
Paul Fodor

CSE316: Fundamentals of Software Development

Stony Brook University

http://www.cs.stonybrook.edu/~cse316

React.js

1

http://www.cs.stonybrook.edu/~cse316

(c) Paul Fodor (CS Stony Brook)

React
 React is a Javascript library for building user interfaces or UI

components.

 React creates a Virtual DOM in Javascript that mimics the

browser DOM

 Helps render web pages with consistent look and feel

 It is maintained by Facebook and a community of individual

developers and companies.

 React was created by Jordan Walke, a software engineer at Facebook

and deployed on Facebook's News Feed in 2011 and later on Instagram

in 2012

 Initial Public Release on 29 May 2013

 It was open-sourced in March 2015

(c) Paul Fodor (CS Stony Brook)

React Directly in HTML
 The quickest way start React is to write React directly

in your HTML files.

 Start by including three scripts, the first two let us write

React code in our JavaScripts, and the third, Babel,

allows us to write JSX syntax
<script src="https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src="https://unpkg.com/react-dom@16/umd/react-

dom.production.min.js"></script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

‹#›

(c) Paul Fodor (CS Stony Brook)

<!DOCTYPE html>

<html>

<script src="https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

<body>

<div id="mydiv"></div>

<script type="text/babel">

class Hello extends React.Component {

render() {

return <h1>Hello World!</h1>

}

}

ReactDOM.render(<Hello />, document.getElementById('mydiv'))

</script>

</body>

</html>‹#›

(c) Paul Fodor (CS Stony Brook)

React
 React applications are composed of class components

that:

Track state

Render page updates based on that state

(c) Paul Fodor (CS Stony Brook)

MVC
 At some point, Facebook described React as the V in

MVC

 MVC is an architectual Design Pattern

 MVC is NOT a Framework (like Rails, CakePhp,

Laravel, and django)

 Some web frameworks incorporate concepts of MVC

(c) Paul Fodor (CS Stony Brook)

MVC

(c) Paul Fodor (CS Stony Brook)

MVC

(c) Paul Fodor (CS Stony Brook)

MVC
 Code affects the structure or content of data => Model

 Code that processes data to or from DB or prior to view =>

Controller

 Code outputs visible images and structures on browser =>

View

(c) Paul Fodor (CS Stony Brook)

React
 In order to learn and use React, you should set up a

React Environment on your computer.

The create-react-app is an officially supported way to

create React applications.

npm install -g create-react-app

(c) Paul Fodor (CS Stony Brook)

React
 The create-react-app will set up everything you need to

run a React application.

npx create-react-app myfirstreact

cd myfirstreact

npm start

(c) Paul Fodor (CS Stony Brook)

React
 Edit App.js:
import React from 'react';

import ReactDOM from 'react-dom';

class App extends React.Component {

render() {

return <h1>Hello World!</h1>;

}

}

ReactDOM.render(<App />, document.getElementById('root'));

(c) Paul Fodor (CS Stony Brook)

React
 Install Simple React Snippets in VSCode

Click 'Install'

(c) Paul Fodor (CS Stony Brook)

React
 Install Prettier - Code Formatter

Click 'Install'

Exit and re-enter Visual Studio Code

(c) Paul Fodor (CS Stony Brook)

React – First Application
 Install bootstrap – (a CSS library for consistent look and feel)

npm i bootstrap

 Create a development folder

 Drop the development folder in Visual Studio Code

 Create a new application.

 In terminal window:

 Navigate to development folder created above and run:

create-react-app myfirstreact

(c) Paul Fodor (CS Stony Brook)

React – First Application
 Open Visual Studio code. Navigate/cd to folder

<myfirstreact> inside your development folder

 App should have 3 folders

node_modules

public

src

 Open 'index.js' inside of the src folder and add a line to import

boostrap

import 'bootstrap/dist/css/bootstrap.css'

(c) Paul Fodor (CS Stony Brook)

React – First Component
 In src folder:

 Create a folder called components

 Create a .jsx file. Pick a name suggestive of its function

 <componentname>.jsx

 Open the file. It will be empty

 Use Simple React Snippets to quickly write some template code

 Select Simple React Snippets from Extensions menu

 Type 'imrc<tab>' –This will generate import Component

statement

 Type 'cc<tab>' –This will create a class

(c) Paul Fodor (CS Stony Brook)

React – First Component

import React, { Component } from 'react';

class TestApp extends Component {

state = { }

render() {

return (<H1>Test</H1>);

}

}

export default TestApp;

Add App

name in these

two places!

(c) Paul Fodor (CS Stony Brook)

React – First Component

import React, { Component } from 'react';

class TestApp extends Component {

state = { }

render() {

return (<div>Test</div>);

}

}

export default TestApp;

This holds

state

information!

This holds code to

render the page. All of

the code is placed in the

return statement as

XML.

Return value can only contain 1 top-level

element. Best to use a <div>

(c) Paul Fodor (CS Stony Brook)

React – Additions to index.js
import React from "react";

import ReactDOM from "react-dom";

import "./index.css";

import App from "./App";

import * as serviceWorker from "./serviceWorker";

import "bootstrap/dist/css/bootstrap.css"; // bootstrap css library (already added

earlier)

import TestApp from './components/TestApp'; // Add this line

// Now change 'App' to 'TestApp'

ReactDOM.render(<App />, document.getElementById("root"));

ReactDOM.render(<TestApp />, document.getElementById("root"));

This is what renders the

content into a div in the

html file!

(c) Paul Fodor (CS Stony Brook)

React – Index.html
 Basic html file in which document is rendered

<html>

<head>

….

<title>React App</title>

</head>

<body>

<noscript>You need to enable JavaScript to run this app.</noscript>

<div id="root"></div>

…..

</body>

</html>

(c) Paul Fodor (CS Stony Brook)

React – Example – Counter app
import React, { Component } from "react";

class Counter extends Component {

state = {

count: 0

};

handleIncrement = () => {

this.setState({ count: this.state.count + 1 });

};

render() {

return (

<div>

{this.formatCount()}

<button

className="btn btn-secondary btn-sm"

onClick={this.handleIncrement}

>

Increment

</button>

</div>

);

}

getBadgeClasses() {

let classes = "badge m-2 badge-";

classes += this.state.count === 0 ? "warning" : "primary";

return classes;

}

formatCount() {

return this.state.count === 0 ? "zero" : this.state.count;

}

}

export default Counter;

Note: This is jsx

(Javascript

XML). It should

NOT be quoted!

It is compiled by

'Babel' into

javascript code

like calls to

createElement(),

etc.

(c) Paul Fodor (CS Stony Brook)

React

Initial state

After 1 click on

'Increment' button

(c) Paul Fodor (CS Stony Brook)

React - Events
 React supports Javascript events

Events are written in camelCase (onClick= rather

than onclick=)

Target functions do not need parens () but are placed

inside braces {}

 onClick={this.handleIncrement}

(c) Paul Fodor (CS Stony Brook)

React – Forms
 React provides access to HTML forms

 Similar to Events, handler names are coded in

camelCase

onChange –When content of an input has changed

onSubmit –When a form is submitted

(c) Paul Fodor (CS Stony Brook)

React – Forms - Example

import React, { Component } from "react";

class MyForm extends React.Component {

constructor(props) {

super(props);

this.state = { username: '' };

}

mySubmitHandler = (event) => {

event.preventDefault();

alert("You are submitting " + this.state.username);

}

myChangeHandler = (event) => {

this.setState({username: event.target.value});

}

render() {

return (

<form onSubmit={this.mySubmitHandler}>

<h1>Hello {this.state.username}</h1>

<p>Enter your name, and submit:</p>

<input

type='text'

onChange={this.myChangeHandler}

/>

<input

type='submit'

/>

</form>

);

}

}

export default MyForm;

Fires when text

input field is

changed

Fires when

submit button is

pressed

Methods have no

parens but are enclosed in

braces {}

(c) Paul Fodor (CS Stony Brook)

React – CSS
 React supports CSS style information inside jsx

 Since Javascript expressions are encased in braces {} and

Javascript objects also use braces, style information will

be in 2 sets of braces

 Style attributes use camelCase rather than hyphen

separated words

background-color => backgroundColor

 font-family => fontFamily

(c) Paul Fodor (CS Stony Brook)

React – CSS Example

import React, { Component } from "react";

class CSSApp extends Component {

state = {};

render() {

return (

<div>

<h1 style={{ color: "red" }}>My face is red!</h1>

<p>Trying on some style!</p>

</div>

);

}

}

export default CSSApp;

(c) Paul Fodor (CS Stony Brook)

React - Functions
 React functions can be defined two ways

Similar to Javascript:

With 'Arrow' notation:

 Arrow notation allows access to this keyword

representing the component

changeColor () {

this.setState(color: 'blue');

}

changeColor = () => {

this.setState(color: 'blue');

}

This code will

fail unless you

bind this in a

constructor.

(c) Paul Fodor (CS Stony Brook)

React – binding 'this'

class Car extends React.Component {

constructor() {

super()

this.changeColor = this.changeColor.bind(this)

}

changeColor () {

this.setState(color: 'blue');

}

