Database Design with The Relational Normalization Theory

Paul Fodor

CSE316: Fundamentals of Software Development

Stony Brook University

http://www.cs.stonybrook.edu/~cse316

Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design

Redundancy

- Dependencies between attributes cause redundancy
 - •Ex. All addresses in the same town have the same zip code

SSN	Name	Town	Zip	
		Stony Brook		Redundancy
4321	Mary	Stony Brook	11790	
5454	Tom	Stony Brook	11790	
	• • • • • •			

Redundancy

Set attributes can also cause redundancy.

In the ER Model:

SSN	Name	Addres	s Hobby
1111	Joe	123 Main	{biking, hiking}

But, they are represented as multiple tuples in the Relational Model:

SSN	Name	Address	Hobby
1111	Joe	123 Main	biking
1111	Joe	123 Main	hiking

Redundancy

Anomalies

- Redundancy leads to anomalies:
 - **Update anomaly**: A change in *Address* must be made in several places in the example with hobbies
 - **Deletion anomaly**: Suppose a person gives up all hobbies. Do we:
 - Set Hobby attribute to null? No, since *Hobby* is part of key
 - Delete the entire row? <u>No</u>, since we lose other information in the row.
 - So, we cannot represent this person.
 - **Insertion anomaly**: *Hobby* value must be supplied for any inserted row since *Hobby* is part of key.
 - So, we cannot inset a person without hobbies.

Decomposition

- Solution for eliminating redundencies: we use **two relations** to store Person information
 - •Person1(<u>SSN</u>, Name, Address)
 - Hobbies(<u>SSN</u>, <u>Hobby</u>)
- The decomposition is more general: people without hobbies can now be described
- No update anomalies:
 - Name and address stored once
 - A hobby can be separately supplied or deleted

Normalization Theory

- The result of E-R analysis need further refinement!
- Appropriate decomposition can solve problems!
- The underlying theory is referred to as normalization theory and is based on functional dependencies (and other kinds, like multivalued dependencies)

Functional Dependencies

- **Definition:** A *functional dependency* (FD) on a relation schema **R** is a **constraint** $X \rightarrow Y$, where X and Y are subsets of attributes of **R**.
- **Definition**: An FD $X \rightarrow Y$ is *satisfied* in an instance \mathbf{r} of \mathbf{R} if for <u>every</u> pair of tuples, t and s: if t and s agree on all attributes in X then they must agree on all attributes in Y
 - Key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
 - $SSN \rightarrow SSN$, Name, Address

Functional Dependencies

- $Address \rightarrow ZipCode$
 - Stony Brook's ZIP is 11733
- $ArtistName \rightarrow BirthYear$
 - Picasso was born in 1881
- Autobrand \rightarrow Manufacturer, Engine type
 - Pontiac is built by General Motors with gasoline engine
 - Volt is built by Chevy with electric engine
- Author, Title \rightarrow PublicationDate
 - Shakespeare's Hamlet published in 1600

Functional Dependency Running Example

- Consider a brokerage firm that allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office.
 - HasAccount(AcctNum, ClientId, OfficeId)
 - keys are: (AcctNum, ClientId), (ClientId, OfficeId)
 - AcctNum, $ClientId \rightarrow AcctNum$, ClientId, OfficeId
 - ClientId, OfficeId \rightarrow AcctNum, ClientId, OfficeId
 - $AcctNum \rightarrow OfficeId$
 - Thus, attribute values need not depend only on key values

Entailment, Closure, Equivalence

- Definition: If F is a set of FDs on schema R and f is another FD on R, then F entails f if every instance r of R that satisfies every FD in F also satisfies f
 - Example: $\mathbf{F} = \{A \to B, B \to C\}$ and f is $A \to C$
 - If $Town \rightarrow Zip$ and $Zip \rightarrow AreaCode$ then $Town \rightarrow AreaCode$
- **Definition**: The *closure* of F, denoted F⁺, is the set of all FDs entailed by F
- **Definition**: F and G are equivalent if F entails G and G entails F

Entailment, Closure, Equivalence

- Satisfaction, entailment, and equivalence are <u>semantic</u> concepts — defined in terms of the actual relations in the "real world."
 - They define <u>what these notions are</u>, **not** how to compute them
 - **Solution**: find algorithmic, <u>syntactic</u> ways to compute these notions
 - *Important*: The syntactic solution must be "correct" with respect to the semantic definitions
 - Correctness has two aspects: soundness and completeness

Armstrong's Axioms for FDs

- **Reflexivity**: If $Y \subseteq X$ then $X \to Y$ (trivial FD)
 - \bullet Name, Address \rightarrow Name
- Augmentation: If $X \rightarrow Y$ then $XZ \rightarrow YZ$
 - •If $Town \rightarrow Zip$ then Town, $Name \rightarrow Zip$, Name
- Transitivity: If $X \to Y$ and $Y \to Z$ then $X \to Z$

• The Armstrong's Axioms are the *syntactic* way of computing and testing the various properties of FDs.

Soundness

- Armstrong's axioms are *sound*: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.
- Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then

$$X \rightarrow XY$$
 Augmentation by X
 $YX \rightarrow YZ$ Augmentation by Y
 $X \rightarrow YZ$ Transitivity

- Thus, $X \rightarrow YZ$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied
 - We have derived the <u>union rule</u> for FDs: we can take the union of the RHSs of FDs that have the same LHS

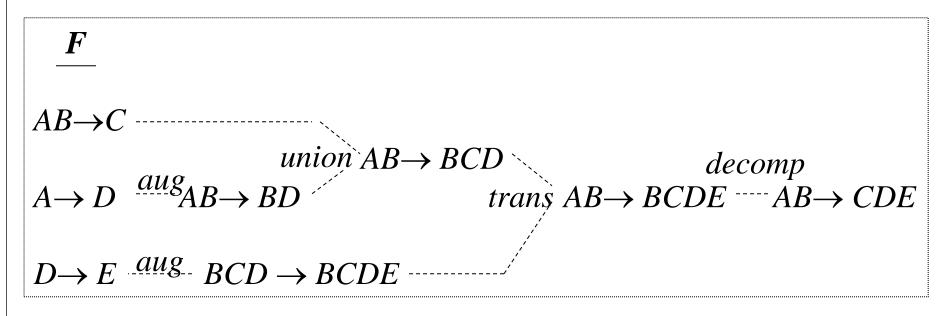
Completeness

- Armstrong's Axioms are *complete*: If F entails f, then f can be derived from F using the axioms
- A consequence of completeness is the following (naïve) algorithm to determining if *F* entails *f*:
 - •Algorithm: Use the axioms in all possible ways to generate F^+ (the closure of F, i.e., the set of possible FD's is finite so this can be done) and see if f is in F^+

Correctness

- The notions of *soundness* and *completeness* link the syntax (Armstrong's axioms) with semantics (the definitions in terms of relational instances)
- This is a precise way of saying that the algorithm for entailment based on the axioms is "correct" with respect to the definitions

Generating F⁺



Thus, $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$, and $AB \rightarrow CDE$ are all elements of \mathbf{F}^+ (part-of, there are other FDs: $AC \rightarrow CD$, $AE \rightarrow ED$, etc.)

Very costly procedure for proving entailment.

Attribute Closure

- Calculating attribute closure leads to a more efficient way of checking entailment
- The *attribute closure* of a set of attributes, X, with respect to a set of functional dependencies, F, (denoted X^+_F) is the set of all attributes, A, such that $X \to A$ is entailed by F
- X^+_{F1} is not necessarily the same as X^+_{F2} if $F1 \neq F2$
- Attribute closure and entailment:
 - Algorithm: Given a set of FDs, F, F entails $X \to Y$ if and only if $X^+_F \supseteq Y$

Computation of the Attribute Closure X_F^+

```
closure := X; // since X \subseteq X^+_F

repeat

old := closure;

if there is an FD Z \to V in F such that

Z \subseteq closure and V \cap closure \neq \emptyset

then closure := closure \cup V

until old = closure
```

Entailment algorithm:

If $T \subseteq X^+_F$ then $X \to T$ is entailed by F

Example: Computation of Attribute Closure

Example: Compute the attribute closure of *AB* with

respect to the set of FDs \mathbf{F} : $AB \to C$ (a)

$$A \rightarrow D$$
 (b)

$$D \to E$$
 (c)

$$AC \rightarrow B$$
 (d)

Solution:

Initially: $closure = \{AB\}$

Using (a): $closure = \{ABC\}$

Using (b): $closure = \{ABCD\}$

Using (c): $closure = \{ABCDE\}$

Computing Attribute Closure Examples

$F: AB \to C$
$A \to D$
$D \rightarrow E$
$AC \rightarrow B$

$$X$$
 X_F^+
 A
 $\{A, D, E\}$
 AB
 $\{A, B, C, D, E\}$
 $\{B\}$
 $\{B\}$
 $\{D, E\}$

Is $AB \rightarrow E$ entailed by F? Yes

Is $D \rightarrow C$ entailed by F? No

Result: X_F^+ allows us to determine FDs of the form $X \rightarrow A$ entailed by F

Normal Forms

- The *normal forms* are conditions on schemas that guarantees certain properties relating to redundancy and update anomalies
- First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values)
- Second normal form (2NF):
 - no non prime attribute is dependent on any proper subset of any candidate key of the table (where a non prime attribute of a table is an attribute that is not a part of any candidate key of the table): every non-prime attribute is either dependent on the whole of a candidate key, or on another non prime attribute.
- The two commonly used normal forms are third normal form (3NF) and Boyce-Codd normal form (BCNF)

BCNF

- **Definition**: A relation schema **R** is in BCNF if for every FD $X \rightarrow Y$ associated with **R** either
 - $Y \subseteq X$ (i.e., the FD is trivial) or
 - X is a superkey of \mathbf{R}
 - Remember: a *superkey* is a combination of attributes that can be used to uniquely identify a database record. A table might have many superkeys.
 - Remember: a *candidate* key is a special subset of superkeys that do not have any extraneous information in them: it is a **minimal** superkey.
- Example: Person1(<u>SSN</u>, Name, Address)
 - The only FD is: $SSN \rightarrow Name$, Address
 - Since SSN is a key, Person1 is in BCNF

(non) BCNF Examples

- Person(<u>SSN</u>, Name, Address, <u>Hobby</u>)
 - The FD: $SSN \rightarrow Name$, Address does <u>not</u> satisfy requirements of BCNF
 - since the (SSN) is not a key
 - the key is (SSN, Hobby)
- HasAccount(AcctNum, ClientId, OfficeId)
 - The FD *AcctNum* → *OfficeId* does <u>not</u> satisfy BCNF requirements
 - since keys are (ClientId, OfficeId) and (AcctNum, ClientId); not AcctNum.

What Redundancy?

- Suppose **R** has a FD $A \rightarrow B$, and A is not a superkey.
 - If an instance has 2 rows with same value in A, they must also have same value in B (=> redundancy, because the B-value repeats twice):

redundancy

SSN N	ame	Address	Hobby
1111/ Jo	oe 1	123 Main	stamps
1111 Jo	pe 1	123 Main	coins

 $SSN \rightarrow Name$. Address

- If A is a superkey, there cannot be two rows with same value of A
- Hence, BCNF eliminates redundancy

Third Normal Form (3NF)

- A relational schema **R** is in 3NF if for every FD $X \rightarrow Y$ associated with **R** either:
 - $Y \subseteq X$ (i.e., the FD is trivial); or
 - $\bullet X$ is a superkey of **R**; OR

BCNF conditions

- Every $A \in Y$ is part of some key of **R**
- 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF), but not vice-versa.

3NF Example

- HasAccount (AcctNum, ClientId, OfficeId) is in 3NF:
 - ClientId, OfficeId \rightarrow AcctNum
 - OK since LHS is a superkey
 - \bullet AcctNum \rightarrow OfficeId
 - OK since OfficeId (RHS) is part of a key (ClientId, OfficeId)
- HasAccount is in 3NF but it might still contain redundant information due to AcctNum → OfficeId (which is not allowed by BCNF)

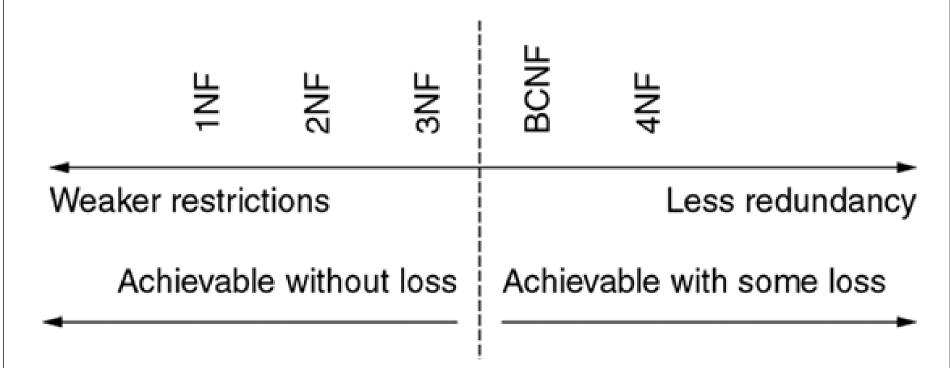
3NF (Non)-Example

- Person (SSN, Name, Address, Hobby):
 - •(SSN, Hobby) is the only key
 - $SSN \rightarrow Name$ violates 3NF conditions since:
 - •it is not a trivial FD,
 - SSN (LHS) is not a superkey, and
 - Name (RHS) is not part of a key.

Decompositions

- •Goal: Eliminate redundancy by decomposing a relation into several relations in a higher normal form
- Decomposition MUST be <u>lossless</u>: <u>it</u> must be possible to reconstruct the original relation from the relations in the decomposition.

Normal Forms



Decomposition

- Consider a relation schema: $\mathbf{R} = (R, \mathbf{F})$
 - *R* is set a of attributes
 - F is a set of functional dependencies over R
 - Each key is described by a FD
- The decomposition of the (relation) schema \mathbf{R} is a collection of (relation) schemas $\mathbf{R}_i = (R_i, \mathbf{F}_i)$ where
 - $R = \bigcup_{i} R_{i}$ for all i (no new attributes)
 - F_i is a set of functional dependences involving only attributes of R_i
 - F entails F_i for all i (no new FDs)
- The decomposition of an instance, \mathbf{r} , of \mathbf{R} is a set of relations $\mathbf{r}_i = \pi_{R_i}(\mathbf{r})$ for all i

Example Decomposition

```
Schema (R, F) where
    R = \{SSN, Name, Address, Hobby\}
   F = \{SSN \rightarrow Name, Address\}
can be decomposed into:
   R_1 = \{SSN, Name, Address\}
   F_1 = \{SSN \rightarrow Name, Address\}
and
    R_2 = \{SSN, Hobby\}
   F_2 = \{ \}
```

Lossless Schema Decomposition

- A decomposition should not lose information
- A decomposition $(\mathbf{R}_1, \dots, \mathbf{R}_n)$ of a schema, \mathbf{R} , is *lossless* if every valid instance, \mathbf{r} , of \mathbf{R} can be reconstructed from its components:

$$\mathbf{r} = \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \ldots \bowtie \mathbf{r}_n$$

where each $\mathbf{r}_{i} = \pi_{\mathbf{R}_{i}}(\mathbf{r})$

Lossy Decomposition

The following is always the case:

$$\mathbf{r} \subseteq \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \ldots \bowtie \mathbf{r}_n$$

But the following is not always true:

$$\mathbf{r} \supseteq \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \ldots \bowtie \mathbf{r}_n$$

Example: r

SSN	Name	Address
1111	Joe	1 Pine
2222	Alice	2 Oak
3333	Alice	3 Pine

$\not\supseteq$	$\mathbf{r}_{\scriptscriptstyle 1}$	\triangleright	\mathbf{r}_2
7	1	ν \vee	\angle

SSN Name		Name	Address
1111 Joe -		Joe	1 Pine
2222 Alice		Alice	2 Oak
3333 Alice ✓	X	Alice	3 Pine

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join, but not in the original

Lossy Decompositions: What is Actually Lost?

- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were *gained*, not lost!
 - Why do we say that the decomposition was lossy?
- What was lost is information:
 - That 2222 lives at 2 Oak:
 - In the decomposition, 2222 can live at either 2 Oak or 3 Pine
 - That 3333 lives at 3 Pine:
 - In the decomposition, 3333 can live at either 2 Oak or 3 Pine

Testing for Losslessness

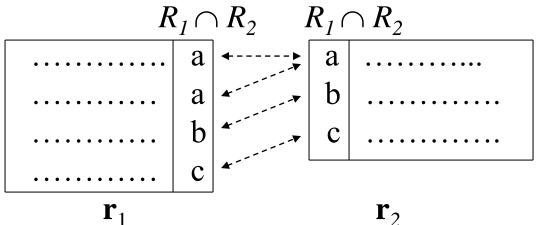
- •A (binary) decomposition of $\mathbf{R} = (R, \mathbf{F})$ into $\mathbf{R}_1 = (R_1, \mathbf{F}_1)$ and $\mathbf{R}_2 = (R_2, \mathbf{F}_2)$ is lossless if and only if:
 - either the FD
 - $(R_1 \cap R_2) \longrightarrow R_1 \text{ is in } F^+$
 - •or the FD
 - $(R_1 \cap R_2) \rightarrow R_2 \text{ is in } F^+$

Testing for Losslessness Example

```
Consider the schema (R, F) where
    R = \{SSN, Name, Address, Hobby\}
    F = \{SSN \rightarrow Name, Address\}
It can be decomposed into
    R_1 = \{SSN, Name, Address\}
    \mathbf{F}_1 = \{SSN \rightarrow Name, Address\}
and
    R_2 = \{SSN, Hobby\}
    F_2 = \{ \}
R_1 \cap R_2 = SSN and
SSN \rightarrow \{SSN, Name, Address\} = R_1
            => the decomposition is lossless!
```

Intuition Behind the Test for Losslessness

- Suppose $R_1 \cap R_2 \rightarrow R_2$.
- Then a row of \mathbf{r}_1 can combine with <u>exactly</u> one row of \mathbf{r}_2 in the natural join (since in \mathbf{r}_2 a particular set of values for the attributes in $R_1 \cap R_2$ defines a unique row):



• The join will have exactly the number of tuples in \mathbf{r}_1 and \mathbf{r} (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Proof of Lossless Condition

- $\mathbf{r} \subseteq \mathbf{r}_1$ \bowtie \mathbf{r}_2 this is true for any decomposition by definition of a decomposition
- $\mathbf{r} \supseteq \mathbf{r}_1 \bowtie \mathbf{r}_2$ -we need to prove this for lossless

If
$$R_1 \cap R_2 \to R_2$$
 then
$$card (\mathbf{r}_1 \bowtie r_2) = card (\mathbf{r}_1)$$
(since each row of r_1 joins with exactly one row of r_2)

But card (\mathbf{r}) $\geq card$ (\mathbf{r}_1) (since \mathbf{r}_1 is a projection of \mathbf{r}) and therefore card (\mathbf{r}) $\geq card$ ($\mathbf{r}_1 \bowtie \mathbf{r}_2$)
From the join (Cartesian product) we have:

$$card(\mathbf{r}) \leq card(\mathbf{r}_1 \bowtie \mathbf{r}_2)$$

Hence
$$\mathbf{r} = \mathbf{r}_1 \bowtie \mathbf{r}_2$$
 must be true

Dependency Preservation

- Consider a decomposition of $\mathbf{R} = (R, \mathbf{F})$ into $\mathbf{R}_1 = (R_1, \mathbf{F}_1)$ and $\mathbf{R}_2 = (R_2, \mathbf{F}_2)$
 - An FD $X \to Y$ of F^+ is in F_i iff $X \cup Y \subseteq R_i$ (all the attributes of the functional dependency are in R_i)
 - An FD, $f \in \mathbf{F}^+$ may be in neither \mathbf{F}_1 , nor \mathbf{F}_2 , nor even $(\mathbf{F}_1 \cup \mathbf{F}_2)^+$
 - Checking that f is true in \mathbf{r}_1 or \mathbf{r}_2 is (relatively) easy
 - Checking f in $\mathbf{r}_1 \bowtie \mathbf{r}_2$ is harder requires a join
 - *Ideally*: want to check FDs <u>locally</u>, in \mathbf{r}_1 and \mathbf{r}_2 , and have a guarantee that every $f \in F$ holds in $\mathbf{r}_1 \bowtie \mathbf{r}_2$
- The decomposition is <u>dependency preserving</u> iff the FD sets \underline{F} and $\underline{F}_1 \cup \underline{F}_2$ are equivalent: $\underline{F}^+ = (\underline{F}_1 \cup \underline{F}_2)^+$
 - Then checking all FDs in \mathbf{F} , as \mathbf{r}_1 and \mathbf{r}_2 are updated, can be done by checking \mathbf{F}_1 in \mathbf{r}_1 and \mathbf{F}_2 in \mathbf{r}_2

Dependency Preservation

• If f is an FD in F, but f is not in $F_1 \cup F_2$, there are two possibilities:

$$f \in (\mathbf{F}_1 \cup \mathbf{F}_2)^+$$

• If the constraints in F_1 and F_2 are maintained, f will be maintained automatically.

•
$$f \notin (\mathbf{F}_1 \cup \mathbf{F}_2)^+$$

• f can be checked only by first taking the join of \mathbf{r}_1 and \mathbf{r}_2 .

Example 1

```
Schema (R, F) where
    R = \{SSN, Name, Address, Hobby\}
    F = \{SSN \rightarrow Name, Address\}
can be decomposed into
    R_1 = \{SSN, Name, Address\}
    \mathbf{F}_1 = \{SSN \rightarrow Name, Address\}
and
    R_2 = \{SSN, Hobby\}
   F_2 = \{ \}
Since F = F_1 \cup F_2 the decomposition is
dependency preserving
```

Example 2

- Schema: (ABC; F), $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
- Decomposition:
 - $\bullet (AC, \mathbf{F}_1), \ \mathbf{F}_1 = \{A \rightarrow C\}$
 - Note: A \rightarrow C \notin F, but in F^+
 - $(BC, \mathbf{F}_2), \mathbf{F}_2 = \{B \rightarrow C, C \rightarrow B\}$
- $A \rightarrow B \notin (F_1 \cup F_2)$, but $A \rightarrow B \in (F_1 \cup F_2)^+$
 - So $F^+ = (F_1 \cup F_2)^+$ and thus the decomposition is still dependency preserving

Example 3

• HasAccount (AcctNum, ClientId, OfficeId)

```
f_1: AcctNum \rightarrow OfficeId
f_2: ClientId, OfficeId \rightarrow AcctNum
```

• Decomposition:

```
R_1 = (AcctNum, OfficeId; \{AcctNum \rightarrow OfficeId\})

R_2 = (AcctNum, ClientId; \{\})
```

• Decomposition <u>is</u> lossless:

```
R_1 \cap R_2 = \{AcctNum\} \text{ and } AcctNum \rightarrow AcctNum, OfficeId = R_1
```

- This decomposition is in BCNF (we showed that before).
- But it is Not dependency preserving: $f_2 \notin (\mathbf{F}_1 \cup \mathbf{F}_2)^+$
- HasAccount does not have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration of all decompositions)
- Hence: BCNF+lossless+dependency preserving decompositions are not always achievable!

BCNF Decomposition Algorithm

Input: R = (R; F) $Decomp := \{\mathbf{R}\}$ while there is $S = (S; F') \in Decomp$ and S not in BCNF do Find $X \to Y \in F'$ that violates BCNF // X isn't a superkey in S Replace S in *Decomp* with $\mathbf{S_1} = (XY; \mathbf{F}_1)$ and $S_2 = (S - (Y - X); F_2)$ where $F_1 = all \ FDs \ of \ F'$ involving only attributes of XY and $\mathbf{F}_2 = all \; FDs \; of \; \mathbf{F}' \; involving \; only \; attributes \; of \; S - (Y - X)$ end return Decomp

Simple Example

• HasAccount :

```
(ClientId, OfficeId, AcctNum)
Keys: (ClientId,OfficeId) and (ClientId,AcctNum)
ClientId,OfficeId → AcctNum
AcctNum → OfficeId
```

• Decompose using $AcctNum \rightarrow OfficeId$:

```
(OfficeId, AcctNum)
```

 $FD: AcctNum \rightarrow OfficeId$

is in BCNF: AcctNum is key

(<u>ClientId</u>, <u>AcctNum</u>)
Is in BCNF (only trivial FDs)

A Larger Example

Given: $\mathbf{R} = (R; \mathbf{F})$ where R = ABCDEGHK and

$$F = \{ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE\}$$

step 1: Find a FD that violates BCNF

Not
$$ABH \rightarrow C$$
 since $(ABH)^+$ includes all attributes $(BH \text{ is a key (minimal superkey)})$

 $A \rightarrow DE$ violates BCNF since A is not a superkey $(A^+ = ADE)$

step 2: Split **R** into:

$$\mathbf{R}_1 = (ADE, \mathbf{F}_1 = \{A \rightarrow DE\})$$

$$\mathbf{R_2} = (ABCGHK; \mathbf{F_1} = \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$$

Note 1: $\mathbf{R_1}$ is in BCNF

Note 2: Decomposition is lossless since A is a key of \mathbf{R}_1 .

Note 3: FDs $K \to D$ and $BH \to E$ are not in F_1 or F_2 . But both can be derived from $F_1 \cup F_2$

 $(E.g., K \rightarrow A \text{ and } A \rightarrow D \text{ implies } K \rightarrow D)$

Hence, the decomposition is dependency preserving.

Is \mathbf{R}_2 in BCNF?

A Larger Example (con't)

Given: $\mathbf{R_2} = (ABCGHK; \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$ step 1: Find a FD that violates BCNF.

Not $ABH \rightarrow C$ or $BGH \rightarrow K$, since BH is a key of \mathbb{R}_2 $K \rightarrow AH$ violates BCNF since K is not a superkey $(K^+ = AH)$ step 2: Split \mathbb{R}_2 into:

$$\mathbf{R_{21}} = (KAH, \mathbf{F}_{21} = \{K \to AH\})$$

 $\mathbf{R_{22}} = (BCGK; \mathbf{F}_{22} = \{\})$

- Note 1: Both \mathbf{R}_{21} and \mathbf{R}_{22} are in BCNF.
- Note 2: The decomposition is *lossless* (since K is a key of \mathbf{R}_{21})
- Note 3: FDs $ABH \rightarrow C$, $BGH \rightarrow K$, $BH \rightarrow G$ are not in F_{21} or F_{22} , and they can't be derived from $F_1 \cup F_{21} \cup F_{22}$. Hence the decomposition is *not* dependency-preserving

Properties of BCNF Decomposition Algorithm

- Let $X \rightarrow Y$ violate BCNF in $\mathbf{R} = (R, \mathbf{F})$.
- $\mathbf{R_1} = (R_1, \mathbf{F_1})$ and $\mathbf{R_2} = (R_2, \mathbf{F_2})$ is the resulting decomposition. Then:
 - ullet There are *fewer violations* of BCNF in ${f R_1}$ and ${f R_2}$ than there were in ${f R}$
 - $X \rightarrow Y$ implies X is a key of \mathbf{R}_1
 - Hence $X \to Y \in F_1$ does not violate BCNF in $\mathbf{R_1}$ and, since $X \to Y \notin F_2$, does not violate BCNF in $\mathbf{R_2}$ either
- Suppose f is $X' \to Y'$ and $f \in F$ doesn't violate BCNF in \mathbb{R} . If $f \in F_1$ or F_2 it does not violate BCNF in \mathbb{R}_1 or \mathbb{R}_2 either since X' is a superkey of \mathbb{R} and hence also of \mathbb{R}_1 and \mathbb{R}_2 .

Properties of BCNF Decomposition Algorithm

- A BCNF decomposition is *not necessarily* dependency preserving
- But always lossless:

since
$$R_1 \cap R_2 = X$$
, $X \longrightarrow Y$, and $R_1 = XY$

• BCNF+lossless+dependency preserving is sometimes unachievable

Third Normal Form

- The Third Normal Form is the Compromise
 - = Not all redundancy removed, but dependency preserving decompositions are <u>always</u> possible (and, of course, lossless)
- 3NF decomposition is based on a *minimal* cover

Minimal Cover

- A minimal cover of a set of functional dependencies F is a set of dependencies U such that:
 - U is equivalent to F (i.e., $F^+ = U^+$)
 - All FDs in U have the form $X \to A$ where A is a single attribute
 - ullet It is not possible to make $oldsymbol{U}$ smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)
 - FDs and attributes that can be deleted in this way are called *redundant*

Computing the Minimal Cover

- Example: $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$
- step 1: Make RHS of each FD into a single attribute:
 - $ABH \rightarrow CK$ is replaced by $ABH \rightarrow C$ and $ABH \rightarrow K$
 - $L \to AD$ is replaced by $L \to A$ and $L \to D$
- **step 2**: Eliminate redundant attributes from LHS:
 - *Algorithm*: If FD $XB \rightarrow A \in F$ (where B is a single attribute) and $X \rightarrow A$ is entailed by F, then B was unnecessary
 - Example: Can an attribute be deleted from $ABH \rightarrow C$?
 - Compute AB_F^+ , AH_F^+ , BH_F^+ .
 - Since $C \in (BH)^+_F$, $BH \to C$ is entailed by F and A is redundant in $ABH \to C$.

Computing the Minimal Cover

- **step 3**: Delete redundant FDs from *F*
 - Algorithm: If $\mathbf{F} \{f\}$ entails f, then f is redundant
 - Alternative: If f is $X \to A$ then check if $A \in X^+_{F_{-}\{f\}}$
 - Example: $BGH \rightarrow L$ is entailed by $E \rightarrow L$, $BH \rightarrow E$, so it is redundant.

Synthesizing a 3NF Schema

Starting with a schema $\mathbf{R} = (R, \mathbf{F})$

- **step 1**: Compute a minimal cover, U, of F (the decomposition is based on U, but since $U^+ = F^+$ the same functional dependencies will hold)
 - A minimal cover for

$$F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$$
is

$$U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}$$

Synthesizing a 3NF schema (con't)

• The minimal cover was:

$$U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}$$

• **step 2**: Partition U into sets $U_1, U_2, ..., U_n$ such that the LHS of all elements of U_i are the same

$$U_{1} = \{BH \rightarrow C, BH \rightarrow K\}$$

$$U_{2} = \{A \rightarrow D\}$$

$$U_{3} = \{C \rightarrow E\}$$

$$U_{4} = \{L \rightarrow A\}$$

$$U_{5} = \{E \rightarrow L\}$$

Synthesizing a 3NF schema (con't)

$$\begin{aligned} \boldsymbol{U}_1 &= \{\boldsymbol{BH} \to \boldsymbol{C}, \boldsymbol{BH} \to \boldsymbol{K}\}, & \boldsymbol{U}_2 &= \{\boldsymbol{A} \to \boldsymbol{D}\}, \\ \boldsymbol{U}_3 &= \{\boldsymbol{C} \to \boldsymbol{E}\}, & \boldsymbol{U}_4 &= \{\boldsymbol{L} \to \boldsymbol{A}\}, & \boldsymbol{U}_5 &= \{\boldsymbol{E} \to \boldsymbol{L}\} \end{aligned}$$

- **step 3**: For each U_i form a schema $\mathbf{R_i} = (R_i, U_i)$, where R_i is the set of all attributes mentioned in U_i
 - Each FD of U will be in some R_i . Hence the decomposition is dependency preserving:

$$\mathbf{R_1} = (BHCK; BH \rightarrow C, BH \rightarrow K),$$
 $\mathbf{R_2} = (AD; A \rightarrow D),$ $\mathbf{R_3} = (CE; C \rightarrow E),$ $\mathbf{R_4} = (AL; L \rightarrow A),$ $\mathbf{R_5} = (EL; E \rightarrow L)$

• Unify relations that have the same set of attributes.

BH

• Add to each $\mathbf{R_i}$ all dependencies f entailed by the original set F where all the attributes are in $\mathbf{R_i}$

Synthesizing a 3NF schema (con't)

- **step 4**: If no R_i is a superkey of **R**, add schema $\mathbf{R_0} = (R_0, \{\})$ where R_0 is a key of **R**.
 - $\mathbf{R_0} = (BGH, \{\})$
 - R_0 might be needed when not all attributes are necessarily contained in $R_1 \cup R_2 \ldots \cup R_n$
 - A missing attribute, A, must be part of all keys (since it's not in any FD of U, deriving a key constraint from U involves the augmentation axiom)
 - $\mathbf{R_0}$ might be needed even if all attributes are accounted for in $R_1 \cup R_2 \dots \cup R_n$
 - Example: $(ABCD; \{A \rightarrow B, C \rightarrow D\})$. Step 3 decomposition: $R_1 = (AB; \{A \rightarrow B\}), R_2 = (CD; \{C \rightarrow D\})$. Lossy! Need to add (AC; $\{\}$), for losslessness
 - Step 4 guarantees **lossless** decomposition.

BCNF Design Strategy

- ullet The resulting decomposition, $R_0, R_1, \dots R_n$, is
 - Dependency preserving (since every FD in *U* is a FD of some schema)
 - Lossless
 - In 3NF
- Strategy for decomposing a relation:
 - Use 3NF decomposition first to get lossless, dependency preserving decomposition
 - If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a nondependency preserving result)

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
- Example: A join is required to get the names and grades of all students taking CSE305 in F2016.

```
SELECT S.Name, T.Grade

FROM Student S, Transcript T

WHERE S.Id = T.StudId AND

T.CrsCode = \text{`CSE305'} AND T.Semester = \text{`F2016'}
```

Denormalization

- **Tradeoff**: *Judiciously* introduce redundancy to improve performance of certain queries
- Example: Add attribute *Name* to Transcript

```
SELECT T.Name, T.Grade
FROM Transcript' T
WHERE T.CrsCode = 'CSE305' AND T.Semester = 'F2016'
```

- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance
- But, Transcript' is no longer in BCNF since key is (StudId, CrsCode, Semester) and $StudId \rightarrow Name$

Fourth Normal Form

SSN **PhoneN ChildSSN** 111111 123-4444 222222 123-4444 333333 111111 321-5555 111111 222222 111111 321-5555 333333 222222 987-6666 444444 222222 777-7777 444444 222222 555555 987-6666 222222 555555 777-7777

Person

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense)

redundancy

Multi-Valued Dependency

- Problem: multi-valued (or binary join) dependency
 - **Definition**: If every instance of schema \mathbf{R} can be (losslessly) decomposed using attribute sets (X,Y) such that:

$$\mathbf{r} = \pi_X(\mathbf{r}) \bowtie \pi_Y(\mathbf{r})$$

then a multi-valued dependency

$$\mathbf{R} = \pi_{X}(\mathbf{R}) \bowtie \pi_{Y}(\mathbf{R})$$

holds in r

Ex: Person =
$$\pi_{SSN,PhoneN}$$
 (Person) $\bowtie \pi_{SSN,ChildSSN}$ (Person)

Fourth Normal Form (4NF)

• A schema is in *fourth normal form* (4NF) if for every multi-valued dependency

$$R = X \bowtie Y$$

in that schema, either:

- $-X \subseteq Y$ or $Y \subseteq X$ (trivial case); or
- $-X \cap Y$ is a superkey of R (i.e., $X \cap Y \rightarrow R$)

Fourth Normal Form (Cont'd)

- *Intuition*: if $X \cap Y \rightarrow R$, there is a unique row in relation **r** for each value of $X \cap Y$ (hence no redundancy)
 - •Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.
- *Solution*: Decompose *R* into *X* and *Y*
 - Decomposition is lossless but not necessarily dependency preserving (since 4NF implies BCNF — next)

4NF Implies BCNF

- Suppose R is in 4NF and $X \longrightarrow Y$ is an FD.
 - $R_1 = XY$, $R_2 = R Y$ is a lossless decomposition of R
 - Thus R has the multi-valued dependency:

$$R = R_1 \bowtie R_2$$

- Since R is in 4NF, one of the following must hold:
 - $-XY \subseteq R Y$ (an impossibility)
 - $-R-Y \subseteq XY$ (i.e., R=XY and X is a superkey) or
 - $-XY \cap R Y = (=X)$ is a superkey

Hence $X \rightarrow Y$ satisfies BCNF condition