
Paul Fodor

CSE316: Fundamentals of Software Development

Stony Brook University

http://www.cs.stonybrook.edu/~cse316

Software Development 

Life Cycle

1

http://www.cs.stonybrook.edu/~cse316


(c) Paul Fodor (CS Stony Brook)

Topics
 Overview of the Software Development Life Cycle

 Process Models 

 Standard stages:

Requirements analysis and definition

System and software design

 Implementation and unit testing

 Integration and system testing

Operation and maintenance

2



(c) Paul Fodor (CS Stony Brook)

The Software Development Life Cycle
 A structured set of activities required to develop a software 

system. 

 Many different software processes but all involve:

 Specification – defining what the system should do (requirements)

 Design – Architecture of the system (high level design)

 Detailed Design – Design of component modules, data structures, 

algorithms, etc.

 Implementation –Implementing (Coding and Testing) the system

 Validation (Testing) – Checking that code works and it does what the 

customer wants

 Deployment – Putting the system in production

 Evolution (Optional) – Changing the system in response to changing 

customer needs.
3



(c) Paul Fodor (CS Stony Brook)

The Waterfall Model
 Plan-driven model. 

 Specification and development are distinct phases

4



(c) Paul Fodor (CS Stony Brook)

Other Software Process Models
 Incremental development:

 May be plan-driven or agile (advocates adaptive planning, 

evolutionary development, early delivery, and continual 

improvement, and it encourages flexible responses to 

change).

 Specification, development and validation are interleaved.

 Integration and configuration:

 May be plan-driven or agile.

 The system is assembled from existing configurable 

components.

 In practice, most large systems use elements from each of these 

models.
5



(c) Paul Fodor (CS Stony Brook)

Waterfall Model
 Separate phases in the waterfall model

Requirements analysis and definition

System and software design

 Implementation and unit testing

 Integration and system testing

Operation and maintenance

 Drawbacks of waterfall model

Difficulty in accommodating change

 In general, a phase must be complete before 

moving on to next phase

6



(c) Paul Fodor (CS Stony Brook)

 Inflexibility limits its use in business systems where 

requirements change frequently

 Best for large systems developed over multiple sites

Plan driven nature helps coordinate development

Waterfall Model Properties

7



(c) Paul Fodor (CS Stony Brook)

Incremental Development

8



(c) Paul Fodor (CS Stony Brook)

Incremental Development Benefits
 The cost of accommodating changing customer requirements is 

reduced. 

 Less specification/design for project

 Rework of analysis/documentation is minimized.

 Easier to get customer feedback on completed development. 

 Customers can comment on demonstrations of the software

 Customers can see how much has been implemented. 

 Very rapid delivery/deployment of useful software to the 

customer. 

 Customers are able to use and gain value from the software 

quicker

9



(c) Paul Fodor (CS Stony Brook)

Incremental Development Drawbacks
 Process is not visible

Managers need regular deliverables to measure 

progress

Rapid development makes it non-cost-effective to 

maintain documentation for all system versions

 System structure degrades with new increments

Extra time and money needed for refactoring

Alternative:

 Regular change corrupts structure

 Future changes become increasingly difficult and costly

10



(c) Paul Fodor (CS Stony Brook)

Integration and Configuration
 Based on software reuse:

Systems are integrated from existing components or 

application systems 

 These components are sometimes called COTS 

(Commercial-off-the-shelf) systems

 Components may be configured to adapt behaviour and 

functionality to user requirements

 ‘Reuse’ is now the standard approach for building many 

types of business system

11



(c) Paul Fodor (CS Stony Brook)

Requirements Engineering
Establishing:

Services that a customer requires from a system

Constraints under which it operates and is developed

Precise definition of behaviors which the system 

should exhibit

 System requirements are

Precise descriptions of the system services and 

constraints generated during requirements 

engineering process

12



(c) Paul Fodor (CS Stony Brook)

Types of Requirements
 User requirements

 Statements in natural language plus diagrams of the services 

the system provides and its operational constraints.

Written primarily for customers.

 System requirements

A structured document setting out detailed descriptions of 

the system’s functions, services and operational constraints. 

Defines what should be implemented so may be part of a 

contract between client and contractor.

Written primarily for engineers.

13



(c) Paul Fodor (CS Stony Brook)

Developing Requirements
 Steps:

 Requirements elicitation: researching and discovering the 

requirements of a system from users, customers, and other 

stakeholders

 Requirements specification: writing the formal requirements 

specification document

 Requirements validation: check the requirements document for 

consistency, completeness and correctness

 Requirements change:

 inevitable changes of the specification document due to changes in user 

requirements, increased understanding of the stakeholders' needs, 

customer organizational re-structure, and availability of new 

technologies
14



(c) Paul Fodor (CS Stony Brook)

Guidelines for Writing Requirements
Choose a standard format and use it for all 

requirements.

Use language in a consistent way

Use "shall" for mandatory requirements

Use "should" for desirable behaviours

 Use text highlighting to identify key parts of the 

requirement

Avoid the use of computer jargon

 Include an explanation (rationale) of why a 

requirement is necessary
15



(c) Paul Fodor (CS Stony Brook)

Functional and Non-functional Requirements
 Functional requirements

 Statements of services the system should provide

 How the system should react to particular inputs

 How the system should behave in particular situations.

 May state what the system should not do.

 Non-functional requirements
 Constraints on the services or functions offered by the system

 Timing constraints

 Constraints on the development process

 Standards

 Often apply to the system as a whole rather than individual 

features or services

 Domain requirements
 Constraints on the system from the domain of operation

16



(c) Paul Fodor (CS Stony Brook)

Functional Requirements
Describe functionality or system services.

Depend on the type of software, expected users 

and the type of system where the software is 

used.

Functional user requirements may be high-level 

statements of what the system should do.

Functional system requirements should describe 

the system services in detail.

17



(c) Paul Fodor (CS Stony Brook)

Requirements Completeness and Consistency

 In principle, requirements should be both 

complete and consistent.

Complete: they should include descriptions of all 

facilities required

Consistent: there should be no conflicts or 

contradictions in the descriptions of the system 

facilities

 In practice, because of system and environmental 

complexity, it is impossible to produce a 

complete and consistent requirements document
18



(c) Paul Fodor (CS Stony Brook)

Writing Good Requirements
Requirements must be:

Non-ambiguous

State only 1 responsibility each

Be Testable (i.e., verifiable)

Be positively stated (They should indicate 

what the system must do rather than what it 

must not do)

 Large real systems have thousands of requirements

19



(c) Paul Fodor (CS Stony Brook)

Design – [System Architecture] and Detailed Design

Design Process Stages:

System Architecture

Define context and modes of use of the system

Design system architecture [subsystems and 

interfaces]

Detailed Design

Identify principal system objects

Develop design models

Specify object interfaces
20



(c) Paul Fodor (CS Stony Brook)

System Context and Interactions
 Understanding relationships between the software being 

designed and external environment is essential:

Helps decide how to provide the required system 

functionality

Helps decide how to structure system to 

communicate with its environment

 Understanding the context also helps establish 

boundaries of the system

Setting system boundaries helps you decide what 

features are implemented in the system and what 

features are in other associated systems
21



(c) Paul Fodor (CS Stony Brook)

Context and Interaction Models
 System context model ➔ structural model 

demonstrating other subsystems in environment of the 

system being developed

Focuses on looking at your entire system and other 

systems around it with which it interacts

This may be illustrated using UML class diagrams or 

module diagrams

 It is a static view of the system

 Interaction model ➔ dynamic model that shows how 

system interacts with its environment as it is used

This may be illustrated using UML sequence diagrams
22



(c) Paul Fodor (CS Stony Brook)

Architectural Design
 Once interactions between system and environment are 

understood, information is used for designing system 

architecture

 Architectural Design: the idea is that the system will be 

composed of subsystems (or components).

 Identify major components that make up system and their 

interactions

Then organize the components using an architectural 

pattern like layered or client-server model

23



(c) Paul Fodor (CS Stony Brook)

Detailed Design
Object Class Identification

Design Models

Subsystem Models

24



(c) Paul Fodor (CS Stony Brook)

Object Class Identification
 Identifying object classes is often a difficult part 

of object oriented design

No 'magic formula' for object identification

Relies on skill, experience and domain 

knowledge of system designers

Object identification is iterative. (Unlikely to get 

it right first time)

25



(c) Paul Fodor (CS Stony Brook)

Approaches to Identification
 Use a grammatical approach based on a natural 

language description of the system

Base the identification on tangible things in the 

application domain

Use a behavioural approach and identify objects 

based on what participates in what behaviour.

Use a scenario-based analysis

 The objects, attributes and methods in each scenario are 

identified

26



(c) Paul Fodor (CS Stony Brook)

Design Models
Design models show the objects/object classes 

and relationships between these entities

Two kinds of design model:

Structural models ➔ the static structure of 

the system in terms of object classes and 

relationships

Dynamic models ➔ the dynamic 

interactions between objects

27



(c) Paul Fodor (CS Stony Brook)

Examples of Design Models

 Subsystem models ➔ show logical groupings of objects 

into coherent subsystems

 Sequence models ➔ show the sequence of object 

interactions

 State machine models ➔ show how individual objects 

change state in response to events

 Other models ➔use-case models, aggregation models, 

generalisation models, etc.

28



(c) Paul Fodor (CS Stony Brook)

Subsystem Models
 Shows how the design is organized into logically 

related groups of objects

 In the UML, these are shown using packages

An encapsulation construct -This is a logical 

model

Actual organization of objects in system may be 

different

29



(c) Paul Fodor (CS Stony Brook)

Sequence Models
 Sequence models show sequence of object interactions 

that take place

Objects are arranged horizontally across the top

Time represented vertically so models are read top to 
bottom

 Interactions are represented by labelled arrows, 
Different styles of arrow represent different types of 
interaction

Thin rectangle in an object lifeline represents the 
time when the object is controlling object in the 
system

30



(c) Paul Fodor (CS Stony Brook)

State Diagrams
 State diagrams ➔ show how objects respond to 

different service requests and state transitions 
triggered by these requests

 State diagrams ➔ useful high-level models of a 
system or an object’s run-time behavior

Don’t usually need a state diagram for all objects 
in system

Many objects in system are relatively simple

State model adds unnecessary detail to design

31



(c) Paul Fodor (CS Stony Brook)

Implementation [Coding]
 Configuration management: General process of 

managing a changing software system. 

 Aim of configuration management is to 

Support system integration process so all developers 

can access the project code and documents in a 

controlled way

All developers can find out what changes have been 

made

All developers can compile and link components to 

create a system

32



(c) Paul Fodor (CS Stony Brook)

Configuration Management Activities
 Version management: Keep track of the different versions 

of software components

 Include facilities to coordinate development by several 

programmers

 System integration: Help developers define what versions 

of components are used to create each version of a system

 Description used to build system automatically by compiling 

and linking required components

 Problem tracking: Allows users to report bugs and other 

problems

 Also, allow all developers see who is working on problems 

and when they are fixed
33



(c) Paul Fodor (CS Stony Brook)

Development Platform Tools
 Integrated compiler/syntax-directed editing system 

allowing code creation, editing, and compilation

 A language debugging system.

 Graphical editing tools (i.e. edit UML models)

 Test tools (i.e. JUnit) 

➔Automatically run a set of tests on a new version 

of a program

 Project support tools 

➔ Help organize code for different development 

projects
34



(c) Paul Fodor (CS Stony Brook)

Integrated Development Environments (IDE)

 Software development tools often grouped to 

create an integrated development environment 

(IDE) 

Set of software tools supporting different aspects 

of software development

Created to support development in a specific 

programming language such as Java

Language IDE may be developed specially

May be an instantiation of a general-purpose IDE, 

with specific language-support tools
35



(c) Paul Fodor (CS Stony Brook)

 Program testing is intended to show

 a program does what it is intended to do 

 program defects before it is put into use. 

 Software testing:

Program executed with artificial data

Results of the test run are checked for errors, 
anomalies or information about the program’s non-
functional attributes 

Can reveal the presence of errors NOT their absence

 Testing is part of a more general verification and validation 
process, which also includes static validation techniques.

Validation [Testing, Unit Test, System Test]

36



(c) Paul Fodor (CS Stony Brook)

Verification vs validation
 Verification: 

"Are we building the product right”.

The software should conform to its specification.

 Validation:

"Are we building the right product”.

The software should do what the user really requires.

37



(c) Paul Fodor (CS Stony Brook)

Stages of testing
Development testing - System is tested during 

development to discover bugs and defects [Unit 

and integration testing]

Release testing - separate test team tests a 

complete version of the system before it is 

released to users [Full Qualification Testing]

validate each requirement (out of thousands of 

requirements)

38



(c) Paul Fodor (CS Stony Brook)

Development testing
 Development testing includes all testing activities that are 

carried out by the team developing the system. 

 Unit testing - individual program units or object classes 

are tested

 Unit testing focuses on testing the functionality of objects or 

methods

 Component testing - several individual units are 

integrated to create composite components [a kind of 

Integration testing]

 Component testing should focus on testing component interfaces

 Send input to the component and see what comes out

 System testing - All of the components in a system are 

integrated and the system is tested as a whole
39



(c) Paul Fodor (CS Stony Brook)

Unit testing
Unit testing is the process of testing individual 

components in isolation

Units may be:

Individual functions or methods within an 

object 

Object classes with several attributes and 

methods 

40



(c) Paul Fodor (CS Stony Brook)

Release testing
 Release testing - Process of testing a release of a 

system intended for use outside the development team

 Primary goal is to convince the supplier of the system 

that it is good enough for use

 In the end, Release testing has to show:

 System delivers its specified functionality, performance 

and dependability

 System does not fail during normal use

 Release testing usually a black-box testing process 

where tests are only derived from the system 

specification [Requirements based testing]
41



(c) Paul Fodor (CS Stony Brook)

Release testing and system testing
 Release testing is a form of system testing

 Important differences:

A separate team not involved in system development, 

is responsible for release testing

System testing by development team should focus on 

discovering bugs in the system (defect testing)

Objective of release testing is to check that system 

meets its requirements and is good enough for 

external use (validation testing)

42



(c) Paul Fodor (CS Stony Brook)

Deployment
This stage may involve:

Dry runs with a reduced system but real user 

data

give real user data and check if the system works 

fine

Full deployment

43



(c) Paul Fodor (CS Stony Brook)

Evolution [Maintenance]
 Changes may be required by user after deployment

New requirements/modified requirements

Fix bugs/deficiencies not caught in testing

 Process should be organized so changes can be traced

 Generally, design process assures there are links 

between

Requirements

Architecture/design

Test cases/procedures

 Documentation must be maintained during evolution
44



(c) Paul Fodor (CS Stony Brook)

 Typical process:

Change/update proposed by user or systems staff. 

Proposal includes

 Specific deficiency or information on new requirement

 Rationale

 Other info as needed

A Change Control Board (CCB) reviews request and 

responds

 Accepted [Assign persons responsible for change]

 Rejected [Reason for rejection]

 Request for Info [Request for additional data for 

clarification

Evolution

45



(c) Paul Fodor (CS Stony Brook)

 Once approved:

Requirements are updated and reviewed

Design modified/reviewed (links to requirements 

updated as needed)

 Implementation written/code modified

New code tested

Possible regression testing

Changes are accepted and system is updated in source 

and documentation versioning

Evolution

46


