Functional Languages

CSE 307 — Principles of Programming Languages
Stony Brook University

http: //www. cs.stonybrook.edu/ ~cse307



http://www.cs.stonybrook.edu/~cse307

"Historical Origins

™~

® The imperative and functional models grew out of work

undertaken Alan Turing, Alonzo Church, Stephen
Kleene, Emil Post, etc. ~1930s

* different formalizations of the notion of an algorithm,

or effective procedure, based on automata, symbolic
manipulation, recursive function definitions, and
combinatorics

® These results led Church to conjecture that any

intuitively appealing model of computing would be

equally powertul as well

® this conjecture is known as Church'’s thesis

\ (c) Paul Fodor (CS Stony Brook) and Elsevier




"Historical Origins

o Turing’s model of computing was the Turing

machine a sort of pushdown automaton using an

unbounded storage “tape”

ethe Turing machine computes in an imperative
way, by changing the values in cells of its tape —

like variables just as a high level imperative

program computes by changing the values of

variables

(c) Paul Fodor (CS Stony Brook) and Elsevier




"Historical Origins

® Church’s model of computing is called the lambda

calculus

® based on the notion of parameterized expressions
with each parameter introduced by an occurrence of
the letter A.

® Lambda calculus was the inspiration for tunctional
programming,

® Computation by substitution of parameters into

expressions, just as computation by passing

arguments to functions.

® Constructive proof that transforms input into output

@ (c) Paul Fodor (CS Stony Brook) and Elsevier /




‘'Lambda Calculus

e A = lambda

® Jambda terms consist of:
® variables (a)
® Jambda abstraction (Aa.t)
® application (t s)
® Variables can be bound by lambda abstractions or free:

* Example: in Aa.ab, a is bound, b is free.

(c) Paul Fodor (CS Stony Brook) and Elsevier /




‘'Lambda Calculus

® alpha equivalence: Aa.a = Ab.b
® beta substitution: (Aa.aa) b = bb
® problem: what happens if we substitute a free

variable into a place where it would be bound?

* Example: (Aa.(Ab.ab)) b ¢
wrong: (Ab.Ab) ¢
cC
right: use alpha equivalence to ensure this doesn't happen.
(Aa.(Ad.ad)) b c
(Ad.bd) ¢
bc

(c) Paul Fodor (CS Stony Brook) and Elsevier /




4 N
Functional Programming Concepts

* Functional languages such as Lisp, Scheme, FP, ML,
Miranda, and Haskell are an attempt to realize Church's
lambda calculus in practical form as a programming
language

® The key idea: do everything by composing functions
® no mutable state
® no side effects

® So how do you get anything done in a functional language?
® Recursion takes the place of iteration
® First-call functions take value inputs

. Higher—order functions take a function as input

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




4 N
Functional Programming Concepts

 Recursion even does a nifty job of replacing
looping
x = 0; 1 :=1; 73 := 100;
while 1 < 7 do
X = xXx + 1*3; 1 := 1 + 1;
7] = 73 — 1
end while
return x
becomes (0,1,100), where
f(x,1,)) == 1f 1 <] then
f (x+1*), 1+1, J-1) else x

(c) Paul Fodor (CS Stony Brook) and Elsevier




4 N
Functional Programming Concepts

*Necessary features, many of which are
missing in some imperative languages:
*high-order functions
epowertul list facilities
ostructured function returns
*fully general aggregates

o garbage collection

-,




4 N
Functional Programming Concepts

® LISP family of programming languages:
® Pure (original) Lisp
® Interlisp, MacLisp, Emacs Lisp
® Common Lisp

® Scheme
All of them use s-expression syntax: (+ 1 2).

e LISP is old - dates back to 1958 - only Fortran is older.

® Anything in parentheses is a function call (unless quoted)
® (+ 1 2) evaluates to 3

®((+12)) <-error, since 3 is not a function.

® by default, s-expressions are evaluated. We can use the

quote special form to stop that: (quote (1 2 3))

short form: '(1 2 3) is a list containing +, 1, 2

(c) Paul Fodor (CS Stony Brook) and Elsevier




4 N
Functional Programming Concepts

® Pure Lisp is purely functional; all other Lisps have
imperative features

® All early Lisps: dynamically scoped
® Not clear whether this was deliberate or if it

happened by accident

® Scheme and Common Lisp are statically scoped

® Common Lisp provides dynamic scope as an option

for explicitly—declared special functions

® Common Lisp now THE standard Lisp
Very big; complicated

(c) Paul Fodor (CS Stony Brook) and Elsevier




‘A Review/Overview of Scheme

®[nterpreter runs a read—eval—print loop

'Things typed into the interpreter are evaluated

(recursively) once

® Names: Scheme is generally a lot more liberal

with the names it allows:

foo? bar+ baz- <--- all valid names
x$ %L&=%*! <--- valid name

® names by default evaluate to their value

(c) Paul Fodor (CS Stony Brook) and Elsevier




‘A Review/Overview of Scheme
* Conditional expressions:
°(ifab c) =if athenb else c
®Example: (if (<2 3)45)=4
® Example 2: only one of the sub-expressions

evaluates (based on it the condition is true):

(if (> a b) (- a 100) (- b 100))

® Imperative stuff

® assignments

® sequencing (begin)
® jteration

°1/O (read, display)

(c) Paul Fodor (CS Stony Brook) and Elsevier




‘A Review/Overview of Scheme

® Lamba expressions:
® (lambda (x) (* x x))
® We can apply one or more parameters to it:
((lambda (x) (* x x)) 3)
(* 3 3)
9
* Bindings: (let ((a 1) (b 2)) (+ab))
® in let, all names are bound at once. So if we did:

(let (1) (ba)) (+ ab))

we'd get name from outer scope. It prevents recursive calls.
® letrec puts bindings into effect while being computed (allows

for recursive calls):
(letrec ((fac (lambda (x) (if (= x 0) 1 (* x (fac (- x 1))))))) (tac 10))

@ (c) Paul Fodor (CS Stony Brook) and Elsevier /




‘A Review/Overview of Scheme

® Define binds a name in the global scope:
(define square (lambda (x) (* x x)))
® |ists:
* pull apart lists:
(car '(1 2 3)) -> 1
(cdr (1 2 3)) -> (2 3)
(cons 1'(2 3)) -> (1 2 3)

o Equality testing:

® (= ab) <- numeric equality
®(eq? 1 2) <- shallow comparison

® (equal? a b) <- deep comparison

(c) Paul Fodor (CS Stony Brook) and Elsevier




‘A

(-

Review/Overview of Scheme

* Control-flow:
®(begin (display "foo") (display "bar") )
® Special functions:

eecval = takes a list and evaluates it.
Alist: '(+ 1 2) -> (+ 1 2)
Evaluation of a list: (eval '(+ 1 2)) -> 3

Oapply — take a lambda and list: calls the

function with the list as an argument.

(c) Paul Fodor (CS Stony Brook) and Elsevier




‘A Review/Overview of Scheme

® Evaluation order:

® applicative order:
evaluates arguments before passing them to a function:
((lambda (x) (* x x)) (+ 1 2))
((lambda (x) (* x x) 3)
(*33)
9
® normal order:
passes in arguments before evaluating them:
((lambda (x) (* x x)) (+ 1 2))
(% (+12) (+12)
(+33)
9

® Note: we might want normal order in some code.

(if-tuesday (do-tuesday)) // do-tuesday might print something and we want it only
if it’s Tuesday

(c) Paul Fodor (CS Stony Brook) and Elsevier /




‘A Review/Overview of Scheme

((lambda (x y) (if x (+ y y) 0) t (* 10 10))
Applicative order:
((lambda (x y) (if x (+ y y)) t 100)
(if t (+ 100 100) 0)
(+ 100 100)
200
(four steps !)
Normal Order:
(if t (+ (* 10 10) (* 10 10)) 0)
(+ (* 10 10) (* 10 10))
(+ 100 (* 10 10))
(+ 100 100)
200

(five steps )

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




‘A Review/Overview of Scheme

What if we passed in nil instead?
((lambda (x y) (if x (+ y y) 0) nil (* 10 10))
Applicative:
((lambda (x y) (if x (+ y y)) nil 100)
(if nil (+ 100 100) 0)
0
(three steps!)
Normal
Gf nil (+ (% 10 10) (* 10 10)) 0)
0

(two steps)
Both applicative and normal order can do extra work!

Applicative is usually faster, and doesn't require us to pass around

closures all the time.

(c) Paul Fodor (CS Stony Brook) and Elsevier /




‘A Review/Overview of Scheme

® Strict vs Non-Strict:

® We can have code that has an undefined result.
(f) is undefined for
(define f (lambda () (f))) - infinite recursion
(define f (lambda () (/ 1 0)) - divide by O.

® A pure function is:
strict if it is undefined when any of its arguments is undefined,

non-strict if it is defined even when one of its arguments is

undefined.

o Applicative order == strict.

® Normal order == can be non-strict.
® ML, Scheme (except for macros) == strict.

® Haskell == nonstrict.

(c) Paul Fodor (CS Stony Brook) and Elsevier




‘A Review/Overview of Scheme

* Lazy Evaluation:
® Combines non-strictness of normal-order evaluation with the
speed of applicative order.
® [dea: - Passin closure. - Evaluate it once. - Store result in
memo. - Next time, just return memo.

® Example 1: ((lambda (a b) (it a (+ b b) nil)) t (expensivefunc))

(if t (+ (expensivetunc) (expensivetunc)) nil)
(+ (expensivefunc) (expensivefunc))
(T 42 (expensivefunc)) <- takes a long time.
(T 42 42) <- very fast.
84
® Example?2: ((lambda (a b) (if a (+ b b) nil)) nil (expensivefunc))

(if nil (+ (expensivefunc) (expensivefunc)) nil)

a nil = never evaluated expensivefunc! win!

(c) Paul Fodor (CS Stony Brook) and Elsevier /




™~

5 C u rryl n g Named for Haskell Curry

Example: let a function add that take two arguments:
int add(int a,int b) { returna + b;}
with the type signature:
(int, int) -> int , i.e., takes 2 integers, returns an int.
We can curry this, to create a function with signature:
int -> (int -> int)
using the curried version:
f=add(1)
print {(2)
-> prints out 3.

Really useful in practice, even in non-fp languages.

Some languages use currying as their main function—calling semantics
(ML): fun add a b : int = a + b; ML's calling conventions make
this easier to work with: add 1

add 1 2 (There's no need to delimit arguments. )

(c) Paul Fodor (CS Stony Brook) and Elsevier /




‘Pattern Matching

¢ It's common for FP languages to include pattern

matching operations:
matching on value,
matching on type,
matching on structure (useful for lists).
®* ML example:
fun sum_even | =
case | of
nil => 0
| b::nil =>0
| a::b::t=>h+ sum_even t;

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




"Memoization

® Caching Results of Previous Computations (LISP):
(defun fib (n) (if (K= n 1) 1 (+ (fib (- n 1)) (fib (- n 2)))))
(setf memo-fib (memo #'fib))
(funcall memo-tib 3)
—> 3
(fib 5)
—> 8
(fib 6)
=>13)

@ (c) Paul Fodor (CS Stony Brook) and Elsevier /




'LISP

(+22)
—> 4
(+12345678910)
=> 55
(- (+ 9000 900 90 9) (+ 5000 500 50 5))
=> 4444)
(append '(Pat Kim) '(Robin Sandy))
=> (PAT KIM ROBIN SANDY)
'(pat Kim)

@ > (PAT KIM))

(c) Paul Fodor (CS Stony Brook) and Elsevier




'LISP

(-

(setf p '(John Q Public))

(tirst p))

(restp))
(second p))

(third p))

(fourth p))

(length p))

(setf names '((John Q Public) (Malcolm X) (Miss Scarlet))
(first (first names))

=> JOHN)

(apply #'+ '(1 2 3 4))

=>10

(c) Paul Fodor (CS Stony Brook) and Elsevier




'LISP

(remove 1 '(123210-1))
=>(2320-1)

® Destructive lists:

(setqx '(abc))

(setqy (12 3))

(nconc x y)
=>(abc123)
X

=>(abc123)

=> (12 3)
@ (c) Paul Fodor (CS Stony Brook) and Elsevier




" A Bit of OCaml|

« OCaml Is a descendent of ML, and
cousin to Haskell, F#

—*“0” stands for objective, referencing the
object orientation introduced in the 1990s

— Interpreter runs a read-eval-print loop like
In Scheme

—Things typed into the Interpreter are
evaluated (recursively) once

—Parentheses are NOT function calls, but
Indicate tuples

(c) Paul Fodor (CS Stony Brook) and Elsevier




e

(-

A Bit of OCaml|

¢ Ocaml:
® Boolean values

e Numbers

® Chars

® Strings

® More complex types created by lists, arrays,
records, objects, etc.

®(+ -* /) torints, (+.-.%*. /.) for floats

* let keyword for creating new names

let average = fun x y -> (x +. V)
/. 2.;;

(c) Paul Fodor (CS Stony Brook) and Elsevier




" A Bit of OCaml

« Ocaml:
—Variant Types
type 'a tree = Empty | Node of 'a * 'a tree * 'a tree;;

—Pattern matching
let atomic number (s, n, w) = n;;
let mercury = ("Hg", 80, 200.592);;

atomic number mercury;; = 80

(c) Paul Fodor (CS Stony Brook) and Elsevier




" A Bit of OCaml

® OCaml:
e Different assignments for references ‘ : =’ and array elements
\ < _7

let Insertion sort a =

for 1 = 1 to Array.length a - 1 do
let £t = a. (1) 1in
let j = ref 1 in
while '3 > 0 && £t < a.(!3 - 1) do

a.(!'73) <= a.(l'3 - 1);
joi=13 -1
done;

(c) Paul Fodor (CS Stony Brook) and Elsevier




" A Bit of OCaml

® OCaml:
e Different assignments for references ‘ : =’ and array elements
\ < _7

let Insertion sort a =

for 1 = 1 to Array.length a - 1 do
let £t = a. (1) 1in
let j = ref 1 in
while '3 > 0 && £t < a.(!3 - 1) do

a.(!'73) <= a.(l'3 - 1);
joi=13 -1
done;

(c) Paul Fodor (CS Stony Brook) and Elsevier




e

™~
Functional Programming in Perspective

o Advantages of functional languages

® lack of side effects makes programs easier to

understand

® Jack of explicit evaluation order (in some languages)

offers possibility of parallel evaluation (e.g.
MultiLisp)

® Jack of side effects and explicit evaluation order

simplifies some things for a compiler

® programs are often surprisingly short

o language can be extremely small and yet powerful

(c) Paul Fodor (CS Stony Brook) and Elsevier /




e

™~
Functional Programming in Perspective

® Problems

® difficult (but not impossible!) to implement

efficiently on von Neumann machines

lots of copying of data through parameters

frequent procedure calls

heavy space use for recursion

requires garbage collection

requires a different mode of thinking by the programmer

difficult to integrate [/O into purely functional model

(c) Paul Fodor (CS Stony Brook) and Elsevier




4 ™
Functional Programming in Perspective

e Other languages are embracing and integrating the concepts of

Functional Programming:

® Java 8 - Higher Order Functions:
® Methods: Math#add(int, int) — static
Math#add(int)(int) — dynamic method

e If an interface contains one method, then a method with the
right signature can be an instance that implements that
interface:
button.addActionListener(this#onButton(ActionEvent))

® Also adds inner methods, anonymous inner methods.

@ (c) Paul Fodor (CS Stony Brook) and Elsevier /




