Software Development

Life Cycle

Paul Fodor

CSE316: Fundamentals of Software Development
Stony Brook University

http: //www.cs. stonybrook.edu/ ~cse316



http://www.cs.stonybrook.edu/~cse316

"Topics

® Overview of the Software Development Life Cycle
® Process Models
* Standard stages:

® Requirements analysis and definition

® System and software design

® Implementation and unit testing

® Integration and system testing

® Operation and maintenance

(c) Paul Fodor (CS Stony Brook)




4 ™
The Software Development Life Cycle

e A structured set of activities required to develop a software

system.

® Many different sottware processes but all involve:
® Specification — defining what the system should do (requirements)
® Design — Architecture of the system (high level design)

® Detailed Design — Design of component modules, data structures,

algorithms, etc.
® Implementation —Implementing (Coding and Testing) the system
® Validation (Testing) — Checking that code works and it does what the

customer wants
® Deployment — Putting the system in production
® Evolution (Optional) — Changing the system in response to changing

customer needs.

@ (c) Paul Fodor (CS Stony Brook) /




"The Waterfall Model

¢ Plan-driven model.

° Specification and development are distinct phases

Requirements
definition

System and
software design

A

Implementation
and unit testing

A

Integration and
system testing

i (Operation an(D

kmaintenance

(c) Paul Fodor (CS Stony Brook)




/Other Software Process Models :

® Incremental development:

® May be plan-driven or agile (advocates adaptive planning,
evolutionary development, early delivery, and continual
improvement, and it encourages tlexible responses to
change).

® Specitication, development and validation are interleaved.

® Integration and configuration:
* May be plan-driven or agile.

e The system 1s assembled from existing configurable

components.

® In practice, most large systems use elements from each of these

models.
@ (c) Paul Fodor (CS Stony Brook) /




"Waterfall Model

® Separate phases in the waterfall model
® Requirements analysis and definition
® System and software design
® Implementation and unit testing
® Integration and system testing
® Operation and maintenance

® Drawbacks of waterfall model

O Difﬁculty In accommodating change

In general. a phase must be Complete before

moving on to next phase

@ (c) Paul Fodor (CS Stony Brook)




" Waterfall Model Properties

. Inﬂexibility limits its use in business systems where

requirements change frequently

® Best for large systems developed over multiple sites

® Plan driven nature helps coordinate development

(c) Paul Fodor (CS Stony Brook) /




4 N
Incremental Development

Concurrent
activities

Initial
version

o)

Specification

L

Development

L

Validation

I

Outline

description >

versions

o)

I

Intermediate T

Final
version

2

|

(c) Paul Fodor (CS Stony Brook) /




4 T
Incremental Development Benefits

® The cost of accommodating changing customer requirements is

reduced.
® Less specification/design for project
® Rework of analysis/documentation is minimized.

* Easier to get customer feedback on completed development.
® Customers can comment on demonstrations of the software
® Customers can see how much has been implemented.

® Very rapid delivery/ deployment of useful software to the

customer.

® Customers are able to use and gain value from the software

quicker

@ (c) Paul Fodor (CS Stony Brook) /




4 ™
Incremental Development Drawbacks

® Process is not visible

O Managers need regular deliverables to measure

pI’O gI'GSS

o Rapid development makes it non-cost-effective to

maintain documentation for all system versions

* System structure degrades with new increments
® Extra time and money needed for refactoring

® Alternative:
Regular change corrupts structure

Future changes become increasingly difficult and costly

@ (c) Paul Fodor (CS Stony Brook) /




/Integration and Configuration\

e Based on software reuse:

® Systems are integrated from existing components or
application systems
These components are sometimes called COTS
(Commercial-off-the-shelf) systems
* Components may be configured to adapt behaviour and

functionality to user requirements

® ‘Reuse’ is now the standard approach for building many

types of business system

@ (c) Paul Fodor (CS Stony Brook) /




/Requirements Engineering :

® Establishing:
® Services that a customer requires from a system
® Constraints under which it operates and is developed
® Precise definition of behaviors which the system
should exhibit
® System requirements are

® Precise descriptions of the system services and
constraints generated during requirernents

engineering process

@ (c) Paul Fodor (CS Stony Brook) /




/Types of Requirements

® User requirements

e Statements in natural language plus diagrams of the services

the system provides and its operational constraints.

® Written primarily for customers.

L System requirements

® A structured document setting out detailed descriptions of

the system’s functions, services and operational constraints.

® Defines what should be implemented so may be part of a

contract between client and contractor.

® Written primarilyv for engineers.
P y g

(c) Paul Fodor (CS Stony Brook) /




/Developing Requirements

L Steps:
* Requirements elicitation: researching and discovering the

requirements of a system from users, customers, and other
stakeholders

® Requirements specification: writing the formal requirements

specification document

™~

® Requirements validation: check the requirements document for

consistency, completeness and correctness

® Requirements change:

inevitable changes of the specification document due to changes in user

requirements, increased understanding of the stakeholders' needs,

customer organizational re-structure, and availability of new

technologies
@ (c) Paul Fodor (CS Stony Brook)




4 R
Guidelines for Writing Requirements

® Choose a standard format and use it for all

requirements.

e Use language in a consistent way

e Use "shall" for mandatory requirements

® Use "should" for desirable behaviours

Use text highlighting to identify key parts of the

requirement

® Avoid the use of computer jargon

® Include an explanation (rationale) of why a

requirement 1S necessary
(-

(c) Paul Fodor (CS Stony Brook) /




4 . . . R
Functional and Non-functional Requirements

* Functional requirements
® Statements of services the system should provide
® How the system should react to particular inputs
® How the system should behave in particular situations.
® May state what the system should not do.
* Non-functional requirements

® Constraints on the services or functions offered by the system
Timing constraints

Constraints on the development process
Standards

® Often apply to the system as a whole rather than individual

features Oor services

® Domain requirements

@ ® Constraints on the system from the domain of operation

(c) Paul Fodor (CS Stony Brook) /




4 . .
Functional Requirements

® Describe functionality or svstem services.
y y

*Depend on the type of software, expected users
and the type of system where the software is

used.

¢ Functional user requirements may be high—level

statements of what the system should do.

® Functional system requirements should describe

the system services in detail.

@ (c) Paul Fodor (CS Stony Brook) /




4 . . R
Requirements Completeness and Consistency

® In principle, requirements should be both
complete and consistent.

® Complete: they should include descriptions of all

facilities required
® Consistent: there should be no conflicts or
contradictions in the descriptions of the system
facilities
® In practice, because of system and environmental
complexity, it is impossible to produce a

complete and consistent requirements document

@ (c) Paul Fodor (CS Stony Brook) /




" Writing

Good Requirements

® Requirements must be:

eNon-am

eState on|

:)iguous

y 1 responsibility each

®BeTestable (i.e., veritiable)
*Be positively stated (They should indicate

what the system must do rather than what it

must not do)

* Large real systems have thousands of requirements

(-

(c) Paul Fodor (CS Stony Brook)




4 I
Design - [System Architecture] and Detailed Design

o Design Process Stages:

*System Architecture

Define context and modes of use of the system

Design system architecture [subsystems and

interfaces]

®Detailed Design

Identify principal system objects
Develop design models
Specify object interfaces

@ (c) Paul Fodor (CS Stony Brook) /




4 I
System Context and Interactions

o Understanding relationships between the software being

designed and external environment is essential:

® Helps decide how to provide the required system

functionality

o Helps decide how to structure system to

communicate with its environment

o Understanding the context also helps establish

boundaries of the system

® Setting system boundaries helps you decide what

features are implemented in the system and what

@ features are in other associated systems

(c) Paul Fodor (CS Stony Brook) /




a I
Context and Interaction Models

® System context model =2 structural model
demonstrating other subsystems in environment of the
system being developed
® Focuses on looking at your entire system and other

systems around it with which it interacts

® This may be illustrated using UML class diagrams or

module diagrams

® [t is a static view of the system

® Interaction model =2 dynamic model that shows how

system interacts with its environment as it is used

g ® This may be illustrated using UML sequence diagrams
N

(c) Paul Fodor (CS Stony Brook) /




" Architectural Design

® Once interactions between system and environment are

understood, information is used for designing system

architecture

™~

® Architectural Design: the idea is that the system will be

(-

composed of subsystems (or components).

® [dentity major components that make up system and their

Interactions

® Then organize the components using an architectural

pattern like layered or client-server model

(c) Paul Fodor (CS Stony Brook)




'Detailed Design

® Object Class Identitication
®*Design Models
'Subsystem Models

(c) Paul Fodor (CS Stony Brook )




: Object Class ldentification :

o Identifying object classes is often a difficult part

of object oriented design
eNo 'magic formula' for object identitication

*Relies on skill, experience and domain

knowledge of system designers

® Object identification is iterative. (Unlikely to get
it right first time)

@ (c) Paul Fodor (CS Stony Brook) /




/Approaches to Identification

® Use a grammatical approach based on a natural
language description of the system
® Base the identification on tangible things in the
application domain
® Use a behavioural approach and identity objects
based on what participates in what behaviour.
® Use a scenario-based analysis

The objects, attributes and methods in each scenario are
identitied

(c) Paul Fodor (CS Stony Brook)




" Design Models

® Design models show the objects/object classes

and relationships between these entities
¢ Two kinds of design model:

eStructural models = the static structure of
the system in terms of object classes and

relationships

ODynamic models = the dynamic

interactions between objects

@ (c) Paul Fodor (CS Stony Brook) /




/Examples of Design Models :

* Subsystem models =2 show logical groupings of objects

into coherent subsystems

® Sequence models =@ show the sequence of object

Interactions

® State machine models = show how individual objects

change state in response to events

® Other models =P use-case models, aggregation models,

generalisation models, etc.

@ (c) Paul Fodor (CS Stony Brook) /




" Subsystem Models :

® Shows how the design is organized into logically

related groups of objects
® In the UML, these are shown using packages

°An encapsulation construct - This is a logical

model

e Actual organization of objects in system may be
different

(c) Paul Fodor (CS Stony Brook) /




'Sequence Models

that take place

® Objects are arranged horizontally across the top

bottom

® Interactions are represented by labelled arrows,

Interaction

® Thin rectangle in an object lifeline represents the
time when the object is controlling object in the
system

(c) Paul Fodor (CS Stony Brook)

™~

® Sequence models show sequence of object interactions

® Time represented Vertically so models are read top to

Different styles of arrow represent ditferent types of




' State Diagrams )

e State diagrams =>» show how objects respond to
different service requests and state transitions
triggered by these requests

e State diagrams =>» useful high—level models of a

system or an object’s run-time behavior

*Don’t usually need a state diagram for all objects
n system
® Many objects in system are relatively simple

e State model adds unnecessary detail to design

@ (c) Paul Fodor (CS Stony Brook) /




: Implementation [Coding]

(-

o Conﬁguration management: General process of

managing a changing software system.

® Aim of configuration management is to

™~

® Support system integration process so all developers

can access the project code and documents in a

controlled way

* All developers can find out what Changes have been

made

* All developers can compile and link components to

create a system

(c) Paul Fodor (CS Stony Brook)

/




4 . . L
Configuration Management Activities

(-

™~

e Version management: Keep track of the different versions

of software components

® Include facilities to coordinate development by several

pI’O grarnmers

* System integration: Help developers define what versions

of components are used to create each version of a system

® Description used to build system automatically by compiling

and linking required components

e Problem tracking: Allows users to report bugs and other

problems

® Also, allow all developers see who is working on problems

and when they are fixed

(c) Paul Fodor (CS Stony Brook) /




/Development Platform Tools

(-

o Integrated compiler/ syntax—directed editing system

allowing code creation, editing, and compilation

° A language e_ebugging system.

® Graphical editing tools (i.e. edit UML models)
® Test tools (i.e. JUnit)

o= Autornatically run a set of tests on a new version

of a program
® Project support tools

°=> Help organize code for ditferent development

proj ects

(c) Paul Fodor (CS Stony Brook)




e
Integrated Development Environments (IDE)

® Software development tools often grouped to
create an integrated development environment
(IDE)
*Set of software tools supporting ditferent aspects

of software development
® Created to support development in a specific
programming language such as Java

Language IDE may be developed specially

May be an instantiation of a general-purpose IDE,

with specific language—support tools

@ (c) Paul Fodor (CS Stony Brook) /




4 N
Validation [Testing, Unit Test, System Test]

. Program testing is intended to show
a program does what it is intended to do

program defects before it is put into use.
e Software testing:
® Program executed with artificial data

® Results of the test run are checked for errors,
anomalies or information about the program’s non-
functional attributes

® Can reveal the presence of errors NOT their absence

® Testing is part of a more general verification and validation
process, which also includes static validation techniques.

@ (c) Paul Fodor (CS Stony Brook) /




e
Verification vs validation

® Verification:

"Are we building the product right”.

® The software should conform to its specification.

¢ Validation:
"Are we building the right product”.

™~

® The software should do what the user really requires.

(c) Paul Fodor (CS Stony Brook)




' Stages of testing

™~

o Development testing - System is tested during

development to discover bugs and defects [Unit

and integration testing]

® Release testing - separate test team tests a
complete version of the system before it is
released to users [Full Qualification Testing]

®validate each requirement (out of thousands of

requirements)

@ (c) Paul Fodor (CS Stony Brook)




" Development testing

O Development testing includes all testing activities that are

carried out by the team developing the system.

e Unit testing - individual program units or object classes
are tested

Unit testing focuses on testing the functionality of objects or
methods

* Component testing - several individual units are
integrated to create composite components [a kind of
Integration testing]

Component testing should focus on testing component interfaces

* Send input to the component and see what comes out

° System testing - All of the components in a system are

(c) Paul Fodor (CS Stony Brook)

@ integrated and the system is tested as a whole
N\,




" Unit testing

® Unit testing is the process of testing individual

components in isolation

® Units may be:

® Individual functions or methods within an

obiject

J

® Object classes with several attributes and
methods

(c) Paul Fodor (CS Stony Brook)




"Release testing

o

® Release testing - Process of testing a release of a

system intended for use outside the development team

® Primary goal is to convince the supplier of the system

that it is good enough for use

® In the end, Release testing has to show:

System delivers its specified functionality, performance

and dependability

System does not fail during normal use

® Release testing usually a black-box testing process
where tests are only derived from the system

specification [Requirements based testing]

(c) Paul Fodor (CS Stony Brook) /




4 A
Release testing and system testing

® Release testing is a form of system testing

® Important differences:

® A separate team not involved in system development,

is responsible for release testing

® System testing by development team should focus on

discovering bugs in the system (defect testing)

® Objective of release testing is to check that system
meets its requirements and is good enough for

external use (validation testing)

@ (c) Paul Fodor (CS Stony Brook) /




"Deployment

¢ This stage may involve:

*Dry runs with a reduced system but real user
data

give real user data and check if the system works
fine

e Full deployment

(c) Paul Fodor (CS Stony Brook)




" Evolution [Maintenance]

o

* Changes may be required by user after deployment
® New requirements/moditied requirements
® Fix bugs/deficiencies not caught in testing
® Process should be organized so changes can be traced

* Generally, design process assures there are links

between
® Requirements
® Architecture/ design

® Test cases/ procedures

® Documentation must be maintained during evolution

(c) Paul Fodor (CS Stony Brook)




" Evolution

o Typical process:
° Change/ update proposed by user or systems staff.
Proposal includes

Specific deficiency or information on new requirement
Rationale

Other info as needed

® A Change Control Board (CCB) reviews request and

responds

Accepted [Assign persons responsible for change]

Rejected [Reason for rejection]

Request for Info [Request for additional data for

Clal‘ification (c) Paul Fodor (CS Stony Brook) /




" Evolution

® Once approved:
® Requirements are updated and reviewed

® Design modified/reviewed (links to requirements

updated as needed)
® Implementation written/code modified
® New code tested
® Possible regression testing

o Changes are accepted and system is updated in source

and documentation versioning

@ (c) Paul Fodor (CS Stony Brook)




