
Paul Fodor

CSE316: Fundamentals of Software Development

Stony Brook University

http://www.cs.stonybrook.edu/~cse316

Version control

1

http://www.cs.stonybrook.edu/~cse316

(c) Paul Fodor (CS Stony Brook)

Never Lose Your Code Again
 Have you ever been working on a project and:

your computer died?

you made changes to something working and now it’s

not working?

you wanted to combine your work with a teammate’s

work?

 The solution?

Version Control (aka. revision control systems, source

control, or source code management)

2

(c) Paul Fodor (CS Stony Brook)

Software versioning and

revision control systems
 Version control (also known as revision control, source

control, and source code management, VCS - version control

system) is the management of changes to documents,

computer programs, large web sites, and other

collections of information.

 A system for managing changes to files

Used by individuals and teams to keep:

 History of changes

 Share and distribute common source code

2

(c) Paul Fodor (CS Stony Brook)

Software versioning and

revision control systems
 Large product development needs some capabilities to

control development

Track changes to source including: Date changed,

version #, developer, comments

Ability to ‘revert’ changes

Ability to mark all sources at a specific version to

produce a release/distribution

2

(c) Paul Fodor (CS Stony Brook)

There are many tools out there

(c) Paul Fodor (CS Stony Brook)

Version Control System Services

 Backup and Restore

 Synchronization

 Short-term undo

 Long-term undo

 Track Changes

 Track Ownership

 Sandboxing

 Branching and merging

6

(c) Paul Fodor (CS Stony Brook)

Backup and Restore

Files are saved and committed at versioning

steps

One can jump to any moment in time

Need that file as it was on August 23, 2020?

no problem, just ask the VCS for it

7

(c) Paul Fodor (CS Stony Brook)

Synchronization

Lets developers:

share files

stay up-to-date with the latest version

Even while developers are working

simultaneously.

8

(c) Paul Fodor (CS Stony Brook)

Short-term Undo

Editing a file and messed it up?

Throw away your changes and go back

to the “last known good” version in the

database

9

(c) Paul Fodor (CS Stony Brook)

Long-term Undo

For particularly bad mistakes

Suppose you made a change a year ago,

and it had a bug

Jump back to the old version, and see

what change was made that day

10

(c) Paul Fodor (CS Stony Brook)

Track Changes

As files are updated, you can leave messages

explaining why the change happened

stored in the VCS log, not the file

you can query it

This makes it easy to see how a file is evolving

over time, and why

Developers should document every change

11

(c) Paul Fodor (CS Stony Brook)

Track Ownership

A VCS tags every change with:

the name of the person who made it

date/time of change

Helpful for blamestorming

12

(c) Paul Fodor (CS Stony Brook)

Sandboxing/branching

Making a big change?

You need an insurance against yourself

You can make temporary changes in an

separate isolated area

test and work out the kinks before

“checking in/merging” your changes

to the main branch

13

(c) Paul Fodor (CS Stony Brook)

Branching and Merging

A larger sandbox

You can branch a copy of your code into a

separate area and modify it in isolation

tracking changes separately

Later, you can merge your work back into

the common area.

14

(c) Paul Fodor (CS Stony Brook)

Terms
 Repository (repo): The database storing the files.

May also mean the Repository Server: The computer

storing the repository

 Client: The computer connecting to the repository

 Working Set/Working Copy: Your local directory of

files, where you make changes.

 Trunk/Main: The “primary” location for code in the

repository

15

(c) Paul Fodor (CS Stony Brook)

Terms
 Changelog/History: A list of changes made to files

since it was created

 Revision: What version a file is on (v1, v2, etc.)

 Head: The latest revision in the repository

16

(c) Paul Fodor (CS Stony Brook)

VCS Basic Actions
 init: initializes a new repository.

 If you want to place a project under revision control,

this is the first command you need to learn.

 Check out: Download the code from the repository

server for the first time

17

(c) Paul Fodor (CS Stony Brook)

VCS Basic Actions
 Add: Put a file into the repository for the first time, i.e.

begin tracking it with Version Control

 Check in: Upload files to the repository (if they have

changed).

 the files get new revision numbers, and people can

“check out” the latest one

18

(c) Paul Fodor (CS Stony Brook)

 Update/Sync: Synchronize your files with the latest

from the repository

 this lets you grab the latest revisions of all files

 Revert: Throw away your local changes and reload the

latest version from the repository

19

Basic Actions

(c) Paul Fodor (CS Stony Brook)

Advanced Actions
 Branch: Create a separate copy of a file/folder for

private use (bug fixing, testing, etc)

Branch is both a verb (”branch the code”) and a noun

(”Which branch is it in?”)

 Diff/Change/Delta: Finding the differences between

two files

useful for seeing what changed between revisions.

20

(c) Paul Fodor (CS Stony Brook)

 Merge (or patch): Apply the changes from one file to

another, to bring it up-to-date

For example, you can merge features from one branch

into another

 Conflict: When pending changes to a file contradict

each other

both changes cannot be applied

 Resolve: Fixing the changes that contradict each other

and checking in the correct version

21

Advanced Actions

(c) Paul Fodor (CS Stony Brook)

 Locking: “Taking control” of a file so nobody else can

edit it until you unlock it.

some VCSs use this to avoid conflicts.

 Breaking the lock: Forcibly unlocking a file so you can

edit it.

may be needed if someone locks a file and leaves

 Check out for edit: Checking out an “editable” version

of a file

some VCSes have editable files by default, others

require an explicit command.

22

Advanced Actions

(c) Paul Fodor (CS Stony Brook)

Types of VCSs
 Major models used in various products

Centralized server based version control

 File Locking

 Version merging

Distributed Vesion Control

 When you check out the code from a repository, you

create a local repository

 Allows many developers to work on a given project

without requiring that they maintain a connection to a

common network.

23

(c) Paul Fodor (CS Stony Brook)

VCSs
 Revision Control System (RCS)

 dead as a stand-alone system

 Concurrent Versioning System (CVS)

 dying

 Subversion (SVN)

 killing CVS

 open source under the Apache license

 http://subversion.apache.org

 Distributed/decentralized revision control:

 Git

 Mercurial

 GNU Bazaar

 BitKeeper24

http://subversion.apache.org/

(c) Paul Fodor (CS Stony Brook)

Apache Subversion (SVN)
 Developed by the Apache Software Foundation

 Distributed under Apache License (an open source license)

 Used by:

 Apache Software Foundation

 FreeBSD

 GCC

 Mono

 SourceForge

 Server-client model: Native SVN server or Apache HTTP

Server.

25

(c) Paul Fodor (CS Stony Brook)

SVN Common operations
 Import: is the act of copying a local directory tree (that is not currently a

working copy) into the repository for the first time.

 Checkout: is to create a local working copy from the repository. A user

may specify a specific revision or obtain the latest.

 Commit (check in or ci): is to write or merge the changes made in the

working copy back to the repository.

 Update (or sync): merges changes made in the repository (by other

people or by the same person on another machine) into the local working

copy.

 Merge: is an operation in which two sets of changes are applied to a file

or set of files: updates or syncs the user working copy with changes made

and checked into the repository by other users + check in files +

incorporate branches into a unified trunk.

26

(c) Paul Fodor (CS Stony Brook)

Apache Subversion
How to run SVN?

Command line: svn executable
svn commit a.txt

svn update

SVN Clients: TortoiseSVN, Netbeans

SVN plugin, Eclipse Subclipse, etc.

27

(c) Paul Fodor (CS Stony Brook)

Distributed Version Control
There are multiple copies of the repository

 Not one ‘cannonical’ reference copy of the repository

 Multiple repos are each a ‘working copy’ on some peer system

 Advantages

 Common Operations (commit, view history, revert changes, etc) are

fast since they happen on a local ‘owned’ repo.

 Each peer repo acts as a ‘remote backup’ of other repos (protects

against data loss)

 Drawbacks

 Comples merge operations (usually can be entirely automated)

 Merges with conflicts must be resolved by hand

28

(c) Paul Fodor (CS Stony Brook)

git
 Git:

 Distributed (Decentralized) Version Control System

 Has a local repository but can also ‘push’ the repo to a remote server.

 Each developer works on their own copy of the repository

 Can continue to work even if offline

 GNU license

 Released in 2005 (original author Linus Torvalds - also created Linux)

 Used by Linux kernel

 Free download: http://git-scm.com

 Clients: http://www.sourcetreeapp.com, https://desktop.github.com,

http://www.syntevo.com/smartgit, https://www.gitkraken.com

(Linux), https://git-fork.com (Mac OsX, Windows)

 Repositorie servers: https://github.com, https://bitbucket.org

(private repos., Multi-factor authentication), GitLab
29

http://git-scm.com/
http://www.sourcetreeapp.com/
https://desktop.github.com/
http://www.syntevo.com/smartgit
https://www.gitkraken.com/
https://git-fork.com/
https://github.com/
https://bitbucket.org/

(c) Paul Fodor (CS Stony Brook)

Installing Git
 Navigate to: http://git-scm.com/download/

 Click the link ‘Click here to download manually’

30

http://git-scm.com/download/

(c) Paul Fodor (CS Stony Brook)

Installing Git on Mac OSX
 Double click on the package (.exe, .pkg) file

31

(c) Paul Fodor (CS Stony Brook)

Installing Git on Mac OSX
 Set name and email in global config

git config --global user.name 'John Public'

git config --global user.email 'john.q.public@mymail.com'

 Verify settings are correct

git config –global –l

32

(c) Paul Fodor (CS Stony Brook)

git Common operations
 Setting Up a Git Repository:

 git init: initializes a new Git repository.

 If you want to place a project under revision control, this is the first command you

need to learn.

 git clone ?location: creates a copy of an existing Git repository.

 Cloning is the most common way for developers to obtain a working copy of a

central repository.
 Example: git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

 git add ?file: moves changes from the working directory to the staging

area.

 git commit: takes the staged snapshot and commits it to the project

history.

 git pull: downloads a branch from a remote repository, then

immediately merges it into the current branch.

 git push: move a local branch to another repository.
33

(c) Paul Fodor (CS Stony Brook)

Architecture
 Three areas:

Working area

Staging Area

Repository

34

(c) Paul Fodor (CS Stony Brook)

Workflow
 Typical workflow

Pull updates from remote repository

Edit files

Add files to staging area (git add)

Commit changes to local repo.

Push committed changes to remote repository

 If you create a branch:

Merge branch back to master

Delete branch (optional)

Push changes
35

(c) Paul Fodor (CS Stony Brook)

git status
 This command will show status of a repo

Changes files

Untracked files

36

(c) Paul Fodor (CS Stony Brook)

ToDo: try to use GitHub
 Owned by Microsoft

 Make an account

 Download Git

https://git-scm.com/downloads

 We’ll use GitBash

https://git-scm.com/downloads

(c) Paul Fodor (CS Stony Brook)

The GitBash Command Line
 Try these things:

pwd

 ls

 ls -l

mkdir hw4

cd hw4

(c) Paul Fodor (CS Stony Brook)

git init
 Creates a local git repository

 Puts empty repo in .git

 Don’t ever touch anything in .git

(c) Paul Fodor (CS Stony Brook)

(c) Paul Fodor (CS Stony Brook)

Once your Online Repo is Created

 Make sure you are logged into GitHub (like in Chrome)

 Connect your local repo to your remote one:

git remote add origin https://github.com/pfodor/hw4

 remote add – tells git to specify the remote repository

origin – name you are giving to the remote repository

Now your local repo can push and pull to and from

your GitHub repo

https://github.com/pfodor/hw4

(c) Paul Fodor (CS Stony Brook)

First, pull
 You will want all the files in the repository

git pull origin master

 master? What’s that?

a branch

 What’s the branch?

 i.e. a version

a repo can have multiple branches

(c) Paul Fodor (CS Stony Brook)

Add any new files
 Easiest way, just add everything

git add .

 Adds files to the repo

 Their changes can now be tracked

 Some files you don’t want in your repo

 .gitignore

(c) Paul Fodor (CS Stony Brook)

Commit Changes
git commit -m "this is my first commit"

 Don’t forget the comments

(c) Paul Fodor (CS Stony Brook)

Push your changes to the remote repo

git push origin master

 If you are working alone, no problem

 If not, be careful, you may have to pull others’ changes

first

(c) Paul Fodor (CS Stony Brook)

Merge & Revert
 merge – approve all changes in VSC

 revert – to previous version or date

(c) Paul Fodor (CS Stony Brook)

Summary

 Git is one of the most popular source control systems

 It is a distributed system rather than a centralized

source control system

 Git contains a working directory, staging area, and

repository to help manage committing changes in a

very controlled manner

47

