JSON and AJAX

Paul Fodor
CSE316: Fundamentals of Software

Development
Stony Brook University

http: //www. cs.stonybrook.edu/ ~cse3 16

http://www.cs.stonybrook.edu/~cse316

/Evolution of DBMS

® Semi-structured era (~2000+)

® Schema Evolution OR Schema "later": data is self describing

Person:
Name: Joe Jones
Wages: 14.75
Employer: My_accounting
Hobbies: skiing, bicycling
Works for: ref (Fred Smith)
Favorite joke: Why did the chicken cross the road? To get to the other side
Office number: 247
Major skill: accountant
End Person

Semantic Heterogeneity:
Person: * Different sets of attributes
Name: Smith, Vanessa * Same attributes have different formats

AYRpas- 2000 , * Different attributes have same meaning
Favorite coffee: Arabian

Pastimes: sewing, swimming
Works_for: Between jobs
Favorite restaurant: Panera
Number of children: 3

End Person:

* A Response to the growth of Web services (AJAX) and XML as
a language (same for JSON as Javascript)

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) /

/Evolution of DBMS

® Semi-structured era (~2000+)

® Relational DBMS have heavy—weight mechanisms to change
schema (ALTER)

® XML and JSON as a data model:
records can be hierarchical

records can still reference to other records through paths
(i.e., XPath)
schema can be defined "later" in DTDs and XMLSchema

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

4 _ I
Evolution of DBMS

® For machine consumption on the Web, data should have
these characteristics:

® Be object-like
® Be schemaless (not guaranteed to conform exactly to any

schema, but different objects have some commonality
among themselves)

® Be self-describing (some schema-like information, like
attribute names, is part of data itselt)

e Data with these characteristics are referred to as

semistructured.

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

/Non—self—describing Data

® Non-self-describing (relational, object-oriented):

Data part:

(#123, [“Students”; {[“John”, s111111111, [123,”Main St”]],
[“Joe”, s222222222,[321, “Pine St”]] }

1)

Schema part:

PersonList[ListName: String,
Contents: [Name: String,
Id: String,
Address: [Number: Integer, Street: String]]

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

4 _ I
Evolution of DBMS
® Self-describing:

Attribute names embedded in the data itself, but are distinguished from
values

Doesn’t need schema to figure out what is what (but schema might be

useful nonetheless)
(#12345,
[List Name: “Students”,
Contents: { [Name: “John Doe”,
Id: “s1111111117,
Address: [Number: 123, Street: “Main St.”] | ,
[Name: “Joe Public”,
Id: “s222222222”,
Address: [Number: 321, Street: “Pine St.”] | }

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

"JSON

® Java Script O

pject Notation

0 Lightweight d

ata interchange

® Used with 'RESTtul' APIs and AJAX
(Asynchronous Javascript and XML)

(c) Pearson

Education Inc. and Paul Fodor (CS Stony Brook)

'JSON - Data Types

™~

¢ Number — Integers and Floating point numbers do not

have separate types
* String — A sequence of characters
®* Boolean — true/false
® Array — An ordered list
* Objects — Sets of name/value pairs

® Null — an empty (non-existent) value

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

'JSON - Syntax

® Data in Key/ Value pairs : {'key’:'value'}

* Key must be (;Luoted!

® Value must be one of the described data types
® File extension should be .json

® MIME Types: Application/ json

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

'JSON - Syntax

o XMLHttpRequest.readyState

Ohttps: // developer.mozilla.org/ en-

US/docs/Web/API/XMLHttpRequest/ readyState

Value State Description

UNSENT Client has been created. open() not
called yet.

OPENED open() has been called.

send() has been called, and headers

and status are available.

HEADERS_RECEIVED

LOADING DOV\.fnloadlng; responseText holds
partial data.

DONE The operation is complete.

*HTTP 200: https:// developer.mozﬂla.org/ en-
@ US/docs/ Web/HTTP/Status/ 200
N,

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/readyState
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/200

/ < C ® localhost:4000/www/json3.html
JSON - Example

People Array
json3.ntml

<body> : ?n},

] <h1>People Array</h1> .
peop'e_J son <ul id="people">

<script>
{ var xhttp = new XMLHttpRequest();
“people™ - [xhttp.onreadystatechange = function() {
{" . . if (this.readyState == 4 && this.status == 200) {

name™:"Tony", /] Typical actions to be performed when the document is ready:

"age":5o console.log(xhttp.responseText);
’ var response = JSON.parse(xhttp.responseText);

¥
{ var people = response.people;

"name":"Tina",

var output=";
"age":35

for (var i = 0; i < people.length; i++) {
%’ output += ''+people[i].name+'";
n m,.n UL} }
name™:"Joe", document.getElementByld(‘people’).innerHTML = output;
"age":10 }
I
xhttp.open('GET", 'people.json’, true);
xhttp.send();
</script>
</body>

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

™~

'JSON - Utility Functions

® JSON.parse() — Read a string as a JSON string, parse

it, and generate a Javascript object with the contents of

the string

* JSON.stringify() — Convert data or a Javascript Object
into JSON notation

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

™~

/JSON.parse()

® JSON.parse() reads JSON strings and converts them to objects for use

by Javascript
® Syntax:

JSON.parse(<string>, <reviver>);

® <string> is the string to be parsed and converted to a Javascript object

o <reviver> is an Optional parameter holding a function to convert or

modify values

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

s
JSON - Example modify data w/parse()

json5.html

<body>
_ <h1>People Array</h1>
people_ Jjson <ulid="people’>
<script>
var xhttp = new XMLHttpRequest();
“people™ : [xhttp.onreadystatechange = function() {

{ if (this.readyState == 4 && this.status == 200) {
“name™:"Tony", /] Typical action to be performed when the document is ready:
"age":35 var response = JSON.parse(xhttp.responseText, (key,value) =>

} key === "age' ? value + 10 : value);

{ var people = response.people;

"name™:"Tina", var output=";

"age™:35 for (var i = 0; i < people.length; i++) {
. output +=''+people[i].name+"..."+people[i].age+'";
{ }

“name™:"Joe", document.getElementByld(‘people’).innerHTML = output;
"age™:10 }

}; < C @ localhost:4000/www/json5.html
xhttp.open('GET", 'people.json’, true);
xhttp.send(); People Array
</script>
</b0dy> » Tony...65

e Tina...45
e Joe..20

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

™~

™~

/JSON.stringify()

® This convert any Javascript data or object into correct JSON syntax

° Syntax:

JSON.stringify(<value>, <replacer>, <space>)
® The second two arguments are optional. The args are:
o <value> - The data to be converted

® <replacer> - This can be either:

A function that alters the behavior of stringity by selecting properties to include.

An array of strings that are used to filter/select which properties stringify() includes
® <space> - This is either:

A number (up to 10) that indicate how many spaces to use between elements

A string (up to 10 characters long) used as the space separator

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

i N
JSON - Example modify data with stringify()

if (this.readyState == 4 && this.status == 200) {
I/ Typical action to be performed when the document is ready:
- var response = JSON.parse(xhttp.responseText, (key,value) =>
J30n6. html key === "age' ? value + 10 : value);
<body> console.log(response.people);
<hl1>People Array</h1> var newpeople = JSON.stringify(response.people, replacer);
<ul id="people’> var finalpeople = JSON.parse(newpeople);
<script> var output=",
var xhttp = new XMLHttpRequest(); for (var i = 0; i < finalpeople.length; i++) {
xhttp.onreadystatechange = function() { output +=''+finalpeople[i].name+"...'+finalpeople[i].age+'";
var count = 0; }
function replacer(key,value) { document.getElementByld('people’).innerHTML = output;
if (key === "'name') { }
count = count + 1; };
return value+count; xhttp.open('GET", 'people.json’, true);
} xhttp.send();
return value;
} </script>

</body> People Array

< C ® localhost:4000/www/json6.html

e Tonyl...65
e Tina2...45
e J0e3...20

@ (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

