
Paul Fodor

CSE316: Fundamentals of Software Development

Stony Brook University

http://www.cs.stonybrook.edu/~cse316

Version control

1

http://www.cs.stonybrook.edu/~cse316

(c) Paul Fodor (CS Stony Brook)

Never Lose Your Code Again
 Have you ever been working on a project and:

your computer died?

you made changes to something working and now it’s

not working?

you wanted to combine your work with a teammate’s

work?

 The solution?

Version Control (aka. revision control systems, source

control, or source code management)

2

(c) Paul Fodor (CS Stony Brook)

Software versioning and

revision control systems
 Version control (also known as revision control, source

control, and source code management, VCS - version control

system) is the management of changes to documents,

computer programs, large web sites, and other

collections of information.

 A system for managing changes to files

Used by individuals and teams to keep:

 History of changes

 Share and distribute common source code

2

(c) Paul Fodor (CS Stony Brook)

Software versioning and

revision control systems
 Large product development needs some capabilities to

control development

Track changes to source including: Date changed,

version #, developer, comments

Ability to ‘revert’ changes

Ability to mark all sources at a specific version to

produce a release/distribution

2

(c) Paul Fodor (CS Stony Brook)

There are many tools out there

(c) Paul Fodor (CS Stony Brook)

Version Control System Services

 Backup and Restore

 Synchronization

 Short-term undo

 Long-term undo

 Track Changes

 Track Ownership

 Sandboxing

 Branching and merging

6

(c) Paul Fodor (CS Stony Brook)

Backup and Restore

Files are saved and committed at versioning

steps

One can jump to any moment in time

Need that file as it was on August 23, 2020?

no problem, just ask the VCS for it

7

(c) Paul Fodor (CS Stony Brook)

Synchronization

Lets developers:

share files

stay up-to-date with the latest version

Even while developers are working

simultaneously.

8

(c) Paul Fodor (CS Stony Brook)

Short-term Undo

Editing a file and messed it up?

Throw away your changes and go back

to the “last known good” version in the

database

9

(c) Paul Fodor (CS Stony Brook)

Long-term Undo

For particularly bad mistakes

Suppose you made a change a year ago,

and it had a bug

Jump back to the old version, and see

what change was made that day

10

(c) Paul Fodor (CS Stony Brook)

Track Changes

As files are updated, you can leave messages

explaining why the change happened

stored in the VCS log, not the file

you can query it

This makes it easy to see how a file is evolving

over time, and why

Developers should document every change

11

(c) Paul Fodor (CS Stony Brook)

Track Ownership

A VCS tags every change with:

the name of the person who made it

date/time of change

Helpful for blamestorming

12

(c) Paul Fodor (CS Stony Brook)

Sandboxing/branching

Making a big change?

You need an insurance against yourself

You can make temporary changes in an

separate isolated area

test and work out the kinks before

“checking in/merging” your changes

to the main branch

13

(c) Paul Fodor (CS Stony Brook)

Branching and Merging

A larger sandbox

You can branch a copy of your code into a

separate area and modify it in isolation

tracking changes separately

Later, you can merge your work back into

the common area.

14

(c) Paul Fodor (CS Stony Brook)

Terms
 Repository (repo): The database storing the files.

May also mean the Repository Server: The computer

storing the repository

 Client: The computer connecting to the repository

 Working Set/Working Copy: Your local directory of

files, where you make changes.

 Trunk/Main: The “primary” location for code in the

repository

15

(c) Paul Fodor (CS Stony Brook)

Terms
 Changelog/History: A list of changes made to files

since it was created

 Revision: What version a file is on (v1, v2, etc.)

 Head: The latest revision in the repository

16

(c) Paul Fodor (CS Stony Brook)

VCS Basic Actions
 init: initializes a new repository.

 If you want to place a project under revision control,

this is the first command you need to learn.

 Check out: Download the code from the repository

server for the first time

17

(c) Paul Fodor (CS Stony Brook)

VCS Basic Actions
 Add: Put a file into the repository for the first time, i.e.

begin tracking it with Version Control

 Check in: Upload files to the repository (if they have

changed).

 the files get new revision numbers, and people can

“check out” the latest one

18

(c) Paul Fodor (CS Stony Brook)

 Update/Sync: Synchronize your files with the latest

from the repository

 this lets you grab the latest revisions of all files

 Revert: Throw away your local changes and reload the

latest version from the repository

19

Basic Actions

(c) Paul Fodor (CS Stony Brook)

Advanced Actions
 Branch: Create a separate copy of a file/folder for

private use (bug fixing, testing, etc)

Branch is both a verb (”branch the code”) and a noun

(”Which branch is it in?”)

 Diff/Change/Delta: Finding the differences between

two files

useful for seeing what changed between revisions.

20

(c) Paul Fodor (CS Stony Brook)

 Merge (or patch): Apply the changes from one file to

another, to bring it up-to-date

For example, you can merge features from one branch

into another

 Conflict: When pending changes to a file contradict

each other

both changes cannot be applied

 Resolve: Fixing the changes that contradict each other

and checking in the correct version

21

Advanced Actions

(c) Paul Fodor (CS Stony Brook)

 Locking: “Taking control” of a file so nobody else can

edit it until you unlock it.

some VCSs use this to avoid conflicts.

 Breaking the lock: Forcibly unlocking a file so you can

edit it.

may be needed if someone locks a file and leaves

 Check out for edit: Checking out an “editable” version

of a file

some VCSes have editable files by default, others

require an explicit command.

22

Advanced Actions

(c) Paul Fodor (CS Stony Brook)

Types of VCSs
 Major models used in various products

Centralized server based version control

 File Locking

 Version merging

Distributed Vesion Control

 When you check out the code from a repository, you

create a local repository

 Allows many developers to work on a given project

without requiring that they maintain a connection to a

common network.

23

(c) Paul Fodor (CS Stony Brook)

VCSs
 Revision Control System (RCS)

 dead as a stand-alone system

 Concurrent Versioning System (CVS)

 dying

 Subversion (SVN)

 killing CVS

 open source under the Apache license

 http://subversion.apache.org

 Distributed/decentralized revision control:

 Git

 Mercurial

 GNU Bazaar

 BitKeeper24

http://subversion.apache.org/

(c) Paul Fodor (CS Stony Brook)

Apache Subversion (SVN)
 Developed by the Apache Software Foundation

 Distributed under Apache License (an open source license)

 Used by:

 Apache Software Foundation

 FreeBSD

 GCC

 Mono

 SourceForge

 Server-client model: Native SVN server or Apache HTTP

Server.

25

(c) Paul Fodor (CS Stony Brook)

SVN Common operations
 Import: is the act of copying a local directory tree (that is not currently a

working copy) into the repository for the first time.

 Checkout: is to create a local working copy from the repository. A user

may specify a specific revision or obtain the latest.

 Commit (check in or ci): is to write or merge the changes made in the

working copy back to the repository.

 Update (or sync): merges changes made in the repository (by other

people or by the same person on another machine) into the local working

copy.

 Merge: is an operation in which two sets of changes are applied to a file

or set of files: updates or syncs the user working copy with changes made

and checked into the repository by other users + check in files +

incorporate branches into a unified trunk.

26

(c) Paul Fodor (CS Stony Brook)

Apache Subversion
How to run SVN?

Command line: svn executable
svn commit a.txt

svn update

SVN Clients: TortoiseSVN, Netbeans

SVN plugin, Eclipse Subclipse, etc.

27

(c) Paul Fodor (CS Stony Brook)

Distributed Version Control
There are multiple copies of the repository

 Not one ‘cannonical’ reference copy of the repository

 Multiple repos are each a ‘working copy’ on some peer system

 Advantages

 Common Operations (commit, view history, revert changes, etc) are

fast since they happen on a local ‘owned’ repo.

 Each peer repo acts as a ‘remote backup’ of other repos (protects

against data loss)

 Drawbacks

 Comples merge operations (usually can be entirely automated)

 Merges with conflicts must be resolved by hand

28

(c) Paul Fodor (CS Stony Brook)

git
 Git:

 Distributed (Decentralized) Version Control System

 Has a local repository but can also ‘push’ the repo to a remote server.

 Each developer works on their own copy of the repository

 Can continue to work even if offline

 GNU license

 Released in 2005 (original author Linus Torvalds - also created Linux)

 Used by Linux kernel

 Free download: http://git-scm.com

 Clients: http://www.sourcetreeapp.com, https://desktop.github.com,

http://www.syntevo.com/smartgit, https://www.gitkraken.com

(Linux), https://git-fork.com (Mac OsX, Windows)

 Repositorie servers: https://github.com, https://bitbucket.org

(private repos., Multi-factor authentication), GitLab
29

http://git-scm.com/
http://www.sourcetreeapp.com/
https://desktop.github.com/
http://www.syntevo.com/smartgit
https://www.gitkraken.com/
https://git-fork.com/
https://github.com/
https://bitbucket.org/

(c) Paul Fodor (CS Stony Brook)

Installing Git
 Navigate to: http://git-scm.com/download/

 Click the link ‘Click here to download manually’

30

http://git-scm.com/download/

(c) Paul Fodor (CS Stony Brook)

Installing Git on Mac OSX
 Double click on the package (.exe, .pkg) file

31

(c) Paul Fodor (CS Stony Brook)

Installing Git on Mac OSX
 Set name and email in global config

git config --global user.name 'John Public'

git config --global user.email 'john.q.public@mymail.com'

 Verify settings are correct

git config –global –l

32

(c) Paul Fodor (CS Stony Brook)

git Common operations
 Setting Up a Git Repository:

 git init: initializes a new Git repository.

 If you want to place a project under revision control, this is the first command you

need to learn.

 git clone ?location: creates a copy of an existing Git repository.

 Cloning is the most common way for developers to obtain a working copy of a

central repository.
 Example: git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

 git add ?file: moves changes from the working directory to the staging

area.

 git commit: takes the staged snapshot and commits it to the project

history.

 git pull: downloads a branch from a remote repository, then

immediately merges it into the current branch.

 git push: move a local branch to another repository.
33

(c) Paul Fodor (CS Stony Brook)

Architecture
 Three areas:

Working area

Staging Area

Repository

34

(c) Paul Fodor (CS Stony Brook)

Workflow
 Typical workflow

Pull updates from remote repository

Edit files

Add files to staging area (git add)

Commit changes to local repo.

Push committed changes to remote repository

 If you create a branch:

Merge branch back to master

Delete branch (optional)

Push changes
35

(c) Paul Fodor (CS Stony Brook)

git status
 This command will show status of a repo

Changes files

Untracked files

36

(c) Paul Fodor (CS Stony Brook)

ToDo: try to use GitHub
 Owned by Microsoft

 Make an account

 Download Git

https://git-scm.com/downloads

 We’ll use GitBash

https://git-scm.com/downloads

(c) Paul Fodor (CS Stony Brook)

The GitBash Command Line
 Try these things:

pwd

 ls

 ls -l

mkdir hw4

cd hw4

(c) Paul Fodor (CS Stony Brook)

git init
 Creates a local git repository

 Puts empty repo in .git

 Don’t ever touch anything in .git

(c) Paul Fodor (CS Stony Brook)

(c) Paul Fodor (CS Stony Brook)

Once your Online Repo is Created

 Make sure you are logged into GitHub (like in Chrome)

 Connect your local repo to your remote one:

git remote add origin https://github.com/pfodor/hw4

 remote add – tells git to specify the remote repository

origin – name you are giving to the remote repository

Now your local repo can push and pull to and from

your GitHub repo

https://github.com/pfodor/hw4

(c) Paul Fodor (CS Stony Brook)

First, pull
 You will want all the files in the repository

git pull origin master

 master? What’s that?

a branch

 What’s the branch?

 i.e. a version

a repo can have multiple branches

(c) Paul Fodor (CS Stony Brook)

Add any new files
 Easiest way, just add everything

git add .

 Adds files to the repo

 Their changes can now be tracked

 Some files you don’t want in your repo

 .gitignore

(c) Paul Fodor (CS Stony Brook)

Commit Changes
git commit -m "this is my first commit"

 Don’t forget the comments

(c) Paul Fodor (CS Stony Brook)

Push your changes to the remote repo

git push origin master

 If you are working alone, no problem

 If not, be careful, you may have to pull others’ changes

first

(c) Paul Fodor (CS Stony Brook)

Merge & Revert
 merge – approve all changes in VSC

 revert – to previous version or date

(c) Paul Fodor (CS Stony Brook)

Summary

 Git is one of the most popular source control systems

 It is a distributed system rather than a centralized

source control system

 Git contains a working directory, staging area, and

repository to help manage committing changes in a

very controlled manner

47

