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Specifying the Semantics of Programs
 Operational Semantics:

 Give how a program would cause a machine to behave (e.g., the 

execution of an annotated grammar in imperative parsing with actions)
 The machine can be abstract, but it is still operational (for example, a machine has 

unlimited number of registers).

 Control flow (the order of execution is very important)

 Denotational Semantics:
 Each phrase in the language is interpreted as a denotation: a conceptual 

meaning as a mathematical object in a mathematical space
 For example, denotational semantics of functional languages often translate the 

language into domain theory (or as functions from states to states)

 Axiomatic Semantics: map the language statements to some 

logic = their meaning is exactly what can be proven about them 

in the logic. 
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Control Flow
 Control flow is the ordering in program execution

 Ordering mechanisms:
 Sequencing: statements are executed in the order in which 

they appear in the program (e.g., inside a method in imperative 

programming),

 Selection/alternation: a choice is made based on a condition 

(e.g., if and case switch statements), 

 Iteration: a fragment of code is to be executed repeatedly 

either a certain number of times or until a certain run time 

condition is true (e.g., for, do while and repeat loops)
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 Procedural Abstraction: a subroutine is encapsulated in a way 

that allows it to be treated as a single unit (usually subject to 

parameterization)

 Recursion: an expression is defined in terms of simpler versions 

of itself either directly or indirectly (the computational model 

requires a stack on which to save information about partially 

evaluated instances of the expression – implemented with 

subroutines)

 Concurrency: two or more program fragments are to be 

executed at the same time either in parallel on separate 

processors or interleaved on a single processor in a way that 

achieves the same effect.
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 Exception Handling and Speculation: if the execution 

encounters a special exception, then it branches to a handler 

that executes in place of the remainder of the protected 

fragment or in place of the entire protected fragment in the 

case of speculation (for speculation, the language 

implementation must be able to roll back any visible effects of 

the protected code)

 Nondeterminacy: the choice among statements is deliberately 

left unspecified implying that any alternative will lead to 

correct results (e.g., rule selection in logic programming)

 Backtracking: implementation/execution mechanism in logic 

programming
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Sequencing is central to imperative 

languages (von Neumann architecture)

Logic programming and functional 

languages make heavy use of recursion
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Expression Evaluation 
An expression is a statement which always 

produces a value

An expression consists of:

simple things: literal or variable

 functions or expressions applied to expressions

Operators are built-in functions that use a special, 

simple syntax

 operands are the arguments of an operator
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 Notation: whether the function name appears before, 

among, or after its several arguments

 Infix operators, e.g., 1 + 2

Prefix operators, e.g., (-1),  + 1 2 Polish notation

Postfix operators (reverse Polish), e.g., 1 2 3 * +

 Most imperative languages use infix notation for binary 

operators and prefix notation for unary operators.

 Lisp uses prefix notation for all functions, Cambridge 

Polish notation: (* (+ 1 3) 2), (append a b)

 Prolog uses the infix notation in the UI: X is 1+2 and 

the prefix notation internally (e.g., is(X,+(1,2)) )
8
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 Precedence and Associativity: when written in infix notation, 

without parentheses, the operators lead to ambiguity as to what 

is an operand of what. 

 E.g., a + b * c**d**e/f

 Answer: a + ((b * (c**(d**e)))/f)

 Neither ((((a + b) * c)**d)**e)/f   nor  a + (((b * c)**d)**(e/f))

 Precedence rules specify that certain operators, in the absence 

of parentheses, group “more tightly” than other operators.

 E.g., multiplication and division group more tightly than 

addition and subtraction: 2+3*4 = 2 + 12 = 14 and not 20.

 Bad precedence: the and operator in Pascal is higher than < 

 1<2 and 3<4 is a static compiler error
9
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Operator precedence levels in C and Pascal: the operators at the 
top of the figure group most tightly. 10
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 Precedence:

 In the United States, the acronym PEMDAS is common:

 Parentheses, Exponents, Multiplication, Division,Addition,

Subtraction 

 PEMDAS is often expanded to the mnemonic "Please Excuse My 

Dear Aunt Sally"

 Canada and New Zealand use BEDMAS, standing for

Brackets, Exponents, Division, Multiplication, Addition,

Subtraction.

 In the UK, India and Australia is BODMAS: 

Brackets, Of Order, Division, Multiplication, Addition 

and Subtraction.11
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 Associativity rules specify whether sequences of operators of equal 

precedence group to the right or to the left:

 Summation associate left-to-right, so 9 - 3 - 2 is (9–3)–2=4 and not 8.

 The exponentiation operator (**) follows standard mathematical 

convention, and associates right-to-left, so 4**3**2 is 

4**(3**2)=262,144 and not (4**3)**2 = 4,096. 

 Most expressions are left associative

 The assignment operation is right associative

 x = y = z will assign the value of z to y and then also to x:

x = (y = z)

 The power operator is also right associative

 Rule 0: inviolability of parentheses!!! That is, developers put 

expressions into parenthesis to make sure what is the semantics. 
12
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Execution Ordering
 Execution ordering is not necessarily defined:

 In (1<2 and 3>4), which is evaluated first?

 Some languages define order left to right, some allow re-order:
 E.g., query optimization in databases is re-ordering!

 Re-order can increase speed, exploit math identities

 Re-order can reduce precision, have side-effects

 Optimization by Applying Mathematical Identities:
 By using the common subexpression in the equations.

a = b + c a = b/c/d (/ is left-associative)

d = c + e + b e = f/d/c 

Is optimized to: Is optimized to:

a = b + c t = c * d

d = a + e a = b/t ,    e = f/t
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Expression Evaluation 
 Short-circuiting:

Consider (a < b) && (b < c):

 If a >= b there is no point evaluating whether b < c

because (a < b) && (b < c) is automatically false.

Most operators are short-circuiting

 However, some languages have 2 operators, e.g., Java has the 

&& and & (an operator which evaluates both expressions): 

 (false) & (i++<0) will have the side-effect of incrementing i

 Short-circuiting is also useful in guards: 
if (b != 0 && a/b == c) ...

if (*p && p->foo) ...
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Assignments: in imperative languages, 

computation typically consists of an ordered 

series of changes to the values of variables in 

memory
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 References and  Values:

d = a;  // the right-hand side of the assignment refers to 

// the  value of a, which we wish to place into d

a = b + c; // the left-hand side refers to the location of a, 

// where we want to put the sum of b and c

An assignment is a statement that takes pair 

of arguments: a value (called r-value) and a 

reference to a variable into which the value 

should be placed (called l-value)
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Example:

Variable a contains 100

Variable b contains 200

a = b;

a and b are expressions:

b - evaluated for r-value

a - evaluated for l-value (location)

The value is placed into the location!

17
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 Value model for variables: variables are names/aliases of locations in 

memory that contain directly a value

 Reference model: variables are aliases to locations in memory that 

contain an address where the value is on the heap

 The value semantics versus reference semantics:

 the variables refer to values 

 the variables refer to objects

 Java has both:

 built-in types are values in variables,

 user-defined types are objects and variables are references.

 When a variable appears in a context that expects an r-value, it must 

be dereferenced to obtain the value to which it refers

 In most languages, the dereference is implicit and automatic
18
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 Early versions of Java (2) required the programmer to “wrap” 

objects of built-in types:

 The wrapper class was needed here because Hashtable

expects a parameter of a class derived from Object, and an int

is not an Object.

 Recent versions of Java (5) perform automatic boxing and 

unboxing operations: the compiler creates hidden Integer

objects to hold the values and it returns an int when needed:

19
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 Expression-oriented vs. statement-oriented languages:

 expression-oriented (all statements are evaluated to a value):
 functional languages (Lisp, Scheme, ML)

 logic programming (everything is evaluated to a boolean value: 

true, false or undefined/unknown in XSB Prolog).

 statement-oriented: some statements do not return anything
 most imperative languages (e.g., print method returns void)

 C is halfway in-between (some statements return values)
 allows expressions to appear instead of statements and vice-versa:

 C lacks a separate Boolean type: accepts an integer

o if 0 then false, any other value is true.20
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 Combination Assignment Operators:

 a = a + 1 has the effect to increment the old value of a into a
 However, A[index_fn(i)] = A[index_fn(i)] + 1 is not safe because the 

function may have a side effect and different values can be returned by 

index_fn(i) 

 It is safer to write :

j = index_fn(i); OR A[index_fn(i)]++;

A[j] = A[j] + 1;

 More assignment operators: +=, -=
 Handy, avoid redundant work (or need for optimization) and perform 

side effects exactly once.

 --, ++ in Java or C:
 Prefix or postfix form (different value returned by the sub-expression)

 The assignment also returns values!

21
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 Side Effects:

often discussed in the context of functions

a side effect is some permanent state change 

caused by execution of function

some noticeable effect of call other than return 

value

 in a more general sense, assignment statements 

provide the ultimate example of side effects

 they change the value of a variable

22
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 SIDE EFFECTS ARE FUNDAMENTAL TO THE WHOLE 

VON NEUMANN MODEL OF COMPUTING!

 In (pure) functional, logic, and dataflow languages, there are 

no such changes

 These languages are called SINGLE-ASSIGNMENT 

languages

 Several languages outlaw side effects for functions

 easier to prove things about programs

 closer to Mathematical intuition

 easier to optimize

 (often) easier to understand

23
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 Multiway Assignments: in ML, Perl, Python, and Ruby:

a, b = c, d;

 Tuples consisting of multiple l-values and r-values

 The effect is:     a = c;    b = d;

 The comma operator on the left-hand side produces a tuple 

of l-values, while to comma operator on the right hand side 

produces a tuple of r-values.

 The multiway (tuple) assignment allows us to write things 

like: a, b = b, a; # that swap a and b

which would otherwise require auxiliary variables. 

 Multiway assignment also allows functions to return tuples:

a, b, c = foo(d);  # foo returns a tuple of 3 elements

24
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 Definite Assignment: the fact that variables used as r-values

are initialized can be statically checked by the compiler.

 Every possible control path to an expression must assign a 

value to every variable in that expression!

 more difficult to check with static semantic rules, but most 

languages do it statically  

25
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Unstructured and Structured Flow
 Unstructured Programming/Flow: (conditional or 

unconditional) jumps / GOTO statements (usually in 

assembly languages)

 Structured programming is a programming paradigm 

aimed at improving the clarity, quality, and 

development time of a computer program by making 

extensive use of subroutines, block structures, for 

and while loops

 in contrast to using simple tests and jumps such as the 

GOTO statement, which could lead to "spaghetti code" 

that is difficult to follow and maintain
26
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Unstructured and Structured Flow
 Control flow in assembly languages is achieved by 

means of conditional and unconditional jumps

Unconditional jumps: GOTO statements 

10 PRINT "HELLO"

20 GOTO 10

Edsger Dijkstra (ACM Turing Award in 1972): 

"GOTO considered harmful“.
 Problem: GOTO are not limited to nested scopes, so it is 

very hard to limit behavior.

 It is also very hard/impossible to analyze the behavior of 

programs with GOTOs. 

 Modern languages hardly allow it.
27



(c) Paul Fodor (CS Stony Brook) and Elsevier

Structured and Unstructured Flow
 Conditional Unstructured Flow: conditional jumps

28

JZ op1 jump if zero

JNZ op1 jump if not zero

JE op1 = op2 jump if equal

JNE op1 != op2 jump if not equal

JG op1 > op2 jump if greater than

JNG !(op1 > op2) jump if not greater than

JGE op1 >= op2 jump if greater than or equal

JNGE !(op1 >= op2) jump if not greater than or equal

JL op1 < op2 jump if less than

JNL !(op1 < op2) jump if not less than

JLE op1 <= op2 jump if less than or equal

JNLE !(op1 <= op2) jump if not less than or equal
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 Structured programming: top-down design 

(progressive refinement), modularization of code, 

structured types, imperative algorithm elegantly 

expressed with only sequencing, selection, iteration or 

recursion.

 It still includes some alternatives to GOTO, but well 

defined behaviour:

return/continue/break statements

 Exceptions

 Continuations (used in Ruby and Scheme) wrap current 

scope in an object (requires scopes to be on heap)

 Calling objects restores scope and location.29
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 Continuation in Scheme:
(define the-continuation #f)

(define (test)

(let ((i 0))

; call/cc calls its first function argument, passing a continuation variable the-continuation

(call/cc (lambda (k) (set! the-continuation k)))

; The next time the-continuation is called, we start here.

(set! i (+ i 1))

i))
> (test)

1

> (the-continuation)

2

> (the-continuation)

3

; stores the current continuation (which will print 4 next) away

> (define another-continuation the-continuation)

> (test) ; resets the-continuation

1

> (the-continuation)

2

> (another-continuation) ; uses the previously stored continuation

4

30
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Sequencing
 In a block, statements execute in order (top to bottom)

Some languages might waive this for optimization:

a = foo()

b = bar()

return a + b

 If foo and bar do not have side-effects, then the 

first two instructions can be executed sequentially, 

OR in reverse order OR even concurrently 
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Selection 
 Selection statement types (in increasing convenience):

If

If/Else - no repeat negating condition.

If/Elif/Else - don't require nesting (keep terminators 

from piling up at the end of nested if statements)

Switch-Case statements
 Can use array/hash table to look up where to go to

 Can be more efficient than having to execute lots of conditions

 Short-circuit evaluation of statements:
if foo() or bar(): …

 we can short-circuit evaluation: if foo() is true, bar() is 

not called
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Target Machine Architecture 
 A compiler is simply a translator:

 It translates programs written in one language into programs 

written in another lower-level language 

 This second language can be almost anything—some other 

high-level language, phototypesetting commands, VLSI (chip) 

layouts—but most of the time it’s the machine language for 

some available computer

 Just as there are many different programming languages, there are 

many different machine languages, though the latter tend to 

display considerably less diversity than the former

 Each machine language corresponds to a different processor 

architecture
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if ((A > B) and (C > D)) or (E <> F): 

…

34

Short-circuit
r1 := A 

r2 := B

r1 := r1 > r2

r2 := C

r3 := D

r2 := r2 > r3

r1 := r1 & r2

r2 := E

r3 := F

r2 := r2 != r3

r1 := r1 | r2

if r1 = 0  goto L2 (JZ r1, L2)

L1: then clause (label not actually used)

goto L3

L2: else clause

L3:

r1 := A

r2 := B

if r1 <= r2 goto L4  (JLE r1,r2,L4)

r1 := C

r2 := D

if r1 > r2 goto L1    (JG r1,r2,L1)

L4: r1 := E

r2 := F

if r1 = r2 goto L2    (JE r1,r2,L2)

L1: then clause

goto L3

L2: else clause

L3:

No short-circuit

Selection Code Generation 
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Java: The unconditional & and | Operators

 Java has short-circuit operators && and ||, but 

also unconditional operators & and |:
 If x is 1, what is x after this expression?

(1 > x) && (1 > x++) 1

 If x is 1, what is x after this expression?

(1 > x) & (1 > x++) 2

 How about?

(1 == x) || (1 > x++)?         1

(1 == x) | (1 > x++)? 2
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Java Boolean operators

36

if ((A <= B | C > D) & (E > F | G < H): I

r1 := A

r2 := B

r1 := r1 <= r2 

r2 := C

r3 := D

r2 := r2>r3

r1 := r1 | r2

r2 := E

r3 := F

r2 := r2 > r3

r3 := G

r4 := H

r3 := r3 < r4

r2 := r2 | r3

r1 := r1 & r2

JZ r1, L1 (if !r1 goto L1)

(I)

L1: 
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Java Boolean operators

37

if ((A <= B || C > D) && (E > F || G < H): I
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Java Boolean operators

38

if ((A <= B || C > D) && (E > F | G < H): I
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CASE ... (* potentially complicated expression *) OF

1: clause A

| 2, 7: clause B

| 3..5: clause C

| 10: clause D

ELSE clause E

END

- Less verbose,

- More efficient than:

IF (* potentially complicated expression *) == 1 THEN
clause A

ELSIF (* potentially complicated expression *) IN 2,7 THEN
clause B

ELSIF …

Selection 
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Iteration 
 Simplest: variants of while, controlled by a condition

i = 0;

while (i <= 100) {

...

i += 10;

}

 Do…while have condition executed after the block

 For-variations: move number through a range:

FOR i := 0 to 100 by 10 DO...END // Pascal

OR

do i = 1, 10, 2 // Fortran

...

enddo
40
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The modern for-loop is a variant of while:  
for(i=first; i <=last; i+=step)...

C defines this to be precisely equivalent to
i = first;

while (i <= last) {

...

i += step;

}

Recommendation/Requirement for some 

languages:

no changes to bounds within loop
41
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Code Generation for for-Loops:

r1 := first

r2 := step

r3 := last

L1: if r1 > r3 goto L2

. . . – – loop body; use r1 for i

r1 := r1 + r2

goto L1

L2:

Is this efficient?

42

Iteration 
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 Code Generation for for-Loops:

r1 := first

r2 := step

r3 := last

goto L2

L1: . . . – – loop body; use r1 for i

r1 := r1 + r2

L2: if r1 ≤ r3 goto L1

Faster implementation because each of the 

iteration’s contains a single conditional branch, 

rather than a conditional branch at the top and an 

unconditional jump at the bottom.

43
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 Iterator: pull values from the iterator object
for i in range(0, 101, 10): # Python

...

User can usefully define his own iterator object which 

makes it possible to iterate over other things:
for (Iterator<Integer> it = 

myTree.iterator(); it.hasNext();) {

Integer i = it.next();

System.out.println(i);

}

changes to loop variable within loop 

are not recommended/allowed
44
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 Post-test Loops:
repeat

readln(line);

until line[1] = ’$’;

instead of
readln(line);

while line[1] <> ’$’ do

readln(line);

 Post-test loop whose condition works “the other direction”:

do {

readln(line);

} while (line[0] != ’$’);

45

Iteration 
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Midtest Loops:

Iteration often allows us to escape the block:
continue

break

for (;;) {

readln(line);

if (all_blanks(line)) break;

consume_line(line);

}

46
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Recursion
Recursion:
equally powerful to iteration

mechanical transformations back and forth

often more intuitive (sometimes less)

naive implementation is less efficient than iteration:

 Stack frame allocations at every step: copying 

values is slower than updates in iterations

advantages of recursion:

 fundamental to functional languages like Scheme

 no special syntax required
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 Example:
int gcd(int a, int b) { // assume a,b > 0

if (a == b) 

return a;

if (a > b) 

return gcd(a-b, b);

else

return gcd(a, b - a);

}

 Instead of iteration:
int gcd(int a, int b) {

while (a != b) {

if (a > b) a = a-b;

else b = b-a;

}

return a;

}
48
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 Tail recursion:
 No computation follows recursive call:

def gcd(a, b):

if a == b: 

return a

if a > b: 

return gcd(a-b, b)

else:

return gcd(a, b - a)

 When the result is a call to same function, reuse space
def gcd(a, b):

start:

if a == b: 

return a

if a > b: 

a = a - b

goto start

else:

b = b - a

goto start
49
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Tail-recursion: 

Dynamically allocated stack space is 

unnecessary: the compiler can reuse the 

space belonging to the current iteration 

when it makes the recursive call (many 

compilers do it)

50
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 We have assumed implicitly that arguments are 

evaluated before passing them to a subroutine 
This need not be the case

 It is possible to pass a representation of the unevaluated 

arguments to the subroutine instead, and to evaluate them 

only when/(if) the value is actually needed. 

 The former option (evaluating before the call) is known 

as applicative-order evaluation

 The latter (evaluating only when the value is actually 

needed) is known as normal-order evaluation

51

Applicative- and Normal-Order Evaluation 
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 Lazy evaluation: in the absence of side effects, 

expression evaluation is delayed until the value is 

needed
A delayed expression is sometimes called a promise

Memoization: the implementation keeps track of 

which expressions have already been evaluated, so 

it can reuse their values if they are needed more 

than once in a given referencing environment. 

52

Normal-Order Evaluation 


