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React
 React is a Javascript library for building user interfaces or UI 

components.

 React creates a Virtual DOM in Javascript that mimics the 

browser DOM

 Helps render web pages with consistent look and feel

 It is maintained by Facebook and a community of individual 

developers and companies.

 React was created by Jordan Walke, a software engineer at Facebook 

and deployed on Facebook's News Feed in 2011 and later on Instagram 

in 2012

 Initial Public Release on 29 May 2013

 It was open-sourced in March 2015
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React Directly in HTML
 The quickest way start React is to write React directly 

in your HTML files.

 Start by including three scripts, the first two let us write 

React code in our JavaScripts, and the third, Babel, 

allows us to write JSX syntax 
<script src="https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src="https://unpkg.com/react-dom@16/umd/react-

dom.production.min.js"></script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

‹#›
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<!DOCTYPE html>

<html>

<script src="https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

<body>

<div id="mydiv"></div>

<script type="text/babel">

class Hello extends React.Component {

render() {

return <h1>Hello World!</h1>

}

}

ReactDOM.render(<Hello />, document.getElementById('mydiv'))

</script>

</body>

</html>‹#›
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React
 React applications are composed of class components 

that:

Track state 

Render page updates based on that state
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MVC
 At some point, Facebook described React as the V in 

MVC

 MVC is an architectual Design Pattern

 MVC is NOT a Framework (like Rails, CakePhp, 

Laravel, and django)

 Some web frameworks incorporate concepts of MVC
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MVC
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MVC
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MVC
 Code affects the structure or content of data => Model

 Code that processes data to or from DB or prior to view => 

Controller

 Code outputs visible images and structures on browser => 

View
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React
 In order to learn and use React, you should set up a 

React Environment on your computer.

The create-react-app is an officially supported way to 

create React applications.

npm install -g create-react-app
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React
 The create-react-app will set up everything you need to 

run a React application.

npx create-react-app myfirstreact

cd myfirstreact

npm start
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React
 Edit App.js:
import React from 'react';

import ReactDOM from 'react-dom';

class App extends React.Component {

render() {

return <h1>Hello World!</h1>;

}

}

ReactDOM.render(<App />, document.getElementById('root'));
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React
 Install Simple React Snippets in VSCode

Click 'Install'
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React
 Install Prettier - Code Formatter

Click 'Install'

Exit and re-enter Visual Studio Code
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React – First Application
 Install bootstrap – (a CSS library for consistent look and feel)

npm i bootstrap

 Create a development folder

 Drop the development folder in Visual Studio Code

 Create a new application. 

 In terminal window: 

 Navigate to development folder created above and run:

create-react-app myfirstreact
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React – First Application
 Open Visual Studio code. Navigate/cd to folder 

<myfirstreact> inside your development folder

 App should have 3 folders

node_modules

public

src

 Open 'index.js' inside of the src folder and add a line to import 

boostrap

import 'bootstrap/dist/css/bootstrap.css'
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React – First Component
 In src folder: 

 Create a folder called components

 Create a .jsx file. Pick a name suggestive of its function

 <componentname>.jsx

 Open the file. It will be empty

 Use Simple React Snippets to quickly write some template code

 Select Simple React Snippets from Extensions menu

 Type 'imrc<tab>' –This will generate import Component 

statement

 Type 'cc<tab>' –This will create a class
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React – First Component

import React, { Component } from 'react';

class TestApp extends Component {

state = { }

render() { 

return ( <H1>Test</H1>);

}

}

export default TestApp;

Add App 

name in these 

two places!
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React – First Component

import React, { Component } from 'react';

class TestApp extends Component {

state = { }

render() { 

return ( <div>Test</div>);

}

}

export default TestApp;

This holds 

state 

information!

This holds code to 

render the page. All of

the code is placed in the 

return statement as 

XML.

Return value can only contain 1 top-level 

element. Best to use a <div>
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React – Additions to index.js
import React from "react";

import ReactDOM from "react-dom";

import "./index.css";

import App from "./App";

import * as serviceWorker from "./serviceWorker";

import "bootstrap/dist/css/bootstrap.css";                   // bootstrap css library (already added 

earlier)

import TestApp from './components/TestApp';      // Add this line

// Now change 'App' to 'TestApp'

ReactDOM.render(<App />, document.getElementById("root"));

ReactDOM.render(<TestApp />, document.getElementById("root"));

This is what renders the 

content into a div in the 

html file! 
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React – Index.html
 Basic html file in which document is rendered

<html>

<head> 

….

<title>React App</title>

</head>

<body>

<noscript>You need to enable JavaScript to run this app.</noscript>

<div id="root"></div>

…..

</body>

</html>
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React – Example – Counter app
import React, { Component } from "react";

class Counter extends Component {

state = {

count: 0

};

handleIncrement = () => {

this.setState({ count: this.state.count + 1 });

};

render() {

return (

<div>

<span style={{ fontSize: 20 }} className={this.getBadgeClasses()}>{this.formatCount()}</span>

<button

className="btn btn-secondary btn-sm"

onClick={this.handleIncrement}

>

Increment

</button>

</div>

);

}

getBadgeClasses() {

let classes = "badge m-2 badge-";

classes += this.state.count === 0 ? "warning" : "primary";

return classes;

}

formatCount() {

return this.state.count === 0 ? "zero" : this.state.count;

}

}

export default Counter;

Note: This is jsx

(Javascript

XML). It should 

NOT be quoted!

It is compiled by 

'Babel' into 

javascript code 

like calls to 

createElement(), 

etc.
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React

Initial state

After 1 click on 

'Increment' button
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React - Events
 React supports Javascript events

Events are written in camelCase (onClick= rather 

than onclick=)

Target functions do not need parens () but are placed 

inside braces {}

 onClick={this.handleIncrement}
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React – Forms
 React provides access to HTML forms

 Similar to Events, handler names are coded in 

camelCase

onChange –When content of an input has changed

onSubmit –When a form is submitted
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React – Forms - Example

import React, { Component } from "react";

class MyForm extends React.Component {

constructor(props) {

super(props);

this.state = { username: '' };

}

mySubmitHandler = (event) => {

event.preventDefault();

alert("You are submitting " + this.state.username);

}

myChangeHandler = (event) => {

this.setState({username: event.target.value});

}

render() {

return (

<form onSubmit={this.mySubmitHandler}>

<h1>Hello {this.state.username}</h1>

<p>Enter your name, and submit:</p>

<input

type='text'

onChange={this.myChangeHandler}

/>

<input

type='submit'

/>

</form>

);

}

}

export default MyForm;       

Fires when text 

input field is 

changed

Fires when 

submit button is 

pressed

Methods have no

parens but are enclosed in 

braces {}



(c) Paul Fodor (CS Stony Brook)

React – CSS
 React supports CSS style information inside jsx

 Since Javascript expressions are encased in braces {} and 

Javascript objects also use braces, style information will 

be in 2 sets of braces

 Style attributes use camelCase rather than hyphen 

separated words

background-color => backgroundColor

 font-family => fontFamily
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React – CSS Example

import React, { Component } from "react";

class CSSApp extends Component {

state = {};

render() {

return (

<div>

<h1 style={{ color: "red" }}>My face is red!</h1>

<p>Trying on some style!</p>

</div>

);

}

}

export default CSSApp;
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React - Functions
 React functions can be defined two ways

Similar to Javascript:

With 'Arrow' notation:

 Arrow notation allows access to this keyword 

representing the component

changeColor () {

this.setState(color: 'blue');

}

changeColor = () => {

this.setState(color: 'blue');

}

This code will 

fail unless you 

bind this in a 

constructor.
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React – binding 'this'

class Car extends React.Component {

constructor() {

super()

this.changeColor = this.changeColor.bind(this)

}

changeColor () {

this.setState(color: 'blue');

}


