
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Control Flow

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Specifying the Semantics of Programs
 Operational Semantics:

 Give how a program would cause a machine to behave (e.g., the

execution of an annotated grammar in imperative parsing with actions)
 The machine can be abstract, but it is still operational (for example, a machine has

unlimited number of registers).

 Control flow (the order of execution is very important)

 Denotational Semantics:
 Each phrase in the language is interpreted as a denotation: a conceptual

meaning as a mathematical object in a mathematical space
 For example, denotational semantics of functional languages often translate the

language into domain theory (or as functions from states to states)

 Axiomatic Semantics: map the language statements to some

logic = their meaning is exactly what can be proven about them

in the logic.

2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control Flow
 Control flow is the ordering in program execution

 Ordering mechanisms:
 Sequencing: statements are executed in the order in which

they appear in the program (e.g., inside a method in imperative

programming),

 Selection/alternation: a choice is made based on a condition

(e.g., if and case switch statements),

 Iteration: a fragment of code is to be executed repeatedly

either a certain number of times or until a certain run time

condition is true (e.g., for, do while and repeat loops)

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Procedural Abstraction: a subroutine is encapsulated in a way

that allows it to be treated as a single unit (usually subject to

parameterization)

 Recursion: an expression is defined in terms of simpler versions

of itself either directly or indirectly (the computational model

requires a stack on which to save information about partially

evaluated instances of the expression – implemented with

subroutines)

 Concurrency: two or more program fragments are to be

executed at the same time either in parallel on separate

processors or interleaved on a single processor in a way that

achieves the same effect.

4

Control Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Exception Handling and Speculation: if the execution

encounters a special exception, then it branches to a handler

that executes in place of the remainder of the protected

fragment or in place of the entire protected fragment in the

case of speculation (for speculation, the language

implementation must be able to roll back any visible effects of

the protected code)

 Nondeterminacy: the choice among statements is deliberately

left unspecified implying that any alternative will lead to

correct results (e.g., rule selection in logic programming)

 Backtracking: implementation/execution mechanism in logic

programming

5

Control Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

Sequencing is central to imperative

languages (von Neumann architecture)

Logic programming and functional

languages make heavy use of recursion

6

Control Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

Expression Evaluation
An expression is a statement which always

produces a value

An expression consists of:

simple things: literal or variable

 functions or expressions applied to expressions

Operators are built-in functions that use a special,

simple syntax

 operands are the arguments of an operator

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Notation: whether the function name appears before,

among, or after its several arguments

 Infix operators, e.g., 1 + 2

Prefix operators, e.g., (-1), + 1 2 Polish notation

Postfix operators (reverse Polish), e.g., 1 2 3 * +

 Most imperative languages use infix notation for binary

operators and prefix notation for unary operators.

 Lisp uses prefix notation for all functions, Cambridge

Polish notation: (* (+ 1 3) 2), (append a b)

 Prolog uses the infix notation in the UI: X is 1+2 and

the prefix notation internally (e.g., is(X,+(1,2)))
8

Expression Notation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Precedence and Associativity: when written in infix notation,

without parentheses, the operators lead to ambiguity as to what

is an operand of what.

 E.g., a + b * c**d**e/f

 Answer: a + ((b * (c**(d**e)))/f)

 Neither ((((a + b) * c)**d)**e)/f nor a + (((b * c)**d)**(e/f))

 Precedence rules specify that certain operators, in the absence

of parentheses, group “more tightly” than other operators.

 E.g., multiplication and division group more tightly than

addition and subtraction: 2+3*4 = 2 + 12 = 14 and not 20.

 Bad precedence: the and operator in Pascal is higher than <

 1<2 and 3<4 is a static compiler error
9

Precedence and Associativity

** is right-associative

(c) Paul Fodor (CS Stony Brook) and Elsevier

Operator precedence levels in C and Pascal: the operators at the
top of the figure group most tightly. 10

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Precedence:

 In the United States, the acronym PEMDAS is common:

 Parentheses, Exponents, Multiplication, Division,Addition,

Subtraction

 PEMDAS is often expanded to the mnemonic "Please Excuse My

Dear Aunt Sally"

 Canada and New Zealand use BEDMAS, standing for

Brackets, Exponents, Division, Multiplication, Addition,

Subtraction.

 In the UK, India and Australia is BODMAS:

Brackets, Of Order, Division, Multiplication, Addition

and Subtraction.11

Precedence and Associativity

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Associativity rules specify whether sequences of operators of equal

precedence group to the right or to the left:

 Summation associate left-to-right, so 9 - 3 - 2 is (9–3)–2=4 and not 8.

 The exponentiation operator (**) follows standard mathematical

convention, and associates right-to-left, so 4**3**2 is

4**(3**2)=262,144 and not (4**3)**2 = 4,096.

 Most expressions are left associative

 The assignment operation is right associative

 x = y = z will assign the value of z to y and then also to x:

x = (y = z)

 The power operator is also right associative

 Rule 0: inviolability of parentheses!!! That is, developers put

expressions into parenthesis to make sure what is the semantics.
12

Precedence and Associativity

(c) Paul Fodor (CS Stony Brook) and Elsevier

Execution Ordering
 Execution ordering is not necessarily defined:

 In (1<2 and 3>4), which is evaluated first?

 Some languages define order left to right, some allow re-order:
 E.g., query optimization in databases is re-ordering!

 Re-order can increase speed, exploit math identities

 Re-order can reduce precision, have side-effects

 Optimization by Applying Mathematical Identities:
 By using the common subexpression in the equations.

a = b + c a = b/c/d (/ is left-associative)

d = c + e + b e = f/d/c

Is optimized to: Is optimized to:

a = b + c t = c * d

d = a + e a = b/t , e = f/t

13

(c) Paul Fodor (CS Stony Brook) and Elsevier

Expression Evaluation
 Short-circuiting:

Consider (a < b) && (b < c):

 If a >= b there is no point evaluating whether b < c

because (a < b) && (b < c) is automatically false.

Most operators are short-circuiting

 However, some languages have 2 operators, e.g., Java has the

&& and & (an operator which evaluates both expressions):

 (false) & (i++<0) will have the side-effect of incrementing i

 Short-circuiting is also useful in guards:
if (b != 0 && a/b == c) ...

if (*p && p->foo) ...

14

(c) Paul Fodor (CS Stony Brook) and Elsevier

Assignments: in imperative languages,

computation typically consists of an ordered

series of changes to the values of variables in

memory

15

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 References and Values:

d = a; // the right-hand side of the assignment refers to

// the value of a, which we wish to place into d

a = b + c; // the left-hand side refers to the location of a,

// where we want to put the sum of b and c

An assignment is a statement that takes pair

of arguments: a value (called r-value) and a

reference to a variable into which the value

should be placed (called l-value)

16

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example:

Variable a contains 100

Variable b contains 200

a = b;

a and b are expressions:

b - evaluated for r-value

a - evaluated for l-value (location)

The value is placed into the location!

17

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Value model for variables: variables are names/aliases of locations in

memory that contain directly a value

 Reference model: variables are aliases to locations in memory that

contain an address where the value is on the heap

 The value semantics versus reference semantics:

 the variables refer to values

 the variables refer to objects

 Java has both:

 built-in types are values in variables,

 user-defined types are objects and variables are references.

 When a variable appears in a context that expects an r-value, it must

be dereferenced to obtain the value to which it refers

 In most languages, the dereference is implicit and automatic
18

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Early versions of Java (2) required the programmer to “wrap”

objects of built-in types:

 The wrapper class was needed here because Hashtable

expects a parameter of a class derived from Object, and an int

is not an Object.

 Recent versions of Java (5) perform automatic boxing and

unboxing operations: the compiler creates hidden Integer

objects to hold the values and it returns an int when needed:

19

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Expression-oriented vs. statement-oriented languages:

 expression-oriented (all statements are evaluated to a value):
 functional languages (Lisp, Scheme, ML)

 logic programming (everything is evaluated to a boolean value:

true, false or undefined/unknown in XSB Prolog).

 statement-oriented: some statements do not return anything
 most imperative languages (e.g., print method returns void)

 C is halfway in-between (some statements return values)
 allows expressions to appear instead of statements and vice-versa:

 C lacks a separate Boolean type: accepts an integer

o if 0 then false, any other value is true.20

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Combination Assignment Operators:

 a = a + 1 has the effect to increment the old value of a into a
 However, A[index_fn(i)] = A[index_fn(i)] + 1 is not safe because the

function may have a side effect and different values can be returned by

index_fn(i)

 It is safer to write :

j = index_fn(i); OR A[index_fn(i)]++;

A[j] = A[j] + 1;

 More assignment operators: +=, -=
 Handy, avoid redundant work (or need for optimization) and perform

side effects exactly once.

 --, ++ in Java or C:
 Prefix or postfix form (different value returned by the sub-expression)

 The assignment also returns values!

21

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Side Effects:

often discussed in the context of functions

a side effect is some permanent state change

caused by execution of function

some noticeable effect of call other than return

value

 in a more general sense, assignment statements

provide the ultimate example of side effects

 they change the value of a variable

22

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 SIDE EFFECTS ARE FUNDAMENTAL TO THE WHOLE

VON NEUMANN MODEL OF COMPUTING!

 In (pure) functional, logic, and dataflow languages, there are

no such changes

 These languages are called SINGLE-ASSIGNMENT

languages

 Several languages outlaw side effects for functions

 easier to prove things about programs

 closer to Mathematical intuition

 easier to optimize

 (often) easier to understand

23

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Multiway Assignments: in ML, Perl, Python, and Ruby:

a, b = c, d;

 Tuples consisting of multiple l-values and r-values

 The effect is: a = c; b = d;

 The comma operator on the left-hand side produces a tuple

of l-values, while to comma operator on the right hand side

produces a tuple of r-values.

 The multiway (tuple) assignment allows us to write things

like: a, b = b, a; # that swap a and b

which would otherwise require auxiliary variables.

 Multiway assignment also allows functions to return tuples:

a, b, c = foo(d); # foo returns a tuple of 3 elements

24

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Definite Assignment: the fact that variables used as r-values

are initialized can be statically checked by the compiler.

 Every possible control path to an expression must assign a

value to every variable in that expression!

 more difficult to check with static semantic rules, but most

languages do it statically

25

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Unstructured and Structured Flow
 Unstructured Programming/Flow: (conditional or

unconditional) jumps / GOTO statements (usually in

assembly languages)

 Structured programming is a programming paradigm

aimed at improving the clarity, quality, and

development time of a computer program by making

extensive use of subroutines, block structures, for

and while loops

 in contrast to using simple tests and jumps such as the

GOTO statement, which could lead to "spaghetti code"

that is difficult to follow and maintain
26

(c) Paul Fodor (CS Stony Brook) and Elsevier

Unstructured and Structured Flow
 Control flow in assembly languages is achieved by

means of conditional and unconditional jumps

Unconditional jumps: GOTO statements

10 PRINT "HELLO"

20 GOTO 10

Edsger Dijkstra (ACM Turing Award in 1972):

"GOTO considered harmful“.
 Problem: GOTO are not limited to nested scopes, so it is

very hard to limit behavior.

 It is also very hard/impossible to analyze the behavior of

programs with GOTOs.

 Modern languages hardly allow it.
27

(c) Paul Fodor (CS Stony Brook) and Elsevier

Structured and Unstructured Flow
 Conditional Unstructured Flow: conditional jumps

28

JZ op1 jump if zero

JNZ op1 jump if not zero

JE op1 = op2 jump if equal

JNE op1 != op2 jump if not equal

JG op1 > op2 jump if greater than

JNG !(op1 > op2) jump if not greater than

JGE op1 >= op2 jump if greater than or equal

JNGE !(op1 >= op2) jump if not greater than or equal

JL op1 < op2 jump if less than

JNL !(op1 < op2) jump if not less than

JLE op1 <= op2 jump if less than or equal

JNLE !(op1 <= op2) jump if not less than or equal

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Structured programming: top-down design

(progressive refinement), modularization of code,

structured types, imperative algorithm elegantly

expressed with only sequencing, selection, iteration or

recursion.

 It still includes some alternatives to GOTO, but well

defined behaviour:

return/continue/break statements

 Exceptions

 Continuations (used in Ruby and Scheme) wrap current

scope in an object (requires scopes to be on heap)

 Calling objects restores scope and location.29

Structured and Unstructured Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Continuation in Scheme:
(define the-continuation #f)

(define (test)

(let ((i 0))

; call/cc calls its first function argument, passing a continuation variable the-continuation

(call/cc (lambda (k) (set! the-continuation k)))

; The next time the-continuation is called, we start here.

(set! i (+ i 1))

i))
> (test)

1

> (the-continuation)

2

> (the-continuation)

3

; stores the current continuation (which will print 4 next) away

> (define another-continuation the-continuation)

> (test) ; resets the-continuation

1

> (the-continuation)

2

> (another-continuation) ; uses the previously stored continuation

4

30

Structured and Unstructured Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

Sequencing
 In a block, statements execute in order (top to bottom)

Some languages might waive this for optimization:

a = foo()

b = bar()

return a + b

 If foo and bar do not have side-effects, then the

first two instructions can be executed sequentially,

OR in reverse order OR even concurrently

31

(c) Paul Fodor (CS Stony Brook) and Elsevier

Selection
 Selection statement types (in increasing convenience):

If

If/Else - no repeat negating condition.

If/Elif/Else - don't require nesting (keep terminators

from piling up at the end of nested if statements)

Switch-Case statements
 Can use array/hash table to look up where to go to

 Can be more efficient than having to execute lots of conditions

 Short-circuit evaluation of statements:
if foo() or bar(): …

 we can short-circuit evaluation: if foo() is true, bar() is

not called

32

(c) Paul Fodor (CS Stony Brook) and Elsevier

Target Machine Architecture
 A compiler is simply a translator:

 It translates programs written in one language into programs

written in another lower-level language

 This second language can be almost anything—some other

high-level language, phototypesetting commands, VLSI (chip)

layouts—but most of the time it’s the machine language for

some available computer

 Just as there are many different programming languages, there are

many different machine languages, though the latter tend to

display considerably less diversity than the former

 Each machine language corresponds to a different processor

architecture

33

(c) Paul Fodor (CS Stony Brook) and Elsevier

if ((A > B) and (C > D)) or (E <> F):

…

34

Short-circuit
r1 := A

r2 := B

r1 := r1 > r2

r2 := C

r3 := D

r2 := r2 > r3

r1 := r1 & r2

r2 := E

r3 := F

r2 := r2 != r3

r1 := r1 | r2

if r1 = 0 goto L2 (JZ r1, L2)

L1: then clause (label not actually used)

goto L3

L2: else clause

L3:

r1 := A

r2 := B

if r1 <= r2 goto L4 (JLE r1,r2,L4)

r1 := C

r2 := D

if r1 > r2 goto L1 (JG r1,r2,L1)

L4: r1 := E

r2 := F

if r1 = r2 goto L2 (JE r1,r2,L2)

L1: then clause

goto L3

L2: else clause

L3:

No short-circuit

Selection Code Generation

(c) Paul Fodor (CS Stony Brook) and Elsevier
35

Java: The unconditional & and | Operators

 Java has short-circuit operators && and ||, but

also unconditional operators & and |:
 If x is 1, what is x after this expression?

(1 > x) && (1 > x++) 1

 If x is 1, what is x after this expression?

(1 > x) & (1 > x++) 2

 How about?

(1 == x) || (1 > x++)? 1

(1 == x) | (1 > x++)? 2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Java Boolean operators

36

if ((A <= B | C > D) & (E > F | G < H): I

r1 := A

r2 := B

r1 := r1 <= r2

r2 := C

r3 := D

r2 := r2>r3

r1 := r1 | r2

r2 := E

r3 := F

r2 := r2 > r3

r3 := G

r4 := H

r3 := r3 < r4

r2 := r2 | r3

r1 := r1 & r2

JZ r1, L1 (if !r1 goto L1)

(I)

L1:

(c) Paul Fodor (CS Stony Brook) and Elsevier

Java Boolean operators

37

if ((A <= B || C > D) && (E > F || G < H): I

(c) Paul Fodor (CS Stony Brook) and Elsevier

Java Boolean operators

38

if ((A <= B || C > D) && (E > F | G < H): I

(c) Paul Fodor (CS Stony Brook) and Elsevier

CASE ... (* potentially complicated expression *) OF

1: clause A

| 2, 7: clause B

| 3..5: clause C

| 10: clause D

ELSE clause E

END

- Less verbose,

- More efficient than:

IF (* potentially complicated expression *) == 1 THEN
clause A

ELSIF (* potentially complicated expression *) IN 2,7 THEN
clause B

ELSIF …

Selection

39

(c) Paul Fodor (CS Stony Brook) and Elsevier

Iteration
 Simplest: variants of while, controlled by a condition

i = 0;

while (i <= 100) {

...

i += 10;

}

 Do…while have condition executed after the block

 For-variations: move number through a range:

FOR i := 0 to 100 by 10 DO...END // Pascal

OR

do i = 1, 10, 2 // Fortran

...

enddo
40

(c) Paul Fodor (CS Stony Brook) and Elsevier

The modern for-loop is a variant of while:
for(i=first; i <=last; i+=step)...

C defines this to be precisely equivalent to
i = first;

while (i <= last) {

...

i += step;

}

Recommendation/Requirement for some

languages:

no changes to bounds within loop
41

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

Code Generation for for-Loops:

r1 := first

r2 := step

r3 := last

L1: if r1 > r3 goto L2

. . . – – loop body; use r1 for i

r1 := r1 + r2

goto L1

L2:

Is this efficient?

42

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Code Generation for for-Loops:

r1 := first

r2 := step

r3 := last

goto L2

L1: . . . – – loop body; use r1 for i

r1 := r1 + r2

L2: if r1 ≤ r3 goto L1

Faster implementation because each of the

iteration’s contains a single conditional branch,

rather than a conditional branch at the top and an

unconditional jump at the bottom.

43

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Iterator: pull values from the iterator object
for i in range(0, 101, 10): # Python

...

User can usefully define his own iterator object which

makes it possible to iterate over other things:
for (Iterator<Integer> it =

myTree.iterator(); it.hasNext();) {

Integer i = it.next();

System.out.println(i);

}

changes to loop variable within loop

are not recommended/allowed
44

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Post-test Loops:
repeat

readln(line);

until line[1] = ’$’;

instead of
readln(line);

while line[1] <> ’$’ do

readln(line);

 Post-test loop whose condition works “the other direction”:

do {

readln(line);

} while (line[0] != ’$’);

45

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

Midtest Loops:

Iteration often allows us to escape the block:
continue

break

for (;;) {

readln(line);

if (all_blanks(line)) break;

consume_line(line);

}

46

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

Recursion
Recursion:
equally powerful to iteration

mechanical transformations back and forth

often more intuitive (sometimes less)

naive implementation is less efficient than iteration:

 Stack frame allocations at every step: copying

values is slower than updates in iterations

advantages of recursion:

 fundamental to functional languages like Scheme

 no special syntax required

47

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Example:
int gcd(int a, int b) { // assume a,b > 0

if (a == b)

return a;

if (a > b)

return gcd(a-b, b);

else

return gcd(a, b - a);

}

 Instead of iteration:
int gcd(int a, int b) {

while (a != b) {

if (a > b) a = a-b;

else b = b-a;

}

return a;

}
48

Recursion

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Tail recursion:
 No computation follows recursive call:

def gcd(a, b):

if a == b:

return a

if a > b:

return gcd(a-b, b)

else:

return gcd(a, b - a)

 When the result is a call to same function, reuse space
def gcd(a, b):

start:

if a == b:

return a

if a > b:

a = a - b

goto start

else:

b = b - a

goto start
49

Recursion

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tail-recursion:

Dynamically allocated stack space is

unnecessary: the compiler can reuse the

space belonging to the current iteration

when it makes the recursive call (many

compilers do it)

50

Recursion

(c) Paul Fodor (CS Stony Brook) and Elsevier

 We have assumed implicitly that arguments are

evaluated before passing them to a subroutine
This need not be the case

 It is possible to pass a representation of the unevaluated

arguments to the subroutine instead, and to evaluate them

only when/(if) the value is actually needed.

 The former option (evaluating before the call) is known

as applicative-order evaluation

 The latter (evaluating only when the value is actually

needed) is known as normal-order evaluation

51

Applicative- and Normal-Order Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Lazy evaluation: in the absence of side effects,

expression evaluation is delayed until the value is

needed
A delayed expression is sometimes called a promise

Memoization: the implementation keeps track of

which expressions have already been evaluated, so

it can reuse their values if they are needed more

than once in a given referencing environment.

52

Normal-Order Evaluation

