
Paul Fodor

CSE316: Fundamentals of Software

Development

Stony Brook University

http://www.cs.stonybrook.edu/~cse316

JSON and AJAX

http://www.cs.stonybrook.edu/~cse316

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Evolution of DBMS
 Semi-structured era (~2000+)

 Schema Evolution OR Schema "later": data is self describing

 A Response to the growth of Web services (AJAX) and XML as

a language (same for JSON as Javascript)

2

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Evolution of DBMS
 Semi-structured era (~2000+)

 Relational DBMS have heavy-weight mechanisms to change

schema (ALTER)

 XML and JSON as a data model:

 records can be hierarchical

 records can still reference to other records through paths

(i.e., XPath)

 schema can be defined "later" in DTDs and XMLSchema

3

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Evolution of DBMS
 For machine consumption on the Web, data should have

these characteristics:

Be object-like

Be schemaless (not guaranteed to conform exactly to any
schema, but different objects have some commonality
among themselves)

Be self-describing (some schema-like information, like
attribute names, is part of data itself)

 Data with these characteristics are referred to as
semistructured.

4

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Non-self-describing Data
 Non-self-describing (relational, object-oriented):

Data part:

(#123, [“Students”, {[“John”, s111111111, [123,”Main St”]],

[“Joe”, s222222222, [321, “Pine St”]] }

])

Schema part:
PersonList[ListName: String,

Contents: [Name: String,
Id: String,
Address: [Number: Integer, Street: String]]

]

5

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Evolution of DBMS
 Self-describing:

 Attribute names embedded in the data itself, but are distinguished from
values

 Doesn’t need schema to figure out what is what (but schema might be
useful nonetheless)
(#12345,

[ListName: “Students”,

Contents: { [Name: “John Doe”,

Id: “s111111111”,

Address: [Number: 123, Street: “Main St.”]] ,

[Name: “Joe Public”,

Id: “s222222222”,

Address: [Number: 321, Street: “Pine St.”]] }

])

6

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON
Java Script Object Notation

Lightweight data interchange

Used with 'RESTful' APIs and AJAX

(Asynchronous Javascript and XML)

7

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON – Data Types
 Number – Integers and Floating point numbers do not

have separate types

 String – A sequence of characters

 Boolean – true/false

 Array – An ordered list

 Objects – Sets of name/value pairs

 Null – an empty (non-existent) value

8

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON - Syntax
Data in Key/Value pairs : {'key':'value'}

Key must be quoted!

Value must be one of the described data types

File extension should be .json

MIME Types: Application/json

9

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON - Syntax
XMLHttpRequest.readyState

https://developer.mozilla.org/en-

US/docs/Web/API/XMLHttpRequest/readyState

HTTP 200: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Status/200
10

Value State Description

0 UNSENT
Client has been created. open() not

called yet.

1 OPENED open() has been called.

2 HEADERS_RECEIVED
send() has been called, and headers

and status are available.

3 LOADING
Downloading; responseText holds

partial data.

4 DONE The operation is complete.

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/readyState
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/200

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON - Example

11

{

"people" : [

{

"name":"Tony",

"age":55

},

{

"name":"Tina",

"age":35

},

{

"name":"Joe",

"age":10

}

]

}

people.json

<body>

<h1>People Array</h1>

<ul id='people'>

<script>

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

// Typical actions to be performed when the document is ready:

console.log(xhttp.responseText);

var response = JSON.parse(xhttp.responseText);

var people = response.people;

var output='';

for (var i = 0; i < people.length; i++) {

output += ''+people[i].name+'';

}

document.getElementById('people').innerHTML = output;

}

};

xhttp.open('GET', 'people.json', true);

xhttp.send();

</script>

</body>

json3.html

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON – Utility Functions
 JSON.parse() – Read a string as a JSON string, parse

it, and generate a Javascript object with the contents of

the string

 JSON.stringify() – Convert data or a Javascript Object

into JSON notation

12

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON.parse()
 JSON.parse() reads JSON strings and converts them to objects for use

by Javascript

 Syntax:

 <string> is the string to be parsed and converted to a Javascript object

 <reviver> is an optional parameter holding a function to convert or

modify values

13

JSON.parse(<string>, <reviver>);

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON – Example modify data w/parse()

14

{

"people" : [

{

"name":"Tony",

"age":55

},

{

"name":"Tina",

"age":35

},

{

"name":"Joe",

"age":10

}

]

}

people.json

json5.html
<body>

<h1>People Array</h1>

<ul id='people'>

<script>

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

// Typical action to be performed when the document is ready:

var response = JSON.parse(xhttp.responseText, (key,value) =>

key === 'age' ? value + 10 : value);

var people = response.people;

var output='';

for (var i = 0; i < people.length; i++) {

output += ''+people[i].name+'...'+people[i].age+'';

}

document.getElementById('people').innerHTML = output;

}

};

xhttp.open('GET', 'people.json', true);

xhttp.send();

</script>

</body>

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON.stringify()
 This convert any Javascript data or object into correct JSON syntax

 Syntax:

 The second two arguments are optional. The args are:

 <value> -The data to be converted

 <replacer> -This can be either:

 A function that alters the behavior of stringify by selecting properties to include.

 An array of strings that are used to filter/select which properties stringify() includes

 <space> -This is either:

 A number (up to 10) that indicate how many spaces to use between elements

 A string (up to 10 characters long) used as the space separator

15

JSON.stringify(<value>, <replacer>, <space>)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JSON – Example modify data with stringify()

16

<body>

<h1>People Array</h1>

<ul id='people'>

<script>

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

var count = 0;

function replacer(key,value) {

if (key === 'name') {

count = count + 1;

return value+count;

}

return value;

}

if (this.readyState == 4 && this.status == 200) {

// Typical action to be performed when the document is ready:

var response = JSON.parse(xhttp.responseText, (key,value) =>

key === 'age' ? value + 10 : value);

console.log(response.people);

var newpeople = JSON.stringify(response.people, replacer);

var finalpeople = JSON.parse(newpeople);

var output='';

for (var i = 0; i < finalpeople.length; i++) {

output += ''+finalpeople[i].name+'...'+finalpeople[i].age+'';

}

document.getElementById('people').innerHTML = output;

}

};

xhttp.open('GET', 'people.json', true);

xhttp.send();

</script>

</body>

json6.html

