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Topics
 Overview of the Software Development Life Cycle

 Process Models 

 Standard stages:

Requirements analysis and definition

System and software design

 Implementation and unit testing

 Integration and system testing

Operation and maintenance
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The Software Development Life Cycle
 A structured set of activities required to develop a software 

system. 

 Many different software processes but all involve:

 Specification – defining what the system should do (requirements)

 Design – Architecture of the system (high level design)

 Detailed Design – Design of component modules, data structures, 

algorithms, etc.

 Implementation –Implementing (Coding and Testing) the system

 Validation (Testing) – Checking that code works and it does what the 

customer wants

 Deployment – Putting the system in production

 Evolution (Optional) – Changing the system in response to changing 

customer needs.
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The Waterfall Model
 Plan-driven model. 

 Specification and development are distinct phases
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Other Software Process Models
 Incremental development:

 May be plan-driven or agile (advocates adaptive planning, 

evolutionary development, early delivery, and continual 

improvement, and it encourages flexible responses to 

change).

 Specification, development and validation are interleaved.

 Integration and configuration:

 May be plan-driven or agile.

 The system is assembled from existing configurable 

components.

 In practice, most large systems use elements from each of these 

models.
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Waterfall Model
 Separate phases in the waterfall model

Requirements analysis and definition

System and software design

 Implementation and unit testing

 Integration and system testing

Operation and maintenance

 Drawbacks of waterfall model

Difficulty in accommodating change

 In general, a phase must be complete before 

moving on to next phase
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 Inflexibility limits its use in business systems where 

requirements change frequently

 Best for large systems developed over multiple sites

Plan driven nature helps coordinate development

Waterfall Model Properties
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Incremental Development
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Incremental Development Benefits
 The cost of accommodating changing customer requirements is 

reduced. 

 Less specification/design for project

 Rework of analysis/documentation is minimized.

 Easier to get customer feedback on completed development. 

 Customers can comment on demonstrations of the software

 Customers can see how much has been implemented. 

 Very rapid delivery/deployment of useful software to the 

customer. 

 Customers are able to use and gain value from the software 

quicker
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Incremental Development Drawbacks
 Process is not visible

Managers need regular deliverables to measure 

progress

Rapid development makes it non-cost-effective to 

maintain documentation for all system versions

 System structure degrades with new increments

Extra time and money needed for refactoring

Alternative:

 Regular change corrupts structure

 Future changes become increasingly difficult and costly
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Integration and Configuration
 Based on software reuse:

Systems are integrated from existing components or 

application systems 

 These components are sometimes called COTS 

(Commercial-off-the-shelf) systems

 Components may be configured to adapt behaviour and 

functionality to user requirements

 ‘Reuse’ is now the standard approach for building many 

types of business system
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Requirements Engineering
Establishing:

Services that a customer requires from a system

Constraints under which it operates and is developed

Precise definition of behaviors which the system 

should exhibit

 System requirements are

Precise descriptions of the system services and 

constraints generated during requirements 

engineering process
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Types of Requirements
 User requirements

 Statements in natural language plus diagrams of the services 

the system provides and its operational constraints.

Written primarily for customers.

 System requirements

A structured document setting out detailed descriptions of 

the system’s functions, services and operational constraints. 

Defines what should be implemented so may be part of a 

contract between client and contractor.

Written primarily for engineers.
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Developing Requirements
 Steps:

 Requirements elicitation: researching and discovering the 

requirements of a system from users, customers, and other 

stakeholders

 Requirements specification: writing the formal requirements 

specification document

 Requirements validation: check the requirements document for 

consistency, completeness and correctness

 Requirements change:

 inevitable changes of the specification document due to changes in user 

requirements, increased understanding of the stakeholders' needs, 

customer organizational re-structure, and availability of new 

technologies
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Guidelines for Writing Requirements
Choose a standard format and use it for all 

requirements.

Use language in a consistent way

Use "shall" for mandatory requirements

Use "should" for desirable behaviours

 Use text highlighting to identify key parts of the 

requirement

Avoid the use of computer jargon

 Include an explanation (rationale) of why a 

requirement is necessary
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Functional and Non-functional Requirements
 Functional requirements

 Statements of services the system should provide

 How the system should react to particular inputs

 How the system should behave in particular situations.

 May state what the system should not do.

 Non-functional requirements
 Constraints on the services or functions offered by the system

 Timing constraints

 Constraints on the development process

 Standards

 Often apply to the system as a whole rather than individual 

features or services

 Domain requirements
 Constraints on the system from the domain of operation
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Functional Requirements
Describe functionality or system services.

Depend on the type of software, expected users 

and the type of system where the software is 

used.

Functional user requirements may be high-level 

statements of what the system should do.

Functional system requirements should describe 

the system services in detail.
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Requirements Completeness and Consistency

 In principle, requirements should be both 

complete and consistent.

Complete: they should include descriptions of all 

facilities required

Consistent: there should be no conflicts or 

contradictions in the descriptions of the system 

facilities

 In practice, because of system and environmental 

complexity, it is impossible to produce a 

complete and consistent requirements document
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Writing Good Requirements
Requirements must be:

Non-ambiguous

State only 1 responsibility each

Be Testable (i.e., verifiable)

Be positively stated (They should indicate 

what the system must do rather than what it 

must not do)

 Large real systems have thousands of requirements
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Design – [System Architecture] and Detailed Design

Design Process Stages:

System Architecture

Define context and modes of use of the system

Design system architecture [subsystems and 

interfaces]

Detailed Design

Identify principal system objects

Develop design models

Specify object interfaces
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System Context and Interactions
 Understanding relationships between the software being 

designed and external environment is essential:

Helps decide how to provide the required system 

functionality

Helps decide how to structure system to 

communicate with its environment

 Understanding the context also helps establish 

boundaries of the system

Setting system boundaries helps you decide what 

features are implemented in the system and what 

features are in other associated systems
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Context and Interaction Models
 System context model ➔ structural model 

demonstrating other subsystems in environment of the 

system being developed

Focuses on looking at your entire system and other 

systems around it with which it interacts

This may be illustrated using UML class diagrams or 

module diagrams

 It is a static view of the system

 Interaction model ➔ dynamic model that shows how 

system interacts with its environment as it is used

This may be illustrated using UML sequence diagrams
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Architectural Design
 Once interactions between system and environment are 

understood, information is used for designing system 

architecture

 Architectural Design: the idea is that the system will be 

composed of subsystems (or components).

 Identify major components that make up system and their 

interactions

Then organize the components using an architectural 

pattern like layered or client-server model
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Detailed Design
Object Class Identification

Design Models

Subsystem Models
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Object Class Identification
 Identifying object classes is often a difficult part 

of object oriented design

No 'magic formula' for object identification

Relies on skill, experience and domain 

knowledge of system designers

Object identification is iterative. (Unlikely to get 

it right first time)
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Approaches to Identification
 Use a grammatical approach based on a natural 

language description of the system

Base the identification on tangible things in the 

application domain

Use a behavioural approach and identify objects 

based on what participates in what behaviour.

Use a scenario-based analysis

 The objects, attributes and methods in each scenario are 

identified
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Design Models
Design models show the objects/object classes 

and relationships between these entities

Two kinds of design model:

Structural models ➔ the static structure of 

the system in terms of object classes and 

relationships

Dynamic models ➔ the dynamic 

interactions between objects
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Examples of Design Models

 Subsystem models ➔ show logical groupings of objects 

into coherent subsystems

 Sequence models ➔ show the sequence of object 

interactions

 State machine models ➔ show how individual objects 

change state in response to events

 Other models ➔use-case models, aggregation models, 

generalisation models, etc.
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Subsystem Models
 Shows how the design is organized into logically 

related groups of objects

 In the UML, these are shown using packages

An encapsulation construct -This is a logical 

model

Actual organization of objects in system may be 

different
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Sequence Models
 Sequence models show sequence of object interactions 

that take place

Objects are arranged horizontally across the top

Time represented vertically so models are read top to 
bottom

 Interactions are represented by labelled arrows, 
Different styles of arrow represent different types of 
interaction

Thin rectangle in an object lifeline represents the 
time when the object is controlling object in the 
system
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State Diagrams
 State diagrams ➔ show how objects respond to 

different service requests and state transitions 
triggered by these requests

 State diagrams ➔ useful high-level models of a 
system or an object’s run-time behavior

Don’t usually need a state diagram for all objects 
in system

Many objects in system are relatively simple

State model adds unnecessary detail to design
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Implementation [Coding]
 Configuration management: General process of 

managing a changing software system. 

 Aim of configuration management is to 

Support system integration process so all developers 

can access the project code and documents in a 

controlled way

All developers can find out what changes have been 

made

All developers can compile and link components to 

create a system
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Configuration Management Activities
 Version management: Keep track of the different versions 

of software components

 Include facilities to coordinate development by several 

programmers

 System integration: Help developers define what versions 

of components are used to create each version of a system

 Description used to build system automatically by compiling 

and linking required components

 Problem tracking: Allows users to report bugs and other 

problems

 Also, allow all developers see who is working on problems 

and when they are fixed
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Development Platform Tools
 Integrated compiler/syntax-directed editing system 

allowing code creation, editing, and compilation

 A language debugging system.

 Graphical editing tools (i.e. edit UML models)

 Test tools (i.e. JUnit) 

➔Automatically run a set of tests on a new version 

of a program

 Project support tools 

➔ Help organize code for different development 

projects
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Integrated Development Environments (IDE)

 Software development tools often grouped to 

create an integrated development environment 

(IDE) 

Set of software tools supporting different aspects 

of software development

Created to support development in a specific 

programming language such as Java

Language IDE may be developed specially

May be an instantiation of a general-purpose IDE, 

with specific language-support tools
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 Program testing is intended to show

 a program does what it is intended to do 

 program defects before it is put into use. 

 Software testing:

Program executed with artificial data

Results of the test run are checked for errors, 
anomalies or information about the program’s non-
functional attributes 

Can reveal the presence of errors NOT their absence

 Testing is part of a more general verification and validation 
process, which also includes static validation techniques.

Validation [Testing, Unit Test, System Test]
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Verification vs validation
 Verification: 

"Are we building the product right”.

The software should conform to its specification.

 Validation:

"Are we building the right product”.

The software should do what the user really requires.
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Stages of testing
Development testing - System is tested during 

development to discover bugs and defects [Unit 

and integration testing]

Release testing - separate test team tests a 

complete version of the system before it is 

released to users [Full Qualification Testing]

validate each requirement (out of thousands of 

requirements)
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Development testing
 Development testing includes all testing activities that are 

carried out by the team developing the system. 

 Unit testing - individual program units or object classes 

are tested

 Unit testing focuses on testing the functionality of objects or 

methods

 Component testing - several individual units are 

integrated to create composite components [a kind of 

Integration testing]

 Component testing should focus on testing component interfaces

 Send input to the component and see what comes out

 System testing - All of the components in a system are 

integrated and the system is tested as a whole
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Unit testing
Unit testing is the process of testing individual 

components in isolation

Units may be:

Individual functions or methods within an 

object 

Object classes with several attributes and 

methods 
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Release testing
 Release testing - Process of testing a release of a 

system intended for use outside the development team

 Primary goal is to convince the supplier of the system 

that it is good enough for use

 In the end, Release testing has to show:

 System delivers its specified functionality, performance 

and dependability

 System does not fail during normal use

 Release testing usually a black-box testing process 

where tests are only derived from the system 

specification [Requirements based testing]
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Release testing and system testing
 Release testing is a form of system testing

 Important differences:

A separate team not involved in system development, 

is responsible for release testing

System testing by development team should focus on 

discovering bugs in the system (defect testing)

Objective of release testing is to check that system 

meets its requirements and is good enough for 

external use (validation testing)
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Deployment
This stage may involve:

Dry runs with a reduced system but real user 

data

give real user data and check if the system works 

fine

Full deployment
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Evolution [Maintenance]
 Changes may be required by user after deployment

New requirements/modified requirements

Fix bugs/deficiencies not caught in testing

 Process should be organized so changes can be traced

 Generally, design process assures there are links 

between

Requirements

Architecture/design

Test cases/procedures

 Documentation must be maintained during evolution
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 Typical process:

Change/update proposed by user or systems staff. 

Proposal includes

 Specific deficiency or information on new requirement

 Rationale

 Other info as needed

A Change Control Board (CCB) reviews request and 

responds

 Accepted [Assign persons responsible for change]

 Rejected [Reason for rejection]

 Request for Info [Request for additional data for 

clarification

Evolution
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 Once approved:

Requirements are updated and reviewed

Design modified/reviewed (links to requirements 

updated as needed)

 Implementation written/code modified

New code tested

Possible regression testing

Changes are accepted and system is updated in source 

and documentation versioning

Evolution
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