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/Evolution of DBMS

® Semi-structured era (~2000+)

® Schema Evolution OR Schema "later": data is self describing

Person:
Name: Joe Jones
Wages: 14.75
Employer: My_accounting
Hobbies: skiing, bicycling
Works for: ref (Fred Smith)
Favorite joke: Why did the chicken cross the road? To get to the other side
Office number: 247
Major skill: accountant
End Person

Semantic Heterogeneity:
Person: * Different sets of attributes
Name: Smith, Vanessa * Same attributes have different formats

AYRpas- 2000 , * Different attributes have same meaning
Favorite coffee: Arabian

Pastimes: sewing, swimming
Works_for: Between jobs
Favorite restaurant: Panera
Number of children: 3

End Person:

* A Response to the growth of Web services (AJAX) and XML as
a language (same for JSON as Javascript)
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/Evolution of DBMS

® Semi-structured era (~2000+)

® Relational DBMS have heavy—weight mechanisms to change
schema (ALTER)

® XML and JSON as a data model:
records can be hierarchical

records can still reference to other records through paths
(i.e., XPath)
schema can be defined "later" in DTDs and XMLSchema
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Evolution of DBMS

® For machine consumption on the Web, data should have
these characteristics:

® Be object-like
® Be schemaless (not guaranteed to conform exactly to any

schema, but different objects have some commonality
among themselves)

® Be self-describing (some schema-like information, like
attribute names, is part of data itselt)

e Data with these characteristics are referred to as

semistructured.
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/Non—self—describing Data

® Non-self-describing (relational, object-oriented):

Data part:

(#123, [“Students”; {[“John”, s111111111, [123,”Main St”]],
[“Joe”, s222222222,[321, “Pine St”]] }

1)

Schema part:

PersonList[ ListName: String,
Contents: [ Name: String,
Id: String,
Address: [ Number: Integer, Street: String] ]
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Evolution of DBMS
® Self-describing:

Attribute names embedded in the data itself, but are distinguished from
values

Doesn’t need schema to figure out what is what (but schema might be

useful nonetheless)
(#12345,
[List Name: “Students”,
Contents: { [ Name: “John Doe”,
Id: “s1111111117,
Address: [ Number: 123, Street: “Main St.”] | ,
[Name: “Joe Public”,
Id: “s222222222”,
Address: [Number: 321, Street: “Pine St.”] | }
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"JSON

® Java Script O

pject Notation

0 Lightweight d

ata interchange

® Used with 'RESTtul' APIs and AJAX
(Asynchronous Javascript and XML)
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'JSON - Data Types

™~

¢ Number — Integers and Floating point numbers do not

have separate types
* String — A sequence of characters
®* Boolean — true/false
® Array — An ordered list
* Objects — Sets of name/value pairs

® Null — an empty (non-existent) value
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'JSON - Syntax

® Data in Key/ Value pairs : {'key’:'value'}

* Key must be (;Luoted!

® Value must be one of the described data types
® File extension should be .json

® MIME Types: Application/ json
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'JSON - Syntax

o XMLHttpRequest.readyState

Ohttps: // developer.mozilla.org/ en-

US/docs/Web/API/XMLHttpRequest/ readyState

Value State Description

UNSENT Client has been created. open() not
called yet.

OPENED open() has been called.

send() has been called, and headers

and status are available.

HEADERS_RECEIVED

LOADING DOV\.fnloadlng; responseText holds
partial data.

DONE The operation is complete.

*HTTP 200: https:// developer.mozﬂla.org/ en-
@ US/docs/ Web/HTTP/Status/ 200
N,
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/ < C ® localhost:4000/www/json3.html
JSON - Example

People Array
json3.ntml

<body> : ?n},

] <h1>People Array</h1> .
peop'e_J son <ul id="people"></ul>

<script>
{ var xhttp = new XMLHttpRequest();
“people™ - [ xhttp.onreadystatechange = function() {
{" . . if (this.readyState == 4 && this.status == 200) {

name™:"Tony", /] Typical actions to be performed when the document is ready:

"age":5o console.log(xhttp.responseText);
’ var response = JSON.parse(xhttp.responseText);

¥
{ var people = response.people;

"name":"Tina",

var output=";
"age":35

for (var i = 0; i < people.length; i++) {
%’ output += '<li>'+people[i].name+'</li>";
n m,.n UL} }
name™:"Joe", document.getElementByld(‘people’).innerHTML = output;
"age":10 }
I
xhttp.open('GET", 'people.json’, true);
xhttp.send();
</script>
</body>
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'JSON - Utility Functions

® JSON.parse() — Read a string as a JSON string, parse

it, and generate a Javascript object with the contents of

the string

* JSON.stringify() — Convert data or a Javascript Object
into JSON notation
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/JSON.parse()

® JSON.parse() reads JSON strings and converts them to objects for use

by Javascript
® Syntax:

JSON.parse(<string>, <reviver>);

® <string> is the string to be parsed and converted to a Javascript object

o <reviver> is an Optional parameter holding a function to convert or

modify values
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s
JSON - Example modify data w/parse()

json5.html

<body>
_ <h1>People Array</h1>
people_ Jjson  <ulid="people’></ul>
<script>
var xhttp = new XMLHttpRequest();
“people™ : [ xhttp.onreadystatechange = function() {

{ if (this.readyState == 4 && this.status == 200) {
“name™:"Tony", /] Typical action to be performed when the document is ready:
"age":35 var response = JSON.parse(xhttp.responseText, (key,value) =>

} key === "age' ? value + 10 : value);

{ var people = response.people;

"name™:"Tina", var output=";

"age™:35 for (var i = 0; i < people.length; i++) {
. output +='<li>'+people[i].name+"..."+people[i].age+'</li>";
{ }

“name™:"Joe", document.getElementByld(‘people’).innerHTML = output;
"age™:10 }

}; < C @ localhost:4000/www/json5.html
xhttp.open('GET", 'people.json’, true);
xhttp.send(); People Array
</script>
</b0dy> » Tony...65

e Tina...45
e Joe..20
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/JSON.stringify()

® This convert any Javascript data or object into correct JSON syntax

° Syntax:

JSON.stringify(<value>, <replacer>, <space>)
® The second two arguments are optional. The args are:
o <value> - The data to be converted

® <replacer> - This can be either:

A function that alters the behavior of stringity by selecting properties to include.

An array of strings that are used to filter/select which properties stringify() includes
® <space> - This is either:

A number (up to 10) that indicate how many spaces to use between elements

A string (up to 10 characters long) used as the space separator
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JSON - Example modify data with stringify()

if (this.readyState == 4 && this.status == 200) {
I/ Typical action to be performed when the document is ready:
- var response = JSON.parse(xhttp.responseText, (key,value) =>
J30n6. html key === "age' ? value + 10 : value);
<body> console.log(response.people);
<hl1>People Array</h1> var newpeople = JSON.stringify(response.people, replacer);
<ul id="people’></ul> var finalpeople = JSON.parse(newpeople);
<script> var output=",
var xhttp = new XMLHttpRequest(); for (var i = 0; i < finalpeople.length; i++) {
xhttp.onreadystatechange = function() { output +='<li>'+finalpeople[i].name+"...'+finalpeople[i].age+'</li>";
var count = 0; }
function replacer(key,value) { document.getElementByld('people’).innerHTML = output;
if (key === "'name') { }
count = count + 1; };
return value+count; xhttp.open('GET", 'people.json’, true);
} xhttp.send();
return value;
} </script>

</body> People Array

< C ® localhost:4000/www/json6.html

e Tonyl...65
e Tina2...45
e J0e3...20
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