
CSE 312 – Legal, Social, and Ethical Issues in

Information Systems

Stony Brook University

http://www.cs.stonybrook.edu/~cse312

Errors, Failures, and Risks

1

http://www.cs.stonybrook.edu/~cse312

(c) Paul Fodor (CS Stony Brook) and Pearson

Ch 8: Errors, Failures, and Risks
8.1 Failures and Errors in Computer Systems

8.1.3 System Failures

8.2 Case Study: The Therac-25
8.2.1 Therac-25 Radiation Overdoses

8.2.2 Software and Design Problems

8.2.3 Why So Many Incidents?

8.2.4 Observations and Perspective

8.3 Increasing Reliability and Safety
8.3.1 Professional Techniques

8.3.2 Trust the Human or the Computer System?

8.3.3 Law, Regulation, and Markets

8.4 Dependence, Risk, and Progress
8.4.1 Are We Too Dependent on Computers?

8.4.2 Risk and Progress
2

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
 Most computer applications are so complex it is virtually

impossible to produce programs with no errors

 Real incidents:

“Navigation System Directs Car Into River”

“Data Entry Typo Mutes Millions of U.S. Pagers”

“Flaws Found in Software That Tracks Nuclear Materials”

“Software Glitch Makes Scooter Wheels Suddenly Reverse Direction”

“IRS Computer Sends Bill for $68 Billion in Penalties”

“Robot Kills Worker”

“California Junks $100 Million Child Support System”

“Man Arrested Five Times Due to Faulty FBI Computer Data”

3

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
Are computer systems too unreliable and too unsafe to use?

 The cause of failure is often more than one factor

 Computer professionals must study failures to learn how to
avoid them

 faulty design

 confusing documentation

 careless or insufficiently trained users

 poor user interfaces

 sloppy manufacturing or servicing

 Computer professionals must study failures to understand the
impacts of poor work
 distinguish between errors we should accept as trade-offs for the

benefits of the system and errors that are due to inexcusable
carelessness, incompetence, or dishonesty4

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
Problems for Individuals in their roles as consumers

 Billing errors

 A woman received a $6.3 million bill for electricity (the correct
amount was $63)

 IRS:
 sent an Illinois couple a bill with $68 billion in penalties

 sent 3000 people bills for slightly more than $300 million

 sent a woman a $40,000,001,541.13 bill

 The auto insurance rate of a 101-year-old man suddenly tripled:
the rates depend on age, but the program handled ages only up to
100, so it mistakenly classified the man as a teenager

 Hundreds of Chicago cat owners received bills from the city for
failure to register dachshunds, which they did not own (the code
in one DB for cat was a dachshund in the other DB)

5

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
Problems for Individuals in their roles as consumers

 Inaccurate and misinterpreted data in databases
 Large population where people may share names

 Stores used a database to screen job applicants. It listed a man as a shoplifter- A real
shoplifter had given the police the innocent man’s identification from a lost wallet

 A family was harassed, threatened, and physically attacked after their state posted
an online list of addresses where sex offenders live – the state did not know the
offender had moved away before the family moved in

 A high school excluded a 14-year-old boy from football and some classes without
explanation because two schools used different disciplinary codes in their
computerized records: the boy had been guilty of chewing gum and being late, but
the system listed him as a drug user

 Overconfidence in the accuracy of data
 FBI’s National Crime Information Center (NCIC) database showed the innocent

man as wanted—someone using his name was committing crimes.

 Errors in data entry

 Lack of accountability for errors
6

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures

 Modern communications, power, medical, financial, retail, and
transportation systems depend heavily on computer systems

 Millions of BlackBerry users did not get their email for nine hours
after the company installed a faulty software update.

 Customers of AT&T lost telephone service for voice and data for
hours because of a software error in a four-million-line program.

 A three-line change in a two-million-line telecommunications
switching program caused a failure of telephone networks in
several major cities
 the program underwent 13 weeks of testing, but it was not retested after

the change—which contained a typo.

 American Express Company’s credit card verification system
failed during the Christmas shopping season.
 Merchants had to call in for verification, overwhelming the call center7

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures
 Galaxy IV satellite computer failed

 Pager service stopped for an estimated 85% of users in the United States, including
hospitals and police departments.

 Airlines that got their weather information from the satellite had to delay flights.

 The gas stations of a major chain could not verify credit cards.

 An error in a software upgrade shut down trading on the Tokyo Stock Exchange

 A glitch in an upgrade in the computer system at Charles Schwab Corporation
crashed the system for more than two hours and caused intermittent problems
for several days. Customers could not access their accounts or trade online.

 A computer malfunction froze the London Stock Exchange for almost eight
hours—on the last day of the tax year, affecting many people’s tax bills

 Amtrak’s reservation and ticketing system failed during Thanksgiving weekend
caused delays

 Virgin America airline switched to a new reservation system a month before
Thanksgiving and its website and checkin kiosks did not work properly for weeks

8

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures
 The $125 million Mars Climate Orbiter disappeared when it should have gone into orbit

around Mars.
 One team working on the navigation software used English-measure units while another

team used metric units.

 NASA's Spirit rover became unresponsive a few weeks after landing on Mars.
 Engineers found that too many files had accumulated in the rover's flash memory

 Mars Climate Orbiter was also destroyed due to software on the ground generating
commands in pound-force (lbf), while the orbiter expected newtons (N).

 Mars Polar Lander was destroyed because its flight software mistook vibrations due to
atmospheric turbulence for evidence that the vehicle had landed and shut off the engines
40 meters from the Martian surface

 A booster went off course during launch, resulting in the destruction of NASA Mariner 1
because of an incorrect formula in its FORTRAN software

 The European Space Agency's Ariane 5 Flight 501 was destroyed 40 seconds after takeoff
because of a bug in the on-board guidance software

 Mars Pathfinder mission was jeopardised by a bug in concurrent software shortly after
the rover landed

 A Zenit 3SL launch failed due to faulty ground software not closing a valve in the
rocket's second stage pneumatic system9

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures

 Voting systems
 The U.S. presidential election of 2000 demonstrated some of the problems of old-

fashioned election machines and paper or punch-card ballots.

 Human vote counters found these ballots sometimes difficult to read or ambiguous

 In 2002, Congress passed the Help America Vote Act and authorized $3.8 billion to
improve voting systems.

 By the 2006 elections, only a very small percentage of Americans voted with paper
ballots

 Technical failures

 Machines in North Carolina lost more than 4000 votes because the machine’s
memory was full

 A programming error generated 100,000 extra votes in one Texas county

 A programming error caused some candidates to receive votes actually cast for
other candidates.

 Programmers or hackers rigging software to produce inaccurate results.

 Vulnerability to viruses
10

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures

 Stalled airports: Denver
 The computer-controlled baggage-handling system, which cost $193 million,

caused most of the delay
 An automated system of carts traveling at up to 19 miles per hour on 22 miles of

underground tracks

 Carts crashed into each other at track intersections.

 The system misrouted, dumped, and flung luggage

 A software error caused the routing of carts to waiting pens when they were actually
needed

 Main causes:
 Time allowed for development was insufficient

 The only other baggage system of comparable size was at Frankfurt Airport in
Germany and it took six years on development and two years testing and debugging.

 BAE Automated Systems, the company that built the Denver system, was asked to
do it in two years

 Denver made significant changes in specifications after the project began: originally it
was designed for United, but Denver officials decided to expand it to include the entire
airport (14 times larger)

11

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures
 Abandoned systems

 Some flaws in systems are so extreme that the systems are
discarded after wasting millions, or even billions, of dollars.
 A large British food retailer spent more than $500 million on an

automated supply management system; it did not work

 Ford Motor Company abandoned a $400 million purchasing system

 California and Washington state motor vehicle departments each
spent more than $40 million on computer systems that never worked

12

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures
 15% of information technology projects are abandoned

before or soon after delivery as “hopelessly inadequate”
 Lack of clear, well-thought-out goals and specifications
 Poor management and poor communication among

customers, designers, programmers, etc.
 Institutional and political pressures that encourage

unrealistically low bids, low budget requests, and
underestimates of time requirements

 Use of very new technology, with unknown reliability and
problems

 Refusal to recognize or admit a project is in trouble

13

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures

 Legacy systems = out-of-date systems (hardware, software, or
peripheral equipment) still in use, often with special interfaces,
conversion software, and other adaptations to make them
interact with more modern systems
 These old systems are "Reliable but inflexible"
 Expensive to replace: the early adopters of computers were: bank,

power companies, airlines, goverments
 Little or no documentation

 After US Airways and America West merged, they combined
their reservations systems
 most airline systems date from the 1960s and 1970s
 The self-service check-in kiosks failed

 Merging different computer systems is extremely tricky, and
problems are common

14

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures
 Legacy systems

 Old hardware fails and replacement parts are hard to find.
 Old software often runs on newer hardware, but it is still old

software.
 Programmers no longer learn the old programming languages.
 Old programs often had little or no documentation, and the

programmers who wrote the software or operated the systems
have left the company, retired, or died.

 Limited computer memory led to obscure and terse
programming practices.

 The systems grew gradually.
 A complete redesign and development of a fully new, modern

system would be expensive.
 It would require a major retraining project.
 The conversion to the new system, requiring some downtime,

could also be very disruptive.
15

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
System Failures

 Legacy systems

 Lesson: someone might be using your software 30 or 40 years
from now.
 It is important for flexibility, expansion, and upgrades to

document, document, document your work.

16

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
What Goes Wrong?
 The job they are doing is inherently difficult.

 Computer systems interact with the real world
 Automobiles, passenger airplanes, and jet fighters contain millions

of lines of computer code
 Sometimes the job is done poorly

 Inadequate attention to potential safety risks
 Interaction with physical devices that do not work as expected
 Incompatibility of software and hardware, or of application software

and the operating system
 Not planning and designing for unexpected inputs or circumstances
 Confusing user interfaces
 Insufficient testing
 Reuse of software from another system without adequate checking
 Data-entry errors
 Inadequate training of users
 Errors in interpreting results or output
 Failure to keep information in databases up to date
 Insufficient planning for failures; no backup systems or procedures

17

(c) Paul Fodor (CS Stony Brook) and Pearson

Failures and Errors in Computer Systems
What Goes Wrong?

 Reuse of software: the Ariane 5 rocket and “No Fly” lists

 Ariane 5 rocket ($500 million) veered off course and was
destroyed as a safety precaution
 It reused software designed for the earlier, successful Ariane 4
 This module did calculations related to velocity, but the

Ariane 5 traveled faster than the Ariane 4 after takeoff.
 The calculations produced numbers bigger than the program

could handle (“overflow” errors), causing the system to halt.

 “No Fly” lists
 TSA software checked only the first initial for first name

 It is essential to reexamine the specifications and design of the
software, consider implications and risks for the new environment,
and retest the software for the new use.

18

(c) Paul Fodor (CS Stony Brook) and Pearson

8.2 Case Study: The Therac-25
Therac-25 Radiation Overdoses

 Massive overdoses of radiation were given; the machine said no dose had
been administered at all

 Caused severe and painful injuries and the death of three patients

 Insufficient testing, bugs in the software that controlled the machines, and
an inadequate system of reporting and investigating the accidents

 Important to study to avoid repeating errors

 Manufacturer, computer programmer, and hospitals/clinics all have some
responsibility

19

(c) Paul Fodor (CS Stony Brook) and Pearson

Case Study: The Therac-25
Software and Design problems
 Re-used software from older systems (Therac-6 and Therac-20), unaware

of bugs in previous software

 Weaknesses in design of operator interface

 Inadequate test plan

 Bugs in software
 Allowed beam to deploy when table not in proper position

 A flag variable indicated whether a specific device on the machine was in the
correct position. A zero value meant the device was ready; a nonzero value meant
it must be checked.

 The flag variable was stored in one byte. After the 256th call to the routine, the flag
overflowed and showed a value of zero.

 The solution is to set the flag variable to a fixed value, say 1, rather than
incrementing it, to indicate that the device needs checking.

 Ignored changes and corrections operators made at console

20

(c) Paul Fodor (CS Stony Brook) and Pearson

Case Study: The Therac-25
Why So Many Incidents?

 Overconfidence in software (that it cannot have errors)

 The decision to eliminate the hardware safety mechanisms

 In the first overdose incident, when the patient told the machine
operator that the machine had “burned” her, the operator told her that
was impossible

 A camera in the treatment room and an intercom system enabled the
operator to monitor the treatment and communicate with the patient

 On the day of an accident at one facility, neither the video monitor
nor the intercom was functioning

 The operator did not see or hear the patient try to get up after an
overdose

 The patient received a second overdose before getting to the door
and pound on it

21

(c) Paul Fodor (CS Stony Brook) and Pearson

Case Study: The Therac-25
Why So Many Incidents?

 Hospitals had never seen such massive overdoses before, were unsure of
the cause

 Manufacturer said the machine could not have caused the overdoses and
no other incidents had been reported (which was untrue)

 The manufacturer made changes to the turntable and claimed they had
improved safety after the second accident.

 The changes did not correct any of the causes identified later.

 Recommendations were made for further changes to enhance safety; the
manufacturer did not implement them.

 The FDA declared the machine defective after the fifth accident.

 The sixth accident occurred while the FDA was negotiating with the
manufacturer on what changes were needed.

22

(c) Paul Fodor (CS Stony Brook) and Pearson

Case Study: The Therac-25
Observations and Perspective

 Design and implementation errors usually occur in complex
systems
 The hospital physicist at one of the facilities where the

Therac-25 overdosed patients spent many hours working
with the machine to try to reproduce the conditions under
which the overdoses occurred.

 With little support or information from the manufacturer, he
was able to figure out the cause of some of the malfunctions.

 The problems in the Therac-25 case were not minor and
suggest irresponsibility

 Accidents occurred on other radiation treatment equipment without
computer controls:
 Did not properly measure the radioactive drugs
 Confused micro-curies and milli-curies

23

(c) Paul Fodor (CS Stony Brook) and Pearson

Case Study: The Therac-25
Discussion Question

 If you were a judge who had to assign responsibility in this case, how

much responsibility would you assign to the programmer, the

manufacturer, and the hospital or clinic using the machine?

24

(c) Paul Fodor (CS Stony Brook) and Pearson

8.3 Increasing Reliability and Safety
Professional techniques

 Many large, complex computer systems work extremely well

 The New York Stock Exchange installed a $2 billion system with hundreds of
computers, 200 miles of fiber-optic cable, 8000 telephone circuits, and 300
data routers. The system handled the sales without errors or delays

 We rely on them daily.

 Importance of good software engineering and professional responsibility
 How can we design, build, and operate systems that are likely to function well?

 To produce good systems, we must use good software engineering
techniques at all stages of development, including specifications, design,
implementation, documentation, and testing

 Testing

 Include real world testing with real users

25

(c) Paul Fodor (CS Stony Brook) and Pearson

Increasing Reliability and Safety
Professional techniques

 High reliability organizations (HRO) are organizations (business
or government) that operate in difficult environments, often
with complex technology, where failures can have extreme
consequences (for example, air traffic control, nuclear power
plants)

 High reliability organization principles
 preoccupation with failure: always assume something unexpected can

go wrong—not just plan, design, and program for all problems the
team can foresee, but always being aware that they might miss
something

 loose structure: it should be easy for a designer or programmer to
speak to people in other departments or higher up in the company
without going through rigid channels that discourage communication

26

(c) Paul Fodor (CS Stony Brook) and Pearson

Increasing Reliability and Safety
Safety-critical applications

 Identify risks and protect against them

 developers must “design in” safety from the start

 Convincing case for safety

 Avoid complacency

 Example: the night before the scheduled launch of space shuttle
Challenger, the engineers argued for a delay
 they knew the cold weather posed a severe threat to the shuttle

 They could not prove absolutely that a system is safe, nor prove
absolutely that it will fail

 A large piece of insulating foam dislodged and struck the wing of the
Columbia space shuttle as it launched

 NASA knew this happened, but pieces of foam had dislodged and struck
the shuttle on other flights without causing a major problem27

(c) Paul Fodor (CS Stony Brook) and Pearson

Increasing Reliability and Safety
Specifications

 Learn the needs of the client: understand how the client will

use the system

 long planning stage allows for discovering and modifying

unrealistic goals

 One company developed a successful financial system that processes

one trillion dollars in transactions per day spent several years

developing specifications for the system, then only six months

programming, followed by carefully designed, extensive testing

28

(c) Paul Fodor (CS Stony Brook) and Pearson

Increasing Reliability and Safety
User interfaces and human factors

 User interfaces should:

 provide clear instructions and error messages

 be consistent

 include appropriate checking of input to reduce major system failures

caused by typos or other errors a person will likely make

 The crash of American Airlines Flight 965 near Cali, Colombia

 While approaching the airport, the pilot intended to lock the autopilot

onto the beacon, called Rozo, that would lead the plane to the airport

 The pilot typed “R,” and the computer system displayed six beacons

beginning with “R.” Normally, the closest beacon is at the top of the list

 The pilot selected it without checking carefully (it was Romeo,

100miles away).
29

(c) Paul Fodor (CS Stony Brook) and Pearson

Increasing Reliability and Safety
User interfaces and human factors

 The user needs feedback to understand what the system is doing at
any time.

 Ground Proximity Warning system (GPWS) contains a digital map of the
world’s topography and gives warning 1 minute before a crash

 The GWPS is likely responsible for preventing crashes in several incidents in
which pilots incorrectly set an altimeter, attempted to land with poor
visibility, mistook building lights for airport lights

 No commercial U.S. airliner has crashed into a mountain since the GPWS was
implemented

 The system should behave as an experienced user expects.

 A workload that is too low can be dangerous.

 An overworked operator is more likely to make mistakes.

 However, a workload that is too low can lead to boredom, inattention, or lack
of awareness of the current status

30

(c) Paul Fodor (CS Stony Brook) and Pearson

Increasing Reliability and Safety
Redundancy and self-checking

 Redundancy

 Multiple computers capable of same task; if one fails, another can do

the job.

 Voting redundancy

 Software modules can check their own results—either against a

standard or by computing the same thing in two different ways and then

comparing to see if the two results match

 Three independent teams write modules for the same purpose, in three

different programming languages.

 The modules run on three separate computers.

 A fourth unit examines the outputs of the three modules and chooses

the result obtained by at least two out of three

31

(c) Paul Fodor (CS Stony Brook) and Pearson

Increasing Reliability and Safety
Testing

 Even small changes need thorough testing

 Independent verification and validation (IV&V)

 not the programmers nor the customer tests and validation of the
software

 They act as “adversaries” and try to find flaws

 It works for 2 reasons:

 The people who designed and/or developed a system think the system
works.

 They think they thought about potential problems and solved them.

 With the best of intentions, they tend to test for the problems they have
already considered.

 The people who created the system may be reluctant to find flaws in it.

 External IV is not practical for all projects
 Many companies have their own testing teams

32

(c) Paul Fodor (CS Stony Brook) and Pearson

Increasing Reliability and Safety
Testing

 Beta testing

 it is near-final stage of testing

 A selected set of customers use a complete, presumably well-

tested system in their “real-world” environment

 It can detect device limitations and bugs that designers,

programmers, and testers missed.

 It can also uncover confusing aspects of user interfaces and

problems that occur when interfacing with other systems.

33

(c) Paul Fodor (CS Stony Brook) and Pearson

Trust the Human or the Computer System?
 Traffic Collision Avoidance System (TCAS)

 Computers in some airplanes prevent certain pilot actions

 According to the head of the Airline Pilots Association’s safety

committee: it is a great advance in safety,

 Pilots of the Airbus 380 are trained to allow its autopilot system to

control the plane when a midair collision threatens

 Prevents pilots from doing something “stupid”

 Some people object, arguing that the pilot should have ultimate control

in case unusual action is needed in an emergency

34

(c) Paul Fodor (CS Stony Brook) and Pearson

Law, Regulation, and Markets
 Criminal and civil penalties

 Provide incentives to produce good systems, but shouldn't inhibit
innovation

 Are important legal tools for increasing reliability and safety of
computer systems and accuracy of data in databases

 Examples:

 Therac-25 victims sued; they settled out of court.

 Several people have won large judgments against credit bureaus
for incorrect data in credit reports that caused havoc in their lives

35

(c) Paul Fodor (CS Stony Brook) and Pearson

Law, Regulation, and Markets
 Regulation for safety-critical applications

 Specific testing requirements and requirement for approval
by a government agency before a new product can be sold.

 The FDA has regulated drugs and medical devices for
decades.
 Companies must do extensive testing, provide huge quantities of

documentation, and get government approval before they sell new
drugs and some medical devices. A

 Patients do not have the expertise to judge the safety or
reliability of a system

 Overly strict standards can inhibit progress, require
techniques behind the state of the art, and transfer
responsibility from the manufacturer to the government.

36

(c) Paul Fodor (CS Stony Brook) and Pearson

Law, Regulation, and Markets
 Professional licensing

 Mandatory licensing of software development professionals

 Laws require licenses for hundreds of trades and professions

 Licensing requirements typically include specific training, the passing of
competency exams, ethical requirements, and continuing education

 Requirements for specific degrees and training programs, as opposed to
learning on one’s own or on the job, tend to keep poorer people from
qualifying for licenses

 Taking responsibility

 In some cases of computer errors, businesses have an ethical
policy of behaving responsibly and paying for mistakes
(without a lawsuit)
 Intuit offered to pay interest and penalties that resulted from errors

in flawed income-tax programs
37

(c) Paul Fodor (CS Stony Brook) and Pearson

8.4 Dependence, Risk, and Progress
 Are We Too Dependent on Computers?

 Because of their usefulness and flexibility, computers, cellphones,
and similar devices are now virtually everywhere
 Many drivers would be lost if their navigation system failed
 Some military jets cannot fly without the assistance of computers.

 In Holland, no one discovered the body of a reclusive, elderly man
who died in his apartment until six months after his death
 Many of the man’s bills, including rent and utilities, were paid

automatically.
 His pension check went automatically to his bank account
 “All the relevant authorities assumed that he was still alive.”

 In a similar case, an elderly, reclusive woman died in her home.
 Within two days, not six months, the mailman noticed that she

had not taken in her mail
 They are not the only dependence

 Electricity: Computers make decisions; electricity does not38

(c) Paul Fodor (CS Stony Brook) and Pearson

Dependence, Risk, and Progress
 Risk and Progress

 We trust older technologies
 Many new technologies were not very safe when they were first

developed
 We develop and improve new technologies in response to

accidents and disasters
 We should compare the risks of using computers with the risks of

other methods and the benefits to be gained
 The death rate from motor vehicle accidents in the United

States declined almost 80% from 1965 to 2010 (from 5.30 per
100 million vehicle miles traveled to 1.13 per 100 million
vehicle miles traveled).

 The risk of dying in an on-the-job accident dropped from 39
among 100,000 workers (in 1934) to 5 in 100,000 in 2008

 Why?

39

(c) Paul Fodor (CS Stony Brook) and Pearson

Dependence, Risk, and Progress
Discussion Questions

 Do you believe we are too dependent on computers? Why or why not?

 In what ways are we safer due to new technologies?

40

(c) Paul Fodor (CS Stony Brook) and Pearson

Conclusion for this chapter
 There is a “learning curve” for new technologies

 Much is known about how to design, develop, and use complex systems

well and safely. Ethical professionals learn and follow these methods.

 Perfection is not an option. The complexity of computer systems

makes errors, oversights, and failures likely

 This does not mean that we should excuse or ignore computer errors

 Computer system developers and other professionals responsible for

planning and choosing systems must assess risks carefully and honestly,

include safety protections, and make appropriate plans for shutdown of

a system when it fails, for backup systems where appropriate, and for

recovery

 Knowing that one will be liable for the damages one causes is strong

incentive to find improvements and increase safety

41

