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Role of Semantic Analysis  
 Syntax vs. Semantics:

syntax concerns the form of a valid program 

(described conveniently by a context-free grammar 

CFG) 

semantics concerns its meaning: rules that go beyond 

mere form (e.g., the number of arguments contained 

in a call to a subroutine matches the number of formal 

parameters in the subroutine definition – cannot be 

counted using CFG, type consistency):
 Defines what the program means

 Detects if the program is correct

 Helps to translate it into another representation2
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 Semantic rules are divided into:

 static semantics enforced at compile time

 dynamic semantics: the compiler generates code to enforce 

dynamic semantic rules at run time (or calls libraries to do it) 

(for errors like division by zero, out-of-bounds index in array)

 Following parsing, the next two phases of the "typical" compiler 

are:

 semantic analysis

 (intermediate) code generation

 The principal job of the semantic analyzer is to enforce static 

semantic rules, plus:

 constructs a syntax tree

 information gathered is needed by the code generator
3
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 However, parsing, semantic analysis, and intermediate 

code generation are typically interleaved: 

 a common approach interleaves parsing construction of a 

syntax tree with phases for semantic analysis and code 

generation

 replaces the parse tree with a syntax tree that reflects the input 

program in a more straightforward way

 The semantic analysis and intermediate code generation 

annotate the parse tree with attributes

 These kind of grammars are called Attribute grammars -

provide a formal framework for the decoration of a syntax tree

 The attribute flow constrains the order(s) in which nodes of a tree 

can be decorated
4

Attribute grammars
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 Dynamic checks: semantic rules enforced at run time

 C requires no dynamic checks at all (it relies on the hardware 

to find division by zero, or attempted access to memory 

outside the bounds of the program)

 Java check as many rules as possible, so that an untrusted 

program cannot do anything to damage the memory or files 

of the machine on which it runs

 Many compilers that generate code for dynamic checks provide 

the option of disabling them (enabled during program 

development and testing, but disables for production use, to 

increase execution speed)

 Hoare: “like wearing a life jacket on land, and taking it off at sea”
5

Dynamic checks
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 Assertions: logical formulas written by the programmers 

regarding the values of program data used to reason about the 

correctness of their algorithms (the assertion is expected to be 

true when execution reaches a certain point in the code):

 Java syntax: assert denominator != 0;

 An AssertionError exception will be thrown if the semantic 

check fails at run time.

 C syntax: assert(denominator != 0);

 If the assertion fails, the program will terminate abruptly with a 

message: a.c:10: failed assertion ‘denominator != 0’

 Some languages also provide explicit support for invariants, 

preconditions, and post-conditions.

 Like Dafny from Microsoft https://github.com/Microsoft/dafny
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 Java example:
 An assertion in Java is a statement that enables us to assert an 

assumption about our program

 An assertion contains a Boolean expression that should be true 

during program execution

 Assertions can be used to assure program correctness and avoid 

logic errors

 An assertion is declared using the Java keyword assert in JDK 

1.5 as follows:

assert assertion; //OR

assert assertion : detailMessage;
where assertion is a Boolean expression and detailMessage is a 

primitive-type or an Object value

7

Java Assertions
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public class AssertionDemo {

public static void main(String[] args) {

int i; 

int sum = 0;

for (i = 0; i < 10; i++) {

sum += i;

}

assert i==10;

assert sum>10 && sum<5*10 : "sum is " + sum;

}

}

 When an assertion statement is executed, Java evaluates the 

assertion

 If it is false, an AssertionError will be thrown with 

the message as a parameter 
8

Java Assertion Example
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 The AssertionError class has a no-arg constructor and 

seven overloaded single-argument constructors of type int, 

long, float, double, boolean, char, and 

Object

 For the first assert statement in the example (with no detail 

message), the no-arg constructor of AssertionError

is used

 For the second assert statement with a detail message, an 

appropriate AssertionError constructor is used to 

match the data type of the message

 Since AssertionError is a subclass of Error, when 

an assertion becomes false, the program displays a message 

on the console and exits
9

Java Assertion Example
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Running Programs with Assertions
 By default, the assertions are disabled at runtime 

 To enable it, use the switch –enableassertions, or –ea

for short, as follows:

java –ea AssertionDemo

public class AssertionDemo {

public static void main(String[] args){

int i; int sum = 0;

for (i = 0; i < 10; i++) {

sum += i; 

}

assert i!=10;

}

}

Exception in thread "main" java.lang.AssertionError

at AssertionDemo.main(AssertionDemo.java:7)
10
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Assertions can be selectively enabled or disabled at 

class level or package level 

The disable switch is –disableassertions

or –da for short

For example, the following command enables 

assertions in package package1 and disables 

assertions in class Class1:

java –ea:package1 –da:Class1 AssertionDemo

11

Running Programs with Assertions
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Using Exception Handling or Assertions?

 Assertion should not be used to replace exception 

handling!

 Exception handling deals with unusual circumstances during 

program execution.

 Assertions are to assure the correctness of the program

 Exception handling addresses robustness and assertion 

addresses correctness

 Assertions are used for internal consistency and validity 

checks

 Assertions are checked at runtime and can be turned on or off 

at startup time vs. Exceptions which cannot be turned on or 

off 12
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Do not use assertions for argument checking in 

public methods: 

Valid arguments that may be passed to a public method 

are considered to be part of the method’s contract

The contract must always be obeyed whether assertions 

are enabled or disabled

 For example, the following code in the Circle class 

should be rewritten using exception handling:
public void setRadius(double newRadius) {

assert newRadius >= 0;

radius =  newRadius;

}
13
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Use assertions to reaffirm assumptions! 
A common use of assertions is to represent 

assumptions with assertions in the code

This gives you more confidence to assure correctness 

of the program

A good use of assertions is place assertions in a switch 

statement without a default case. For example:
switch (month) {

case 1: ... ; break;

case 2: ... ; break;

...

case 12: ... ; break;

default: assert false : "Invalid month: " + month;

// this default case should never be reached

} 
14

Using Exception Handling or Assertions?
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Correctness of Algorithms
 Loop Invariants: used to prove correctness of a loop with 

respect to pre- and post-conditions

[Pre-condition for the loop]

while (G)

[Statements in the body of the loop]

end while

[Post-condition for the loop]

A loop is correct with respect to its pre- and post-conditions if, 

and only if, whenever the algorithm variables satisfy the pre-

condition for the loop and the loop terminates after a finite 

number of steps, the algorithm variables satisfy the post-

condition for the loop

15
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Loop Invariant
 A loop invariant I(n) is a predicate with domain a set of integers, 

which for each iteration of the loop (mathematical induction),

if the predicate is true before the iteration, the it is true after the 

iteration

If the loop invariant I(0) is true before the first iteration of 

the loop AND

After a finite number of iterations of the loop, the guard G becomes 

false AND

The truth of the loop invariant ensures the truth of the post-

condition of the loop

then the loop will be correct with respect to it pre- and 

post-conditions

16
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 Correctness of a Loop to Compute a Product:

A loop to compute the product mx for a nonnegative 

integer m and a real number x, without using 

multiplication
[Pre-condition: m is a nonnegative integer, x is a real number, i = 0, and 

product = 0]

while (i ≠ m)

product := product + x

i := i + 1

end while

[Post-condition: product = mx]

Loop invariant I(n):    i = n    and   product = n*x

Guard G: i ≠ m
17

Loop Invariant
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Base Property: I (0) is “i = 0 and product = 0· x = 0”

Inductive Property: [If G ∧ I (k) is true before a loop 

iteration (where k ≥ 0), then I (k+1) is true after the 

loop iteration.]

Let k is a nonnegative integer such that G ∧ I (k) is true

Since i ≠ m, the guard is passed

product = product + x = kx + x = (k + 1)x

i = i + 1 = k + 1

I (k + 1): (i = k + 1 and product = (k + 1)x) is true

Eventual Falsity of Guard: [After a finite number of 

iterations of the loop, G becomes false]

After m iterations of the loop: i = m and G becomes false

18
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Correctness of the Post-Condition: [If N is the least 

number of iterations after which G is false and I 

(N) is true, then the value of the algorithm 

variables will be as specified in the post-

condition of the loop.]

I(N) is true at the end of the loop: i = N and product = Nx

G becomes false after N iterations, i = m, so m = i = N

The post-condition: the value of product after execution of 

the loop should be m*x is true.

19
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Static analysis
 Static analysis: compile-time algorithms that predict 

run-time behavior

Type checking, for example, is static and precise in 

ML: the compiler ensures that no variable will ever be 

used at run time in a way that is inappropriate for its 

type

By contrast, languages like Lisp and Smalltalk accept 

the run-time overhead of dynamic type checks

 In Java, type checking is mostly static, but dynamically 

loaded classes and type casts require run-time checks

20
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Static analysis
 Examples of static analysis:

Alias analysis determines when values can be safely 

cached in registers, computed “out of order,” or accessed 

by concurrent threads. 

Escape analysis determines when all references to a 

value will be confined to a given context, allowing it to 

be allocated on the stack instead of the heap, or to be 

accessed without locks.

Subtype analysis determines when a variable in an 

object-oriented language is guaranteed to have a certain 

subtype, so that its methods can be called without 

dynamic dispatch.
21
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 Static analysis is usually done for Optimizations:

 optimizations can be unsafe if they may lead to incorrect code

 speculative if they usually improve performance, but may degrade it in 

certain cases
 Non-binding prefetches bring data into the cache before they are needed,

 Trace scheduling rearranges code in hopes of improving the performance of the 

processor pipeline and the instruction cache.

 A compiler is conservative if it applies optimizations only when it can 

guarantee that they will be both safe and effective

 A compiler is optimistic if it uses speculative optimizations

 it may also use unsafe optimizations by generating two versions of the 

code, with a dynamic check that chooses between them based on 

information not available at compile time

 Optimizations can lead to security risks if implemented incorrectly (see 

2018 Spectre hardware vulnerability:  microarchitecture-level 

optimizations to code execution [can] leak information)22

Other static analysis
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Attribute Grammars
 Both semantic analysis and (intermediate) code generation can 

be described in terms of annotation, or "decoration" of a 

parse or syntax tree 

 attributes are properties/actions attached to the production rules 

of a grammar

 ATTRIBUTE GRAMMARS provide a formal framework for 

decorating a parse tree

 The attributes are divided into two groups: synthesized attributes 

and inherited attributes

 Synthesized: the value is computed from the values of 

attributes of the children

 S-attributed grammar = synthesized attributes only

23
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LR (bottom-up) grammar 

for arithmetic expressions

made of constants, with 

precedence and 

associativity

detects of a string 

follows the grammar

but says nothing about 

what the program 

MEANS
24

Attribute Grammars
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 Attributed grammar:

defines the semantics of 

the input program

 Associates expressions to 

mathematical concepts!!!

Attribute rules are 

definitions, not 

assignments: they are not 

necessarily meant to be 

evaluated at any particular 

time, or in any particular 

order
25

copy rule

semantic function 

(sum, etc.)
Attribute Grammars
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Attributed grammar to count the elements of 

a list:

26

Attribute Grammars
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Tokens: int (attr val), var (attr name)

S -> var = E

▷ assign(var.name, E.val)

E1 -> E2 + T

▷ E1.val = add(E2.val, T.val)

E1 -> E2 - T

▷ E1.val = sub(E2.val, T.val)

E -> T

▷ E.val = T.val

T -> var

▷ T.val = lookup(var.name)

T -> int

▷ T.val = int.val
Input:

“bar = 50

foo = 100 + 200 – bar”

Attribute Grammars Example with variables
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Evaluating Attributes
 The process of evaluating attributes is called annotation, or 

DECORATION, of the parse tree

 When the parse tree under the previous example grammar is 

fully decorated, the value of the expression will be in the 

val attribute of the root

 The code fragments for the rules are called SEMANTIC 

FUNCTIONS

 For example: 

E1.val = sum(E2.val, T.val)

 Semantic functions are not allowed to refer to any variables 

or attributes outside the current production

 Action routines may do that (see later)

28
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Decoration of a parse tree for (1 + 3) * 2 

needs to detect the order of attribute 

evaluation:

- Curving arrows show the attribute flow

- Each box holds the output of a 

single semantic rule

- The arrow is the input to the rule

- synthesized attributes: their values are 

calculated (synthesized) only in 

productions in which their symbol 

appears on the left-hand side.

- A S-attributed grammar is a grammar 

where all attributes are synthesized.

Evaluating Attributes
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 Tokens have only synthesized attributes, initialized by the 

scanner (name of an identifier, value of a constant, etc.).

 INHERITED attributes may depend on things above or to 

the side of them in the parse tree, e.g., LL(1) grammar:

30

we cannot summarize the right 

subtree of the root with a single

numeric value

subtraction is left associative: 

requires us to embed the entire tree 

into the attributes of a single node

Evaluating Attributes
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 Decoration with left-to-right attribute flow: pass attribute 

values not only bottom-up but also left-to-right in the tree

 9 can be combined in left-associative fashion with the 4 and

 5 can then be passed into the middle expr_tail node, combined 

with the 3 to make 2, and then passed upward to the root

31

Evaluating Attributes
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(1) serves to copy the 

left context (value of 

the expression so far) 

into a “subtotal” (st) 

attribute.

Root rule (2) copies 

the final value from 

the right-most leaf 

back up to the root.

(1)

(2)

Evaluating Attributes
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An attribute grammar for 

constant expressions based 

on an LL(1) CFG
- An attribute grammar is well 

defined if its rules determine a 

unique set of values for the 

attributes of every possible 

parse tree. 

- An attribute grammar is 

noncircular if it never leads to 

a parse tree in which there are 

cycles in the attribute flow 

graph.

Evaluating Attributes
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Top-down parse tree for (1 + 3) * 2 with left-to-right attribute flow

Evaluating Attributes
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Synthesized Attributes (S-attributed 

grammars):

Data flows bottom-up

Can be parsed by LR grammars

 Inherited Attributes:

Data flows top-down and bottom-up

Can be parsed with LL grammars

35

Evaluating Attributes



(c) Paul Fodor (CS Stony Brook) and Elsevier

 A translation scheme is an algorithm that decorates parse 

trees by invoking the rules of an attribute grammar in an order 

consistent with the tree’s attribute flow

 An oblivious scheme makes repeated passes over a tree, invoking any 

semantic function whose arguments have all been defined, and 

stopping when it completes a pass in which no values change.

 A dynamic scheme that tailors the evaluation order to the structure of 

the given parse tree, e.g., by constructing a topological sort of the 

attribute flow graph and then invoking rules in an order consistent 

with the sort.

 An attribute grammar is L-attributed if its attributes can be evaluated by 

visiting the nodes of the parse tree in a single left-to-right, depth-first 

traversal (same order with a top-down parse)

36

Evaluating Attributes
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Syntax trees
 A one-pass compiler is a compiler that interleaves 

semantic analysis and code generation with parsing

 Syntax trees: if the parsing and code generation are not 

interleaved, then attribute rules must be added to create the 

syntax tree:

 The attributes in these grammars point to nodes of the syntax 

tree (containing unary or binary operators, pointers to the 

supplied operand(s), etc.)

 The attributes hold neither numeric values nor target code 

fragments

37
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 Bottom-up (S-attributed) 

attribute grammar to 

construct a syntax tree

38

Syntax trees
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 Top-down (L-attributed) attribute 

grammar to construct a syntax tree:

39

Syntax trees
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Action Routines
 While it is possible to construct automatic tools to analyze 

attribute flow and decorate parse trees, most compilers 

rely on action routines, which the compiler writer 

embeds in the right-hand sides of productions to evaluate 

attribute rules at specific points in a parse

An action routine is like a "semantic function" that we tell 

the compiler to execute at a particular point in the parse

 In an LL-family parser, action routines can be 

embedded at arbitrary points in a production’s right-

hand side

They will be executed left to right during parsing

40
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 If semantic analysis and code generation are 

interleaved with parsing, then action routines can 

be used to perform semantic checks and generate 

code

Later compilation phases can then consist of ad-hoc 

tree traversal(s), or can use an automatic tool to 

generate a translation scheme

 If semantic analysis and code generation are 

broken out as separate phases, then action 

routines can be used to build a syntax tree
41

Action Routines



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Entries in the attributes stack are pushed and popped 

automatically 

 The syntax tree is produced

42

Action Routines
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Decorating a Syntax Tree
 Sample of complete tree 

grammar representing 

structure of the syntax 

tree

43


