
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Functional Languages

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Historical Origins
 The imperative and functional models grew out of work

undertaken Alan Turing, Alonzo Church, Stephen

Kleene, Emil Post, etc. ~1930s

different formalizations of the notion of an algorithm,

or effective procedure, based on automata, symbolic

manipulation, recursive function definitions, and

combinatorics

 These results led Church to conjecture that any

intuitively appealing model of computing would be

equally powerful as well

 this conjecture is known as Church’s thesis
2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Turing’s model of computing was the Turing

machine a sort of pushdown automaton using an

unbounded storage “tape”

the Turing machine computes in an imperative

way, by changing the values in cells of its tape –

like variables just as a high level imperative

program computes by changing the values of

variables

3

Historical Origins

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Church’s model of computing is called the lambda

calculus

based on the notion of parameterized expressions

with each parameter introduced by an occurrence of

the letter λ.

Lambda calculus was the inspiration for functional

programming.

Computation by substitution of parameters into

expressions, just as computation by passing

arguments to functions.

Constructive proof that transforms input into output
4

Historical Origins

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lambda Calculus
 λ = lambda

 lambda terms consist of:

variables (a)

 lambda abstraction (λa.t)

application (t s)

 Variables can be bound by lambda abstractions or free:

Example: in λa.ab, a is bound, b is free.

5

(c) Paul Fodor (CS Stony Brook) and Elsevier

 alpha equivalence: λa.a = λb.b

 beta substitution: (λa.aa) b = bb

problem: what happens if we substitute a free

variable into a place where it would be bound?

Example: (λa.(λb.ab)) b c
 wrong: (λb.λb) c

cc

 right: use alpha equivalence to ensure this doesn't happen.

(λa.(λd.ad)) b c

(λd.bd) c

bc

6

Lambda Calculus

(c) Paul Fodor (CS Stony Brook) and Elsevier

Functional Programming Concepts
 Functional languages such as Lisp, Scheme, FP, ML,

Miranda, and Haskell are an attempt to realize Church's

lambda calculus in practical form as a programming

language

 The key idea: do everything by composing functions

no mutable state

no side effects

 So how do you get anything done in a functional language?

Recursion takes the place of iteration

First-call functions take value inputs

Higher-order functions take a function as input
7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Functional Programming Concepts
• Recursion even does a nifty job of replacing

looping
x := 0; i := 1; j := 100;

while i < j do

x := x + i*j; i := i + 1;

j := j - 1

end while

return x

becomes f(0,1,100), where
f(x,i,j) == if i < j then
f (x+i*j, i+1, j-1) else x

8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Necessary features, many of which are

missing in some imperative languages:

high-order functions

powerful list facilities

structured function returns

fully general aggregates

garbage collection

9

Functional Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

 LISP family of programming languages:

 Pure (original) Lisp

 Interlisp, MacLisp, Emacs Lisp

 Common Lisp

 Scheme
 All of them use s-expression syntax: (+ 1 2).

 LISP is old - dates back to 1958 - only Fortran is older.

 Anything in parentheses is a function call (unless quoted)

 (+ 1 2) evaluates to 3

((+ 1 2)) <- error, since 3 is not a function.
 by default, s-expressions are evaluated. We can use the

quote special form to stop that: (quote (1 2 3))
 short form: '(1 2 3) is a list containing +, 1, 2

10

Functional Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Pure Lisp is purely functional; all other Lisps have

imperative features

 All early Lisps: dynamically scoped

Not clear whether this was deliberate or if it

happened by accident

 Scheme and Common Lisp are statically scoped

Common Lisp provides dynamic scope as an option

for explicitly-declared special functions

Common Lisp now THE standard Lisp

 Very big; complicated

11

Functional Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

A Review/Overview of Scheme
Interpreter runs a read-eval-print loop

Things typed into the interpreter are evaluated

(recursively) once

Names: Scheme is generally a lot more liberal

with the names it allows:

 foo? bar+ baz- <--- all valid names

x$_%L&=*! <--- valid name

names by default evaluate to their value

12

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Conditional expressions:

(if a b c) = if a then b else c

Example: (if (< 2 3) 4 5) ⇒ 4

Example 2: only one of the sub-expressions

evaluates (based on if the condition is true):

(if (> a b) (- a 100) (- b 100))

 Imperative stuff

assignments

sequencing (begin)

 iteration

 I/O (read, display)
13

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Lamba expressions:

 (lambda (x) (* x x))

 We can apply one or more parameters to it:
((lambda (x) (* x x)) 3)

(* 3 3)

9

 Bindings: (let ((a 1) (b 2)) (+ a b))

 in let, all names are bound at once. So if we did:
(let ((a 1) (b a)) (+ a b))

 we'd get name from outer scope. It prevents recursive calls.

 letrec puts bindings into effect while being computed (allows

for recursive calls):
(letrec ((fac (lambda (x) (if (= x 0) 1 (* x (fac (- x 1))))))) (fac 10))

14

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Define binds a name in the global scope:
(define square (lambda (x) (* x x)))

 Lists:

pull apart lists:
(car '(1 2 3)) -> 1

(cdr '(1 2 3)) -> (2 3)

(cons 1 '(2 3)) -> (1 2 3)

 Equality testing:

(= a b) <- numeric equality

(eq? 1 2) <- shallow comparison

(equal? a b) <- deep comparison

15

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control-flow:

(begin (display "foo") (display "bar"))

Special functions:

eval = takes a list and evaluates it.

A list: '(+ 1 2) -> (+ 1 2)

Evaluation of a list: (eval '(+ 1 2)) -> 3

apply = take a lambda and list: calls the

function with the list as an argument.

16

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Evaluation order:

 applicative order:
 evaluates arguments before passing them to a function:

((lambda (x) (* x x)) (+ 1 2))

((lambda (x) (* x x) 3)

(* 3 3)

9

 normal order:
 passes in arguments before evaluating them:

((lambda (x) (* x x)) (+ 1 2))

(* (+ 1 2) (+ 1 2))

(* 3 3)

9

 Note: we might want normal order in some code.
(if-tuesday (do-tuesday)) // do-tuesday might print something and we want it only

if it’s Tuesday

17

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 ((lambda (x y) (if x (+ y y) 0) t (* 10 10))

 Applicative order:

((lambda (x y) (if x (+ y y)) t 100)

(if t (+ 100 100) 0)

(+ 100 100)

200

 (four steps !)

 Normal Order:

(if t (+ (* 10 10) (* 10 10)) 0)

(+ (* 10 10) (* 10 10))

(+ 100 (* 10 10))

(+ 100 100)

200

 (five steps !)
18

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 What if we passed in nil instead?

 ((lambda (x y) (if x (+ y y) 0) nil (* 10 10))

 Applicative:

((lambda (x y) (if x (+ y y)) nil 100)

(if nil (+ 100 100) 0)

0

 (three steps!)

 Normal

(if nil (+ (* 10 10) (* 10 10)) 0)

0

 (two steps)

 Both applicative and normal order can do extra work!

 Applicative is usually faster, and doesn't require us to pass around

closures all the time.

19

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Strict vs Non-Strict:

 We can have code that has an undefined result.
 (f) is undefined for

(define f (lambda () (f))) - infinite recursion

(define f (lambda () (/ 1 0)) - divide by 0.

 A pure function is:
 strict if it is undefined when any of its arguments is undefined,

 non-strict if it is defined even when one of its arguments is

undefined.

 Applicative order == strict.

 Normal order == can be non-strict.

 ML, Scheme (except for macros) == strict.

 Haskell == nonstrict.
20

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Lazy Evaluation:

 Combines non-strictness of normal-order evaluation with the

speed of applicative order.

 Idea: - Pass in closure. - Evaluate it once. - Store result in

memo. - Next time, just return memo.

 Example 1: ((lambda (a b) (if a (+ b b) nil)) t (expensivefunc))
(if t (+ (expensivefunc) (expensivefunc)) nil)

(+ (expensivefunc) (expensivefunc))

(+ 42 (expensivefunc)) <- takes a long time.

(+ 42 42) <- very fast.

84

 Example2: ((lambda (a b) (if a (+ b b) nil)) nil (expensivefunc))
(if nil (+ (expensivefunc) (expensivefunc)) nil)

nil  never evaluated expensivefunc! win!
21

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

Currying
 Example: let a function add that take two arguments:

int add(int a, int b) { return a + b; }

 with the type signature:

(int, int) -> int , i.e., takes 2 integers, returns an int.

 We can curry this, to create a function with signature:

int -> (int -> int)

 using the curried version:

f = add(1)

print f(2)

-> prints out 3.

 Really useful in practice, even in non-fp languages.

 Some languages use currying as their main function-calling semantics

(ML): fun add a b : int = a + b; ML's calling conventions make

this easier to work with: add 1

add 1 2 (There's no need to delimit arguments.)
22

Named for Haskell Curry

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pattern Matching
 It's common for FP languages to include pattern

matching operations:

 matching on value,

 matching on type,

 matching on structure (useful for lists).

ML example:

fun sum_even l =

case l of

nil => 0

| b :: nil => 0

| a :: b :: t => h + sum_even t;
23

(c) Paul Fodor (CS Stony Brook) and Elsevier

Memoization
 Caching Results of Previous Computations (LISP):

(defun fib (n) (if (<= n 1) 1 (+ (fib (- n 1)) (fib (- n 2)))))

(setf memo-fib (memo #'fib))

(funcall memo-fib 3)

=> 3

(fib 5)

=> 8

(fib 6)

=> 13)

24

(c) Paul Fodor (CS Stony Brook) and Elsevier

LISP
(+ 2 2)

=> 4

(+ 1 2 3 4 5 6 7 8 9 10)

=> 55

(- (+ 9000 900 90 9) (+ 5000 500 50 5))

=> 4444)

(append '(Pat Kim) '(Robin Sandy))

=> (PAT KIM ROBIN SANDY)

'(pat Kim)

=> (PAT KIM))
25

(c) Paul Fodor (CS Stony Brook) and Elsevier

(setf p '(John Q Public))

(first p))

(rest p))

(second p))

(third p))

(fourth p))

(length p))

(setf names '((John Q Public) (Malcolm X) (Miss Scarlet))

(first (first names))

=> JOHN)

(apply #'+ '(1 2 3 4))

=> 10

26

LISP

(c) Paul Fodor (CS Stony Brook) and Elsevier

(remove 1 '(1 2 3 2 1 0 -1))

=> (2 3 2 0 -1)

 Destructive lists:

(setq x '(a b c))

(setq y '(1 2 3))

(nconc x y)

=> (a b c 1 2 3)

x

=> (a b c 1 2 3)

y

=> (1 2 3)
27

LISP

(c) Paul Fodor (CS Stony Brook) and Elsevier

• OCaml is a descendent of ML, and
cousin to Haskell, F#
– “O” stands for objective, referencing the

object orientation introduced in the 1990s
– Interpreter runs a read-eval-print loop like

in Scheme
– Things typed into the interpreter are

evaluated (recursively) once
– Parentheses are NOT function calls, but

indicate tuples

28

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Ocaml:

 Boolean values

 Numbers

 Chars

Strings

More complex types created by lists, arrays,

records, objects, etc.

(+ - * /) for ints, (+. -. *. /.) for floats

 let keyword for creating new names

let average = fun x y -> (x +. y)

/. 2.;;29

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

• Ocaml:
–Variant Types

type 'a tree = Empty | Node of 'a * 'a tree * 'a tree;;

–Pattern matching

let atomic_number (s, n, w) = n;;

let mercury = ("Hg", 80, 200.592);;

atomic_number mercury;; ⇒ 80

30

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

 OCaml:

 Different assignments for references ‘:=’ and array elements

‘<-’

let insertion_sort a =

for i = 1 to Array.length a - 1 do

let t = a.(i) in

let j = ref i in

while !j > 0 && t < a.(!j - 1) do

a.(!j) <- a.(!j - 1);

j := !j - 1

done;

a.(!j) <- t

done;;

31

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

 OCaml:

 Different assignments for references ‘:=’ and array elements

‘<-’

let insertion_sort a =

for i = 1 to Array.length a - 1 do

let t = a.(i) in

let j = ref i in

while !j > 0 && t < a.(!j - 1) do

a.(!j) <- a.(!j - 1);

j := !j - 1

done;

a.(!j) <- t

done;;

32

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

Functional Programming in Perspective

 Advantages of functional languages

 lack of side effects makes programs easier to

understand

 lack of explicit evaluation order (in some languages)

offers possibility of parallel evaluation (e.g.

MultiLisp)

 lack of side effects and explicit evaluation order

simplifies some things for a compiler

programs are often surprisingly short

 language can be extremely small and yet powerful

33

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Problems

difficult (but not impossible!) to implement

efficiently on von Neumann machines

 lots of copying of data through parameters

 frequent procedure calls

 heavy space use for recursion

 requires garbage collection

 requires a different mode of thinking by the programmer

 difficult to integrate I/O into purely functional model

34

Functional Programming in Perspective

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Other languages are embracing and integrating the concepts of

Functional Programming:

 Java 8 - Higher Order Functions:

 Methods: Math#add(int, int) – static

Math#add(int)(int) – dynamic method

 If an interface contains one method, then a method with the

right signature can be an instance that implements that

interface:

button.addActionListener(this#onButton(ActionEvent))

 Also adds inner methods, anonymous inner methods.

35

Functional Programming in Perspective

