
Paul Fodor

CSE316: Fundamentals of Software Development

Stony Brook University

http://www.cs.stonybrook.edu/~cse316

Software Development 

Life Cycle

1

http://www.cs.stonybrook.edu/~cse316


(c) Paul Fodor (CS Stony Brook)

Topics
 Overview of the Software Development Life Cycle

 Process Models 

 Standard stages:

Requirements analysis and definition

System and software design

 Implementation and unit testing

 Integration and system testing

Operation and maintenance

2



(c) Paul Fodor (CS Stony Brook)

The Software Development Life Cycle
 A structured set of activities required to develop a software 

system. 

 Many different software processes but all involve:

 Specification – defining what the system should do (requirements)

 Design – Architecture of the system (high level design)

 Detailed Design – Design of component modules, data structures, 

algorithms, etc.

 Implementation –Implementing (Coding and Testing) the system

 Validation (Testing) – Checking that code works and it does what the 

customer wants

 Deployment – Putting the system in production

 Evolution (Optional) – Changing the system in response to changing 

customer needs.
3



(c) Paul Fodor (CS Stony Brook)

The Waterfall Model
 Plan-driven model. 

 Specification and development are distinct phases

4



(c) Paul Fodor (CS Stony Brook)

Other Software Process Models
 Incremental development:

 May be plan-driven or agile (advocates adaptive planning, 

evolutionary development, early delivery, and continual 

improvement, and it encourages flexible responses to 

change).

 Specification, development and validation are interleaved.

 Integration and configuration:

 May be plan-driven or agile.

 The system is assembled from existing configurable 

components.

 In practice, most large systems use elements from each of these 

models.
5



(c) Paul Fodor (CS Stony Brook)

Waterfall Model
 Separate phases in the waterfall model

Requirements analysis and definition

System and software design

 Implementation and unit testing

 Integration and system testing

Operation and maintenance

 Drawbacks of waterfall model

Difficulty in accommodating change

 In general, a phase must be complete before 

moving on to next phase

6



(c) Paul Fodor (CS Stony Brook)

 Inflexibility limits its use in business systems where 

requirements change frequently

 Best for large systems developed over multiple sites

Plan driven nature helps coordinate development

Waterfall Model Properties

7



(c) Paul Fodor (CS Stony Brook)

Incremental Development

8



(c) Paul Fodor (CS Stony Brook)

Incremental Development Benefits
 The cost of accommodating changing customer requirements is 

reduced. 

 Less specification/design for project

 Rework of analysis/documentation is minimized.

 Easier to get customer feedback on completed development. 

 Customers can comment on demonstrations of the software

 Customers can see how much has been implemented. 

 Very rapid delivery/deployment of useful software to the 

customer. 

 Customers are able to use and gain value from the software 

quicker

9



(c) Paul Fodor (CS Stony Brook)

Incremental Development Drawbacks
 Process is not visible

Managers need regular deliverables to measure 

progress

Rapid development makes it non-cost-effective to 

maintain documentation for all system versions

 System structure degrades with new increments

Extra time and money needed for refactoring

Alternative:

 Regular change corrupts structure

 Future changes become increasingly difficult and costly

10



(c) Paul Fodor (CS Stony Brook)

Integration and Configuration
 Based on software reuse:

Systems are integrated from existing components or 

application systems 

 These components are sometimes called COTS 

(Commercial-off-the-shelf) systems

 Components may be configured to adapt behaviour and 

functionality to user requirements

 ‘Reuse’ is now the standard approach for building many 

types of business system

11



(c) Paul Fodor (CS Stony Brook)

Requirements Engineering
Establishing:

Services that a customer requires from a system

Constraints under which it operates and is developed

Precise definition of behaviors which the system 

should exhibit

 System requirements are

Precise descriptions of the system services and 

constraints generated during requirements 

engineering process

12



(c) Paul Fodor (CS Stony Brook)

Types of Requirements
 User requirements

 Statements in natural language plus diagrams of the services 

the system provides and its operational constraints.

Written primarily for customers.

 System requirements

A structured document setting out detailed descriptions of 

the system’s functions, services and operational constraints. 

Defines what should be implemented so may be part of a 

contract between client and contractor.

Written primarily for engineers.

13



(c) Paul Fodor (CS Stony Brook)

Developing Requirements
 Steps:

 Requirements elicitation: researching and discovering the 

requirements of a system from users, customers, and other 

stakeholders

 Requirements specification: writing the formal requirements 

specification document

 Requirements validation: check the requirements document for 

consistency, completeness and correctness

 Requirements change:

 inevitable changes of the specification document due to changes in user 

requirements, increased understanding of the stakeholders' needs, 

customer organizational re-structure, and availability of new 

technologies
14



(c) Paul Fodor (CS Stony Brook)

Guidelines for Writing Requirements
Choose a standard format and use it for all 

requirements.

Use language in a consistent way

Use "shall" for mandatory requirements

Use "should" for desirable behaviours

 Use text highlighting to identify key parts of the 

requirement

Avoid the use of computer jargon

 Include an explanation (rationale) of why a 

requirement is necessary
15



(c) Paul Fodor (CS Stony Brook)

Functional and Non-functional Requirements
 Functional requirements

 Statements of services the system should provide

 How the system should react to particular inputs

 How the system should behave in particular situations.

 May state what the system should not do.

 Non-functional requirements
 Constraints on the services or functions offered by the system

 Timing constraints

 Constraints on the development process

 Standards

 Often apply to the system as a whole rather than individual 

features or services

 Domain requirements
 Constraints on the system from the domain of operation

16



(c) Paul Fodor (CS Stony Brook)

Functional Requirements
Describe functionality or system services.

Depend on the type of software, expected users 

and the type of system where the software is 

used.

Functional user requirements may be high-level 

statements of what the system should do.

Functional system requirements should describe 

the system services in detail.

17



(c) Paul Fodor (CS Stony Brook)

Requirements Completeness and Consistency

 In principle, requirements should be both 

complete and consistent.

Complete: they should include descriptions of all 

facilities required

Consistent: there should be no conflicts or 

contradictions in the descriptions of the system 

facilities

 In practice, because of system and environmental 

complexity, it is impossible to produce a 

complete and consistent requirements document
18



(c) Paul Fodor (CS Stony Brook)

Writing Good Requirements
Requirements must be:

Non-ambiguous

State only 1 responsibility each

Be Testable (i.e., verifiable)

Be positively stated (They should indicate 

what the system must do rather than what it 

must not do)

 Large real systems have thousands of requirements

19



(c) Paul Fodor (CS Stony Brook)

Design – [System Architecture] and Detailed Design

Design Process Stages:

System Architecture

Define context and modes of use of the system

Design system architecture [subsystems and 

interfaces]

Detailed Design

Identify principal system objects

Develop design models

Specify object interfaces
20



(c) Paul Fodor (CS Stony Brook)

System Context and Interactions
 Understanding relationships between the software being 

designed and external environment is essential:

Helps decide how to provide the required system 

functionality

Helps decide how to structure system to 

communicate with its environment

 Understanding the context also helps establish 

boundaries of the system

Setting system boundaries helps you decide what 

features are implemented in the system and what 

features are in other associated systems
21



(c) Paul Fodor (CS Stony Brook)

Context and Interaction Models
 System context model ➔ structural model 

demonstrating other subsystems in environment of the 

system being developed

Focuses on looking at your entire system and other 

systems around it with which it interacts

This may be illustrated using UML class diagrams or 

module diagrams

 It is a static view of the system

 Interaction model ➔ dynamic model that shows how 

system interacts with its environment as it is used

This may be illustrated using UML sequence diagrams
22



(c) Paul Fodor (CS Stony Brook)

Architectural Design
 Once interactions between system and environment are 

understood, information is used for designing system 

architecture

 Architectural Design: the idea is that the system will be 

composed of subsystems (or components).

 Identify major components that make up system and their 

interactions

Then organize the components using an architectural 

pattern like layered or client-server model

23



(c) Paul Fodor (CS Stony Brook)

Detailed Design
Object Class Identification

Design Models

Subsystem Models

24



(c) Paul Fodor (CS Stony Brook)

Object Class Identification
 Identifying object classes is often a difficult part 

of object oriented design

No 'magic formula' for object identification

Relies on skill, experience and domain 

knowledge of system designers

Object identification is iterative. (Unlikely to get 

it right first time)

25



(c) Paul Fodor (CS Stony Brook)

Approaches to Identification
 Use a grammatical approach based on a natural 

language description of the system

Base the identification on tangible things in the 

application domain

Use a behavioural approach and identify objects 

based on what participates in what behaviour.

Use a scenario-based analysis

 The objects, attributes and methods in each scenario are 

identified

26



(c) Paul Fodor (CS Stony Brook)

Design Models
Design models show the objects/object classes 

and relationships between these entities

Two kinds of design model:

Structural models ➔ the static structure of 

the system in terms of object classes and 

relationships

Dynamic models ➔ the dynamic 

interactions between objects

27



(c) Paul Fodor (CS Stony Brook)

Examples of Design Models

 Subsystem models ➔ show logical groupings of objects 

into coherent subsystems

 Sequence models ➔ show the sequence of object 

interactions

 State machine models ➔ show how individual objects 

change state in response to events

 Other models ➔use-case models, aggregation models, 

generalisation models, etc.

28



(c) Paul Fodor (CS Stony Brook)

Subsystem Models
 Shows how the design is organized into logically 

related groups of objects

 In the UML, these are shown using packages

An encapsulation construct -This is a logical 

model

Actual organization of objects in system may be 

different

29



(c) Paul Fodor (CS Stony Brook)

Sequence Models
 Sequence models show sequence of object interactions 

that take place

Objects are arranged horizontally across the top

Time represented vertically so models are read top to 
bottom

 Interactions are represented by labelled arrows, 
Different styles of arrow represent different types of 
interaction

Thin rectangle in an object lifeline represents the 
time when the object is controlling object in the 
system

30



(c) Paul Fodor (CS Stony Brook)

State Diagrams
 State diagrams ➔ show how objects respond to 

different service requests and state transitions 
triggered by these requests

 State diagrams ➔ useful high-level models of a 
system or an object’s run-time behavior

Don’t usually need a state diagram for all objects 
in system

Many objects in system are relatively simple

State model adds unnecessary detail to design

31



(c) Paul Fodor (CS Stony Brook)

Implementation [Coding]
 Configuration management: General process of 

managing a changing software system. 

 Aim of configuration management is to 

Support system integration process so all developers 

can access the project code and documents in a 

controlled way

All developers can find out what changes have been 

made

All developers can compile and link components to 

create a system

32



(c) Paul Fodor (CS Stony Brook)

Configuration Management Activities
 Version management: Keep track of the different versions 

of software components

 Include facilities to coordinate development by several 

programmers

 System integration: Help developers define what versions 

of components are used to create each version of a system

 Description used to build system automatically by compiling 

and linking required components

 Problem tracking: Allows users to report bugs and other 

problems

 Also, allow all developers see who is working on problems 

and when they are fixed
33



(c) Paul Fodor (CS Stony Brook)

Development Platform Tools
 Integrated compiler/syntax-directed editing system 

allowing code creation, editing, and compilation

 A language debugging system.

 Graphical editing tools (i.e. edit UML models)

 Test tools (i.e. JUnit) 

➔Automatically run a set of tests on a new version 

of a program

 Project support tools 

➔ Help organize code for different development 

projects
34



(c) Paul Fodor (CS Stony Brook)

Integrated Development Environments (IDE)

 Software development tools often grouped to 

create an integrated development environment 

(IDE) 

Set of software tools supporting different aspects 

of software development

Created to support development in a specific 

programming language such as Java

Language IDE may be developed specially

May be an instantiation of a general-purpose IDE, 

with specific language-support tools
35



(c) Paul Fodor (CS Stony Brook)

 Program testing is intended to show

 a program does what it is intended to do 

 program defects before it is put into use. 

 Software testing:

Program executed with artificial data

Results of the test run are checked for errors, 
anomalies or information about the program’s non-
functional attributes 

Can reveal the presence of errors NOT their absence

 Testing is part of a more general verification and validation 
process, which also includes static validation techniques.

Validation [Testing, Unit Test, System Test]

36



(c) Paul Fodor (CS Stony Brook)

Verification vs validation
 Verification: 

"Are we building the product right”.

The software should conform to its specification.

 Validation:

"Are we building the right product”.

The software should do what the user really requires.

37



(c) Paul Fodor (CS Stony Brook)

Stages of testing
Development testing - System is tested during 

development to discover bugs and defects [Unit 

and integration testing]

Release testing - separate test team tests a 

complete version of the system before it is 

released to users [Full Qualification Testing]

validate each requirement (out of thousands of 

requirements)

38



(c) Paul Fodor (CS Stony Brook)

Development testing
 Development testing includes all testing activities that are 

carried out by the team developing the system. 

 Unit testing - individual program units or object classes 

are tested

 Unit testing focuses on testing the functionality of objects or 

methods

 Component testing - several individual units are 

integrated to create composite components [a kind of 

Integration testing]

 Component testing should focus on testing component interfaces

 Send input to the component and see what comes out

 System testing - All of the components in a system are 

integrated and the system is tested as a whole
39



(c) Paul Fodor (CS Stony Brook)

Unit testing
Unit testing is the process of testing individual 

components in isolation

Units may be:

Individual functions or methods within an 

object 

Object classes with several attributes and 

methods 

40



(c) Paul Fodor (CS Stony Brook)

Release testing
 Release testing - Process of testing a release of a 

system intended for use outside the development team

 Primary goal is to convince the supplier of the system 

that it is good enough for use

 In the end, Release testing has to show:

 System delivers its specified functionality, performance 

and dependability

 System does not fail during normal use

 Release testing usually a black-box testing process 

where tests are only derived from the system 

specification [Requirements based testing]
41



(c) Paul Fodor (CS Stony Brook)

Release testing and system testing
 Release testing is a form of system testing

 Important differences:

A separate team not involved in system development, 

is responsible for release testing

System testing by development team should focus on 

discovering bugs in the system (defect testing)

Objective of release testing is to check that system 

meets its requirements and is good enough for 

external use (validation testing)

42



(c) Paul Fodor (CS Stony Brook)

Deployment
This stage may involve:

Dry runs with a reduced system but real user 

data

give real user data and check if the system works 

fine

Full deployment

43



(c) Paul Fodor (CS Stony Brook)

Evolution [Maintenance]
 Changes may be required by user after deployment

New requirements/modified requirements

Fix bugs/deficiencies not caught in testing

 Process should be organized so changes can be traced

 Generally, design process assures there are links 

between

Requirements

Architecture/design

Test cases/procedures

 Documentation must be maintained during evolution
44



(c) Paul Fodor (CS Stony Brook)

 Typical process:

Change/update proposed by user or systems staff. 

Proposal includes

 Specific deficiency or information on new requirement

 Rationale

 Other info as needed

A Change Control Board (CCB) reviews request and 

responds

 Accepted [Assign persons responsible for change]

 Rejected [Reason for rejection]

 Request for Info [Request for additional data for 

clarification

Evolution

45



(c) Paul Fodor (CS Stony Brook)

 Once approved:

Requirements are updated and reviewed

Design modified/reviewed (links to requirements 

updated as needed)

 Implementation written/code modified

New code tested

Possible regression testing

Changes are accepted and system is updated in source 

and documentation versioning

Evolution

46


