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Evolution of DBMS
 Semi-structured era (~2000+)

 Schema Evolution OR Schema "later": data is self describing

 A Response to the growth of Web services (AJAX) and XML as 

a language (same for JSON as Javascript)
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(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Evolution of DBMS
 Semi-structured era (~2000+)

 Relational DBMS have heavy-weight mechanisms to change 

schema (ALTER)

 XML and JSON as a data model: 

 records can be hierarchical

 records can still reference to other records through paths 

(i.e., XPath)

 schema can be defined "later" in DTDs and XMLSchema
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Evolution of DBMS
 For machine consumption on the Web, data should have 

these characteristics:

Be object-like

Be schemaless (not guaranteed to conform exactly to any 
schema, but different objects have some commonality 
among themselves)

Be self-describing (some schema-like information, like 
attribute names, is part of data itself)

 Data with these characteristics are referred to as
semistructured.
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Non-self-describing Data
 Non-self-describing (relational, object-oriented):

Data part:

(#123,  [“Students”,   {[“John”, s111111111, [123,”Main St”]],

[“Joe”, s222222222, [321, “Pine St”]] }

] )

Schema part:
PersonList[ ListName: String,

Contents: [ Name: String,
Id: String,
Address: [Number: Integer,  Street: String]  ]

]
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Evolution of DBMS
 Self-describing:

 Attribute names embedded in the data itself, but are distinguished from 
values

 Doesn’t need schema to figure out what is what (but schema might be 
useful nonetheless)
(#12345,

[ListName: “Students”,

Contents:  { [ Name: “John Doe”,

Id:  “s111111111”,

Address: [Number: 123, Street: “Main St.”] ] ,

[Name: “Joe Public”,

Id:  “s222222222”,

Address: [Number: 321, Street: “Pine St.”] ]  }

] )
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JSON
Java Script Object Notation

Lightweight data interchange

Used with 'RESTful' APIs and AJAX 

(Asynchronous Javascript and XML)
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JSON – Data Types
 Number – Integers and Floating point numbers do not 

have separate types

 String – A sequence of characters

 Boolean – true/false

 Array – An ordered list

 Objects – Sets of name/value pairs

 Null – an empty (non-existent) value
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JSON - Syntax
Data in Key/Value pairs : {'key':'value'}

Key must be quoted!

Value must be one of the described data types

File extension should be .json

MIME Types: Application/json
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JSON - Syntax
XMLHttpRequest.readyState

https://developer.mozilla.org/en-

US/docs/Web/API/XMLHttpRequest/readyState

HTTP 200: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Status/200
10

Value State Description

0 UNSENT
Client has been created. open() not 

called yet.

1 OPENED open() has been called.

2 HEADERS_RECEIVED
send() has been called, and headers 

and status are available.

3 LOADING
Downloading; responseText holds 

partial data.

4 DONE The operation is complete.

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/readyState
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/200
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JSON - Example
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{

"people" : [

{

"name":"Tony",

"age":55

},

{

"name":"Tina",

"age":35

},

{

"name":"Joe",

"age":10

}

]

}

people.json

<body>

<h1>People Array</h1>

<ul id='people'></ul>

<script>

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

// Typical actions to be performed when the document is ready:

console.log(xhttp.responseText);

var response = JSON.parse(xhttp.responseText);

var people = response.people;

var output='';

for (var i = 0; i < people.length; i++) {

output += '<li>'+people[i].name+'</li>';

}

document.getElementById('people').innerHTML = output;

}

};

xhttp.open('GET', 'people.json', true);

xhttp.send();

</script>

</body>

json3.html
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JSON – Utility Functions
 JSON.parse() – Read a string as a JSON string, parse 

it, and generate a Javascript object with the contents of 

the string

 JSON.stringify() – Convert data or a Javascript Object 

into JSON notation
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JSON.parse()
 JSON.parse() reads JSON strings and converts them to objects for use 

by Javascript

 Syntax:

 <string> is the string to be parsed and converted to a Javascript object

 <reviver> is an optional parameter holding a function to convert or 

modify  values
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JSON.parse(<string>, <reviver>);
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JSON – Example modify data w/parse()
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{

"people" : [

{

"name":"Tony",

"age":55

},

{

"name":"Tina",

"age":35

},

{

"name":"Joe",

"age":10

}

]

}

people.json

json5.html
<body>

<h1>People Array</h1>

<ul id='people'></ul>

<script>

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

// Typical action to be performed when the document is ready:

var response = JSON.parse(xhttp.responseText, (key,value) =>

key === 'age' ? value + 10 : value);

var people = response.people;

var output='';

for (var i = 0; i < people.length; i++) {

output += '<li>'+people[i].name+'...'+people[i].age+'</li>';

}

document.getElementById('people').innerHTML = output;

}

};

xhttp.open('GET', 'people.json', true);

xhttp.send();

</script>

</body>
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JSON.stringify()
 This convert any Javascript data or object into correct JSON syntax

 Syntax:

 The second two arguments are optional. The args are:

 <value> -The data to be converted

 <replacer> -This can be either:

 A function that alters the behavior of stringify by selecting properties to include.

 An array of strings that are used to filter/select which properties stringify() includes

 <space> -This is either:

 A number (up to 10) that indicate how many spaces to use between elements

 A string (up to 10 characters long) used as the space separator 
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JSON.stringify(<value>, <replacer>, <space>)
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JSON – Example modify data with stringify()
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<body>

<h1>People Array</h1>

<ul id='people'></ul>

<script>

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

var count = 0;

function replacer(key,value) {

if (key === 'name') {

count = count + 1;

return value+count;

}

return value;

}

if (this.readyState == 4 && this.status == 200) {

// Typical action to be performed when the document is ready:

var response = JSON.parse(xhttp.responseText, (key,value) =>

key === 'age' ? value + 10 : value);

console.log(response.people);

var newpeople = JSON.stringify(response.people, replacer);

var finalpeople = JSON.parse(newpeople);

var output='';

for (var i = 0; i < finalpeople.length; i++) {

output += '<li>'+finalpeople[i].name+'...'+finalpeople[i].age+'</li>';

}

document.getElementById('people').innerHTML = output;

}

};

xhttp.open('GET', 'people.json', true);

xhttp.send();

</script>

</body>

json6.html


