute Closure

Example: Compute the attribute closure of AB with
respect to the setof FDsF: AB 5 C (a)

A>D (b)
D—>E (¢
Solution: AC—B (d)

Initially: closure = {AB}
Using (a): closure = {ABC}
Using (b): closure = {ABCD}

o Using (c): closL re = {ABCDE}
k (c) Pearson Education Inc. and Paul Fodor (CS /

4 ™
Computing Attribute Closure Examples

X X+
A—D AB {A B,C,D,E}
D—-E (Hence AB is a key)
AC —> B B {B}
D {D, E}

Is AB — E entailed by F? Yes
Is D— C entailed by F? No
Result: X-*allows us to determine FDs

of the form X — A entailed by F
@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

"Normal Forms -

® The normal forms are conditions on schemas that guarantees
certain properties relating to redundancy and update anomalies

® First normal form (1NF) is the same as the definition of relational
model (relations = sets of tuples; each tuple = sequence of
atomic values)

® Second normal form (2NF):

® no non prime attribute is dependent on any proper subset of any candidate key of the
table (where a non prime attribute of a table is an attribute that is not a part of any
candidate key of the table): every non-prime attribute is either dependent on the whole
of a candidate key, or on another non prime attribute.

® The two commonly used normal forms are third normal form

(3NF) and Boyce-Codd normal form (BCNF)

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

" BCNF)

e Definition: A relation schema R is in BCNF if for every FD X—Y
associated with R either

*YC X (i.e., the FD is trivial) or
®*Xisa superkey of R

Remember: a superkey is a combination of attributes that can be used
to uniquely identify a database record. A table might have many
superkeys.

Remember: a candidate key is a special subset of superkeys that do
not have any extraneous information in them: it is a minimal

superkey.

* Example: Personl(SSN, Name, Address)

® The oniy ED is: SSN — Name, Address

Since SSN is a key, Personl is in BCNF
@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

" (non) BCNF Examples

® Person(SSN, Name, Address, Hobby)

®The FD: SSN — Name, Address does not satisty
requirements of BCNF

since the (S5N) is not a key
* the key 1s (SSN, Hobby)
® HasAccount(AcctNum, Clientld, Officeld)

®The FD AcctNum—> Officeld does not satisty
BCNF requirements

since keys are (Clientld, Officeld) and (AcctNum,
Clientld); not AcctNum.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

‘"What Redundancy? :

® Suppose R has a FD A — B, and A is not a superkey.

® If an instance has 2 rows with same value in 4, they must also have
same value in B (=> redundancy, because the B-value repeats
twice):

oo \ SSN — Name, Address

. redundancy

e ~>= | SSN Name _Address Hobby
1111/ Joe 123 Main \stamps
1111\ Joe 123 Main jcoins

® If A is a superkey, there cannot be two rows with same value of 4

® Hence, BCNF eliminates redundancy

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

"Third Normal Form (3NF)

® A relational schema R is in 3NF if for every FD X— Y

associated with R either:

OYg} (i.e., the FD is trivial); or)
® X is a superkey of R; OR COES:::E”S
®Lvery A€Y is part of some key of R |
e 3NF is weaker than BCNF (every schema that is in BCNF

is also in 3NF), but not vice-versa.

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

\

" 3NF Example

® HasAccount (Acct Num, Clientld, Oﬁficeld) is in 3NF:

® Clientld, Officeld —> AcctNum
OK since LHS is a superkey

® Acct Num —> Officeld
OK since Officeld (RHS) is part of a key (Clientld, Officeld)
® HasAccount is in 3NF but it might still contain
redundant information due to AcctNum = Officeld
(which is not allowed by BCNF)

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

" 3NF (Non)-Example

*Person (SSN, Name, Address, Hobby):
®(SSN, Hobby) is the only key
® SSN—>Name violates 3NF
conditions since:

it is not a trivial FD,

SSN (LHS) is not a superkey, and

Name (RHS) is not part of a key.
@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

4 o
Decompositions

e Goal: Eliminate redundancy by
decomposing a relation into several

relations in a higher normal form

* Decomposition MUST be loss/ess: it

must be possible to reconstruct the

original relation from the relations in

the decomposition.

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

e
Normal Forms

TNF
2NF
3NF
BCNF
4NF

il

Weaker restrictions

-

Less redundancy

Achievable without loss | Achievable with some loss

i — — — — o — i il S S — — — —— —

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

4 .
Decomposition

® Consider a relation schema: R = (R, F)
® R is set a of attributes
® Fis a set of functional dependencies over R
Each key is described by a FD
® The decomposition of the (relation) schema R is a collection
of (relation) schemas R, = (R, F,) where
® R=U.R. toralli (no new attributes)

® F.is a set of functional dependences involving only attributes
of R,
® F entails F, tor all i (no new FDs)

® The decomposition of an instance, r, of R is a set of

relations r, = 7 (r) for all i
(- :

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

Example Decomposition

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN — Name, Address}
can be decomposed Into:
R, = {SSN, Name, Address}
F, = {SSN — Name, Address}
and
R, = {SSN, Hobby}
F,={}
[

™~

4 »
Lossless Schema Decomposition

® A decom

™~

hosition should not lose information

® A decom

is lossless

bosition (R,,...,R) of a schema, R,

if every valid instance, r, of R can

be reconstructed from its components:

r=r,

M} Fp X .. X,

where each r, = 7, (1)

(-

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

(-

Lossy Decomposition
The following is always the case:

rcr, A r, < X,

But the following Is not always true:
ror, < r, i

Example: $ r, r,

SSN Name Address SSN Name Name Address
1111 Joe 1 Pine 1111 Joe Joe 1 Pine
2222 Alice 2 0Oak 2222 Alice~—Alice 2 Oak
3333 Alice 3Pine | | 3333 Alice £3Alice 3 Pine

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are In the join,
but not in the original

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

/

" Lossy Decompositions:
What is Actually Lost?

® In the previous example, the tuples (2222, Alice, 3
Pine) and (3333, Alice, 2 Oak) were gained, not lost!

° Why do we say that the decomposition was lossy?

e What was lost is izqformation:
® That 2222 lives at 2 Oak:

In the decomposition, 2222 can live at either 2 Oak or 3 Pine
® That 3333 lives at 3 Pine:
In the decomposition, 3333 can live at either 2 Oak or 3 Pine

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

" Testing for Losslessness

*A (binary) decomposition of R = (R, F)
into R, = (R,, F;)and R, = (R,, F,) is
lossless if and only if :
ecither the FD

(R, "R,) =R, isin F*
°or the FD
(R,"R,) =R, isin F*

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

/Testing for Losslessness Example
Consider the schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN — Name, Address}
It can be decomposed Into
R, = {SSN, Name, Address}
F, = {SSN — Name, Address}
and
R, = {SSN, Hobby}
F,={}
R, mR, =SSN and
SSN — {SSN, Name, Address} = R,

= I
@ (>c) P‘!:al;s]oneEd Scjaggco m \P: (d) S(CIS'I:S!OQ BI:r])o I S I O SS I e SS /

" Intuition Behind the Test for A
Losslessness

° Suppose R, N R,—>R,.

® Then arow of r , can combine with exactly one row of

r, in the natural join (since in r, a particular set of
values for the attributes in R, M R, detines a unique

row): R,AR, R,NR,
............. ale--»lal..........
............ al« " L |b| .
............ bl I B
............ C|“
Iy I

® The join will have exactly the number of tuples in r,

and Y (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

(-

Proof of Lossless Condition

e rcr, o< r, —thisistrue for any decomposition by

definition of a decomposition
ror, < I, —weneed toprove thisfor lossless

If R, » R, =R, then

card (r; D><I TI,)=card (ry)

(since each row of r, joins with exactly one row of r,)
But card (r) > card (I';) (since r, is a projection of r)

and therefore card (r) > card (r, ><r,)
From the join (Cartesian product) we have:

card (r) <card (r;<r,)
Hencer =r, b1 r, must be true

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

/Dependenoy Preservation

® Consider a decomposition of R = (R, F) into R; = (R,, F,) and
R,=(R,F,)
* An FD X =Y of FTisin F, iff X UY C R, (all the attributes of
the functional dependency are in R))

® An FD, f € F" may be in neither F,, nor F,, nor even (F,\UF,)"
Checking that f is true in r, or r, is (relatively) easy
Checking f in r; X r, is harder — requires a join
Ideally: want to check FDs locally, in r, and r,, and have a guarantee
that every f€F holdsinr, X r,

® The decomposition is dependency preserving ift the FD

sets Fand F,U F, are equlvalent Ft = (F, U F,)"
® Then checkmg all FDs in F, as r, and r,are updated, can be done by

Checkmg F,inr,and F,inr,

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

/Dependenoy Preservation

°It fisan FD in F,but f isnotin F, U F,,
there are two possibilities:
°of € (F,UF)"
It the constraints in F, and F, are maintained,

f will be maintained automatically.
°f¢ (F,UF,)"
'f can be checked only by first taking the join

of Y and r,.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

Example 1

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN — Name, Address}
can be decomposed into
R, = {SSN, Name, Address}
F, = {SSN — Name, Address}
and
R, = {SSN, Hobby}
F,={}
Since F = F, U F, the decomposition Is
dependency preserving

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

4 ™
Example 2
® Schema: (ABC; F), F= {4 =2 B,B> C,C> B}
® Decomposition:
®(AC, F)), F, = {42C}
Note: A2C ¢ F,butin F'
*(BC, F,), F,= {B> C,C> B}

eA> B¢ (F, UF,), but A= B e (F, UF,)"

®So F" = (F, U F,)" and thus the
decomposrclon is still dependency preserving

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

~ Example 3 A

® HasAccount (AcctNum, Clientld, Officeld)

flz AcctNum —> Oﬁiceld
f,: Clientld, Officeld —> Acct Num

o Decomposition:

R, = (AcctNum, Officeld; {AcctNum —> Officeld})
R, = (AcctNum, Clientld; {})

® Decomposition is lossless:
R, M R,= {AcctNum} and AcctNum — AcctNum, Oﬁceld =R,
® This decomposition is in BCNF (we showed that before).

* But it is Not dependency preserving: f, & (F, U F,)"

® HasAccount does not have BCNF decompositions that are both lossless and
dependency preserving! (Check, eg, by enumeration of all decompositions)

® Hence: BCNF+lossless+dependency preserving decompositions are not

always achievable!
o

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

BCNF Decomposition Algorithm

Input: R=(R; F)

Decomp = {R}
while there is S=(S; F7) € Decomp and S notin BCNF do

Find X - Y e F that violates BCNF // X isn't a superkey in S

Replace S in Decomp with
S, = (XY; F,) and

S;=(S-(Y-X); Fy)
where F, = all FDs of F 7 involving only attributes of XY
and F, = all FDs of F 7 involving only attributes of S - (Y - X)

end
return Decomp

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Simple Example

® HasAccount :

(Clientld, Officeld, AcctNum)

Keys: (Clientld,Officeld) and (Clientld,AcctNum)
Clientld,Officeld — AcctNum

AcctNum — Officeld

« Decompose using AcctNum — Officeld :

(Officeld, AcctNum) (Clientld , AcctNum)

FD: AcctNum — Officeld Is in BCNF (only trivial FDs)
IS in BCNF: AcctNum is key

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

~ A Larger Example A

Given: R =(R; F) where R = ABCDEGHK and

F ={ABH— C, A—> DE, BGH— K, K-> ADH, BH— GE}
step 1: Find a FD that violates BCNF

Not ABH — C since (ABH)™* includes all attributes

(BH is a key (minimal superkey))

A — DE violates BCNF since A is not a superkey (A*=ADE)
step 2: Split R into:

R, = (ADE, F,.={A—> DE})

R, = (ABCGHK; F,.={ABH—C, BGH—K, K»>AH, BH—->G})

Note 1: R, isin BCNF

Note 2: Decomposition is lossless since Ais a key of R,

Note 3: FDs K — D and BH — E are notin F, or F,. But

both can be derived from F,U F,
(E.g., K> A and A— D implies K—» D)
Hence, the decomposition Is dependency preserving.
@Is R, in BCNF?

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

~ A Larger Example (con't)

Given: R, = (ABCGHK; {ABH—C, BGH—K, K—»>AH, BH—->G})
step 1: Find a FD that violates BCNF.

Not ABH — C or BGH — K, since BH Is a key of R,

K— AH violates BCNF since K Is not a superkey (K* =AH)
step 2: Split R, into:

R,, = (KAH, F,;,={K — AH})

R;, = (BCGK; Fyu={})

Note 1: Both R,, and R,, are in BCNF.
Note 2: The decomposition is lossless (since K is a key of R,,)
Note 3: FDs ABH— C, BGH— K,BH— G arenotin F,,
or F,,,and they can’t be derived from F; U F,, U F,, .
Hence the decomposition is not dependency-preserving

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

4 N
Properties of BCNF Decomposition Algorithm

® Let X =Y violate BCNF in R = (R, F).
*R, = (R,F)) and R, = (R, F,) is the resulting
decomposition. Then:

® There are fewer violations of BCNF in R, and R, than there

were in R

o X oY implies Xisa key of R,

Hence X =Y € F, does not violate BCNF in R, and, since X—>Y¢&F,,
does not violate BCNF in R, either

® Suppose f is X' —>Y and f € F doesn’t violate BCNF in R.
If fe€ F,orF,it does not violate BCNF in R, or R, either
since X isa superkey of R and hence also of R, and R, .

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

4 N
Properties of BCNF Decomposition Algorithm

e A BCNF decomposition is not necessarily

dependency preserving
® But always lossless:
since R, "R, =X, X—Y and R, = XY
® BCNF+losslesstdependency preserving is

sometimes unachievable

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

"Third Normal Form

® The Thirc

= Not al

' redundancy removed, but

™~

' Normal Form is the Compromise

dependency preserving decompositions are

always possible (and, of course, lossless)

e 3NF decomposition is based on a minimal

cover

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

"Minimal Cover -

® A minimal cover of a set of functional dependencies
Fis a set of dependencies U such that:
® Uis equivalent to F (i.e., F" = U™)
® Al FDs in U have the form X — A where 4 is a single
attribute

® It is not possible to make U smaller (while preserving
equivalence) by
Deleting an FD
Deleting an attribute from an FD (either from LHS or RHS)
® IFDs and attributes that can be deleted in this way are
@ called redundant

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

@omputing the Minimal Cover |

°* Example: F = {4BH — CK,A— D,C —> L,
BGH— L, L > AD,E— L, BH — E}
* step 1: Make RHS of each FD into a single attribute:
®* ABH — CK is replaced by ABH —C and ABH —K
[- AD isreplacedby L —>Aand L — D

* step 2: Eliminate redundant attributes from LHS:

® Algorithm: It FD XB —> A € F (where B is a single attribute) and X —> A4 is
entailed by F, then B was unnecessary

® Example: Can an attribute be deleted from ABH — C?
Compute AB" , AH" , BH" ..

Since C € (BH)"y, BH —> C is entailed by F and 4 is
redundant in ABH — C.

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

@omputing the Minimal Cover

*step 3: Delete redundant FDs from F
® Algorithm: If F — {f} entails f, then f is redundant
Alternative: If f is X — A then checkifA € X™ 0

® Example: BGH — Lis entailed by E— L, BH — L,
so it is redundant.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

™~

/Synthesizing a 3NF Schema

Starting with a schema R = (R, F)

* step 1: Compute a minimal cover, U, of F (the decomposition is

based on U, but since U™ = F" the same functional dependencies

will hold)

® A minimal cover for

F={ABH—CK, A—>D, C—>E, BGH—L, L>AD, E—~> L, BH — E}
1S

U={BH—C, BH—>K, A—>D, C—>E, L>A, E—>L}

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

4 ™
Synthesizing a 3SNF schema (con’t)

® The minimal cover was:
U={BH—C, BH—>K, A—>D, C—E, L>A, E—>L}

® step 2: Partition U into sets U, U,, ... U such that
the LHS of all elements ot U are the same

U, = {BH — C,BH - K}

U,= {4 — D}
U;={C—>E}
U,={L >4}

U.={E—L}

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

e
Synthesizing a 3SNF schema (con’t)
U, = {BH— C BH =K}, U,={4— D},
U,={C— L}, U,= {L >4}, U.={E—>1L}
* step 3: For each U,form a schema R; = (R, U,), where R, is the set of all

attributes mentioned in U,

® Each FD of U will be in some R,. Hence the decomposition is

dependency preserving:
R, = (BHCK; BH—C, BH—K), R, = (AD; A—>D),
R, = (CE; C—> E), R, = (AL; [—4),

R, = (EL; E— L)
° Unify relations that have the same set of attributes.

® Add to each R; all dependencies f entailed by the original set F where all the attributes

are in Ri

C > E > |, > A D)

@ K

Synthesizing a 3SNF schema (con’t)

* step 4: If no R, is a superkey of R, add schema Ry, = (R, {})
where R is a key of R.
* Ry = (BGH, {})
R, might be needed when not all attributes are necessarily contained in
R,UR,...UR,
* Amissing attribute, 4, must be part of all keys

(since it’s not in any FD of U, deriving a key constraint from U involves the
augmentation axiom)

R, might be needed even if all attributes are accounted for in R,UR, ...\UR|
* Example: (4BCD; {A=>B, C>D}).
Step 3 decomposition: R, = (4B, {A>B}), R, = (CD; {C>D}).
Lossy! Need to add (AC; { }), for losslessness
® Step 4 guarantees lossless decomposition.

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

(-

™~
BCNF Design Strategy

® The resulting decomposition, Ry, Ry ... R, is

n?
® Dependency preserving (since every FD in Uis a FD
of some schema)

® [ossless

®n 3NF

® Strategy for decomposing a relation:
® Use 3NF decomposition first to get lossless,
dependency preserving decomposition

® It any resulting schema is not in BCNF, split it using
the BCNF algorithm (but this may yield a non-

dependency preserving result)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

4 o
Normalization Drawbacks

* By limiting redundancy, normalization helps maintain
consistency and saves space

® But performance of querying can suffer because related
information that was stored in a single relation is now
distributed among several

* Example: A join is required to get the names and
grades of all students taking CSE305 in F2016.

SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.Studld AND
T.CrsCode = ‘CSE305° AND T.Semester = ‘F2016°

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

* Tradeoff: Judiciously introduce redundancy to improve

Denormalization

performance of certain queries

o Example: Add attribute Name to Transcript

(-

SELECT T.Name, T.Grade
FROM Transcript' T
WHERE T.CrsCode = ‘CSE305° AND T.Semester = ‘F2016°

® Join is avoided

™~

® If queries are asked more frequently than Transcript is modified,

added redundancy rnight improve average performance

® But, Transcript' is no longer in BCNF since key is (Studld,
CrsCode, Semester) and Studld —> Name

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

e

-

(-

Fourth Normal Form

SSN PhoneN ChildSSN
111111 123-4444) 222222
__________________ -] 111111 123-4444 ; 333333
redundancy 111111 "321-5555 - 222222
""""""""""" 111111 321-5555 ¢ 333333
222222 "987-6666 444444
\| 222222 ___7__7_]__7,777 444444
| 222222°-987-6666- - 555555
| 222222 % 777-7777. 555555

e Relation has redundant data

Person

® Yet it is in BCNF (since there are no non-trivial FDs)

* Redundancy is due to set valued attributes (in the E-R sense)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

4 ™
Multi-Valued Dependency

* Problem: multi-valued (or binary join) dependency

® Definition: If every instance of schema R can be (losslessly)

decomposed using attribute sets (X,Y) such that:

r=rxy(r) D 7my(r)
then a multi-valued dependency
R=7z.(R) X z,(R)
holdsinr

Ex: Person=~rrgy pnonen (PErSON) > TT ssn chitassn (Person)

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

4 ™
Fourth Normal Form (4NF)

® A schema is in fourth normal form (4NF) if for

every multi-valued dependency
R=XXY

In that schema, either:
-XcYorYc X (trivial case); or
- XN Yisasuperkey of R (e, XN Y—>R)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

4 ™
Fourth Normal Form (Cont’d)

® Intuition: it X MY—> R, there is a unique row in
relation r tor each value ot X MY (hence no
redundancy)

oEx: SSN does not uniquely determine PhoneN or
ChildSSN, thus Person is not in 4NF.

® Solution: Decompose R into X and Y

® Decomposition is lossless — but not necessarily
dependency preserving (since 4NF implies

BCNF — next)

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

" ANF Implies BCNF

® Suppose R is in 4NF and X —>Yis an FD.

*R, = XY, R, = R—Yis a lossless decomposition ot R
® Thus R has the multi-valued dependency:

R=R, 1 R,

— Since R is in 4NF, one of the following must hold :
— XY R-Y (an impossibility)
— R-Y < XY (l.e,, R=XY and X Is a superkey) or
— XYNR-Y (=X) Isasuperkey
Hence X — Y satisfies BCNF condition

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

