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"Historical Origins

™~

® The imperative and functional models grew out of work

undertaken Alan Turing, Alonzo Church, Stephen
Kleene, Emil Post, etc. ~1930s

* different formalizations of the notion of an algorithm,

or effective procedure, based on automata, symbolic
manipulation, recursive function definitions, and
combinatorics

® These results led Church to conjecture that any

intuitively appealing model of computing would be

equally powertul as well

® this conjecture is known as Church'’s thesis
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"Historical Origins

o Turing’s model of computing was the Turing

machine a sort of pushdown automaton using an

unbounded storage “tape”

ethe Turing machine computes in an imperative
way, by changing the values in cells of its tape —

like variables just as a high level imperative

program computes by changing the values of

variables
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"Historical Origins

® Church’s model of computing is called the lambda

calculus

® based on the notion of parameterized expressions
with each parameter introduced by an occurrence of
the letter A.

® Lambda calculus was the inspiration for tunctional
programming,

® Computation by substitution of parameters into

expressions, just as computation by passing

arguments to functions.

® Constructive proof that transforms input into output
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‘'Lambda Calculus

e A = lambda

® Jambda terms consist of:
® variables (a)
® Jambda abstraction (Aa.t)
® application (t s)
® Variables can be bound by lambda abstractions or free:

* Example: in Aa.ab, a is bound, b is free.
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‘'Lambda Calculus

® alpha equivalence: Aa.a = Ab.b
® beta substitution: (Aa.aa) b = bb
® problem: what happens if we substitute a free

variable into a place where it would be bound?

* Example: (Aa.(Ab.ab)) b ¢
wrong: (Ab.Ab) ¢
cC
right: use alpha equivalence to ensure this doesn't happen.
(Aa.(Ad.ad)) b c
(Ad.bd) ¢
bc
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4 N
Functional Programming Concepts

* Functional languages such as Lisp, Scheme, FP, ML,
Miranda, and Haskell are an attempt to realize Church's
lambda calculus in practical form as a programming
language

® The key idea: do everything by composing functions
® no mutable state
® no side effects

® So how do you get anything done in a functional language?
® Recursion takes the place of iteration
® First-call functions take value inputs

. Higher—order functions take a function as input
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4 N
Functional Programming Concepts

 Recursion even does a nifty job of replacing
looping
x = 0; 1 :=1; 73 := 100;
while 1 < 7 do
X = xXx + 1*3; 1 := 1 + 1;
7] = 73 — 1
end while
return x
becomes (0,1,100), where
f(x,1,)) == 1f 1 <] then
f (x+1*), 1+1, J-1) else x

(c) Paul Fodor (CS Stony Brook) and Elsevier




4 N
Functional Programming Concepts

*Necessary features, many of which are
missing in some imperative languages:
*high-order functions
epowertul list facilities
ostructured function returns
*fully general aggregates

o garbage collection

-,




4 N
Functional Programming Concepts

® LISP family of programming languages:
® Pure (original) Lisp
® Interlisp, MacLisp, Emacs Lisp
® Common Lisp

® Scheme
All of them use s-expression syntax: (+ 1 2).

e LISP is old - dates back to 1958 - only Fortran is older.

® Anything in parentheses is a function call (unless quoted)
® (+ 1 2) evaluates to 3

®((+12)) <-error, since 3 is not a function.

® by default, s-expressions are evaluated. We can use the

quote special form to stop that: (quote (1 2 3))

short form: '(1 2 3) is a list containing +, 1, 2
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4 N
Functional Programming Concepts

® Pure Lisp is purely functional; all other Lisps have
imperative features

® All early Lisps: dynamically scoped
® Not clear whether this was deliberate or if it

happened by accident

® Scheme and Common Lisp are statically scoped

® Common Lisp provides dynamic scope as an option

for explicitly—declared special functions

® Common Lisp now THE standard Lisp
Very big; complicated
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‘A Review/Overview of Scheme

®[nterpreter runs a read—eval—print loop

'Things typed into the interpreter are evaluated

(recursively) once

® Names: Scheme is generally a lot more liberal

with the names it allows:

foo? bar+ baz- <--- all valid names
x$ %L&=%*! <--- valid name

® names by default evaluate to their value
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‘A Review/Overview of Scheme
* Conditional expressions:
°(ifab c) =if athenb else c
®Example: (if (<2 3)45)=4
® Example 2: only one of the sub-expressions

evaluates (based on it the condition is true):

(if (> a b) (- a 100) (- b 100))

® Imperative stuff

® assignments

® sequencing (begin)
® jteration

°1/O (read, display)
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‘A Review/Overview of Scheme

® Lamba expressions:
® (lambda (x) (* x x))
® We can apply one or more parameters to it:
((lambda (x) (* x x)) 3)
(* 3 3)
9
* Bindings: (let ((a 1) (b 2)) (+ab))
® in let, all names are bound at once. So if we did:

(let (1) (ba)) (+ ab))

we'd get name from outer scope. It prevents recursive calls.
® letrec puts bindings into effect while being computed (allows

for recursive calls):
(letrec ((fac (lambda (x) (if (= x 0) 1 (* x (fac (- x 1))))))) (tac 10))
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‘A Review/Overview of Scheme

® Define binds a name in the global scope:
(define square (lambda (x) (* x x)))
® |ists:
* pull apart lists:
(car '(1 2 3)) -> 1
(cdr (1 2 3)) -> (2 3)
(cons 1'(2 3)) -> (1 2 3)

o Equality testing:

® (= ab) <- numeric equality
®(eq? 1 2) <- shallow comparison

® (equal? a b) <- deep comparison
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‘A

(-

Review/Overview of Scheme

* Control-flow:
®(begin (display "foo") (display "bar") )
® Special functions:

eecval = takes a list and evaluates it.
Alist: '(+ 1 2) -> (+ 1 2)
Evaluation of a list: (eval '(+ 1 2)) -> 3

Oapply — take a lambda and list: calls the

function with the list as an argument.
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‘A Review/Overview of Scheme

® Evaluation order:

® applicative order:
evaluates arguments before passing them to a function:
((lambda (x) (* x x)) (+ 1 2))
((lambda (x) (* x x) 3)
(*33)
9
® normal order:
passes in arguments before evaluating them:
((lambda (x) (* x x)) (+ 1 2))
(% (+12) (+12)
(+33)
9

® Note: we might want normal order in some code.

(if-tuesday (do-tuesday)) // do-tuesday might print something and we want it only
if it’s Tuesday
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‘A Review/Overview of Scheme

((lambda (x y) (if x (+ y y) 0) t (* 10 10))
Applicative order:
((lambda (x y) (if x (+ y y)) t 100)
(if t (+ 100 100) 0)
(+ 100 100)
200
(four steps !)
Normal Order:
(if t (+ (* 10 10) (* 10 10)) 0)
(+ (* 10 10) (* 10 10))
(+ 100 (* 10 10))
(+ 100 100)
200

(five steps )
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‘A Review/Overview of Scheme

What if we passed in nil instead?
((lambda (x y) (if x (+ y y) 0) nil (* 10 10))
Applicative:
((lambda (x y) (if x (+ y y)) nil 100)
(if nil (+ 100 100) 0)
0
(three steps!)
Normal
Gf nil (+ (% 10 10) (* 10 10)) 0)
0

(two steps)
Both applicative and normal order can do extra work!

Applicative is usually faster, and doesn't require us to pass around

closures all the time.
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‘A Review/Overview of Scheme

® Strict vs Non-Strict:

® We can have code that has an undefined result.
(f) is undefined for
(define f (lambda () (f))) - infinite recursion
(define f (lambda () (/ 1 0)) - divide by O.

® A pure function is:
strict if it is undefined when any of its arguments is undefined,

non-strict if it is defined even when one of its arguments is

undefined.

o Applicative order == strict.

® Normal order == can be non-strict.
® ML, Scheme (except for macros) == strict.

® Haskell == nonstrict.
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‘A Review/Overview of Scheme

* Lazy Evaluation:
® Combines non-strictness of normal-order evaluation with the
speed of applicative order.
® [dea: - Passin closure. - Evaluate it once. - Store result in
memo. - Next time, just return memo.

® Example 1: ((lambda (a b) (it a (+ b b) nil)) t (expensivefunc))

(if t (+ (expensivetunc) (expensivetunc)) nil)
(+ (expensivefunc) (expensivefunc))
(T 42 (expensivefunc)) <- takes a long time.
(T 42 42) <- very fast.
84
® Example?2: ((lambda (a b) (if a (+ b b) nil)) nil (expensivefunc))

(if nil (+ (expensivefunc) (expensivefunc)) nil)

a nil = never evaluated expensivefunc! win!
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5 C u rryl n g Named for Haskell Curry

Example: let a function add that take two arguments:
int add(int a,int b) { returna + b;}
with the type signature:
(int, int) -> int , i.e., takes 2 integers, returns an int.
We can curry this, to create a function with signature:
int -> (int -> int)
using the curried version:
f=add(1)
print {(2)
-> prints out 3.

Really useful in practice, even in non-fp languages.

Some languages use currying as their main function—calling semantics
(ML): fun add a b : int = a + b; ML's calling conventions make
this easier to work with: add 1

add 1 2 (There's no need to delimit arguments. )
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‘Pattern Matching

¢ It's common for FP languages to include pattern

matching operations:
matching on value,
matching on type,
matching on structure (useful for lists).
®* ML example:
fun sum_even | =
case | of
nil => 0
| b::nil =>0
| a::b::t=>h+ sum_even t;
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"Memoization

® Caching Results of Previous Computations (LISP):
(defun fib (n) (if (K= n 1) 1 (+ (fib (- n 1)) (fib (- n 2)))))
(setf memo-fib (memo #'fib))
(funcall memo-tib 3)
—> 3
(fib 5)
—> 8
(fib 6)
=>13)
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'LISP

(+22)
—> 4
(+12345678910)
=> 55
(- (+ 9000 900 90 9) (+ 5000 500 50 5))
=> 4444)
(append '(Pat Kim) '(Robin Sandy))
=> (PAT KIM ROBIN SANDY)
'(pat Kim)

@ > (PAT KIM))
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'LISP

(-

(setf p '(John Q Public))

(tirst p))

(restp))
(second p))

(third p))

(fourth p))

(length p))

(setf names '((John Q Public) (Malcolm X) (Miss Scarlet))
(first (first names))

=> JOHN)

(apply #'+ '(1 2 3 4))

=>10
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'LISP

(remove 1 '(123210-1))
=>(2320-1)

® Destructive lists:

(setqx '(abc))

(setqy (12 3))

(nconc x y)
=>(abc123)
X

=>(abc123)

=> (12 3)
@ (c) Paul Fodor (CS Stony Brook) and Elsevier




" A Bit of OCaml|

« OCaml Is a descendent of ML, and
cousin to Haskell, F#

—*“0” stands for objective, referencing the
object orientation introduced in the 1990s

— Interpreter runs a read-eval-print loop like
In Scheme

—Things typed into the Interpreter are
evaluated (recursively) once

—Parentheses are NOT function calls, but
Indicate tuples
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A Bit of OCaml|

¢ Ocaml:
® Boolean values

e Numbers

® Chars

® Strings

® More complex types created by lists, arrays,
records, objects, etc.

®(+ -* /) torints, (+.-.%*. /.) for floats

* let keyword for creating new names

let average = fun x y -> (x +. V)
/. 2.;;
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" A Bit of OCaml

« Ocaml:
—Variant Types
type 'a tree = Empty | Node of 'a * 'a tree * 'a tree;;

—Pattern matching
let atomic number (s, n, w) = n;;
let mercury = ("Hg", 80, 200.592);;

atomic number mercury;; = 80
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" A Bit of OCaml

® OCaml:
e Different assignments for references ‘ : =’ and array elements
\ < _7

let Insertion sort a =

for 1 = 1 to Array.length a - 1 do
let £t = a. (1) 1in
let j = ref 1 in
while '3 > 0 && £t < a.(!3 - 1) do

a.(!'73) <= a.(l'3 - 1);
joi=13 -1
done;
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™~
Functional Programming in Perspective

o Advantages of functional languages

® lack of side effects makes programs easier to

understand

® Jack of explicit evaluation order (in some languages)

offers possibility of parallel evaluation (e.g.
MultiLisp)

® Jack of side effects and explicit evaluation order

simplifies some things for a compiler

® programs are often surprisingly short

o language can be extremely small and yet powerful
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Functional Programming in Perspective

® Problems

® difficult (but not impossible!) to implement

efficiently on von Neumann machines

lots of copying of data through parameters

frequent procedure calls

heavy space use for recursion

requires garbage collection

requires a different mode of thinking by the programmer

difficult to integrate [/O into purely functional model
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4 ™
Functional Programming in Perspective

e Other languages are embracing and integrating the concepts of

Functional Programming:

® Java 8 - Higher Order Functions:
® Methods: Math#add(int, int) — static
Math#add(int)(int) — dynamic method

e If an interface contains one method, then a method with the
right signature can be an instance that implements that
interface:
button.addActionListener(this#onButton(ActionEvent))

® Also adds inner methods, anonymous inner methods.
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