
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Semantic Analysis

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Role of Semantic Analysis
 Syntax vs. Semantics:

syntax concerns the form of a valid program

(described conveniently by a context-free grammar

CFG)

semantics concerns its meaning: rules that go beyond

mere form (e.g., the number of arguments contained

in a call to a subroutine matches the number of formal

parameters in the subroutine definition – cannot be

counted using CFG, type consistency):
 Defines what the program means

 Detects if the program is correct

 Helps to translate it into another representation2

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Semantic rules are divided into:

 static semantics enforced at compile time

 dynamic semantics: the compiler generates code to enforce

dynamic semantic rules at run time (or calls libraries to do it)

(for errors like division by zero, out-of-bounds index in array)

 Following parsing, the next two phases of the "typical" compiler

are:

 semantic analysis

 (intermediate) code generation

 The principal job of the semantic analyzer is to enforce static

semantic rules, plus:

 constructs a syntax tree

 information gathered is needed by the code generator
3

Role of Semantic Analysis

(c) Paul Fodor (CS Stony Brook) and Elsevier

 However, parsing, semantic analysis, and intermediate

code generation are typically interleaved:

 a common approach interleaves parsing construction of a

syntax tree with phases for semantic analysis and code

generation

 replaces the parse tree with a syntax tree that reflects the input

program in a more straightforward way

 The semantic analysis and intermediate code generation

annotate the parse tree with attributes

 These kind of grammars are called Attribute grammars -

provide a formal framework for the decoration of a syntax tree

 The attribute flow constrains the order(s) in which nodes of a tree

can be decorated
4

Attribute grammars

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Dynamic checks: semantic rules enforced at run time

 C requires no dynamic checks at all (it relies on the hardware

to find division by zero, or attempted access to memory

outside the bounds of the program)

 Java check as many rules as possible, so that an untrusted

program cannot do anything to damage the memory or files

of the machine on which it runs

 Many compilers that generate code for dynamic checks provide

the option of disabling them (enabled during program

development and testing, but disables for production use, to

increase execution speed)

 Hoare: “like wearing a life jacket on land, and taking it off at sea”
5

Dynamic checks

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Assertions: logical formulas written by the programmers

regarding the values of program data used to reason about the

correctness of their algorithms (the assertion is expected to be

true when execution reaches a certain point in the code):

 Java syntax: assert denominator != 0;

 An AssertionError exception will be thrown if the semantic

check fails at run time.

 C syntax: assert(denominator != 0);

 If the assertion fails, the program will terminate abruptly with a

message: a.c:10: failed assertion ‘denominator != 0’

 Some languages also provide explicit support for invariants,

preconditions, and post-conditions.

 Like Dafny from Microsoft https://github.com/Microsoft/dafny
6

Dynamic checks

https://github.com/Microsoft/dafny

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Java example:
 An assertion in Java is a statement that enables us to assert an

assumption about our program

 An assertion contains a Boolean expression that should be true

during program execution

 Assertions can be used to assure program correctness and avoid

logic errors

 An assertion is declared using the Java keyword assert in JDK

1.5 as follows:

assert assertion; //OR

assert assertion : detailMessage;
where assertion is a Boolean expression and detailMessage is a

primitive-type or an Object value

7

Java Assertions

(c) Paul Fodor (CS Stony Brook) and Elsevier

public class AssertionDemo {

public static void main(String[] args) {

int i;

int sum = 0;

for (i = 0; i < 10; i++) {

sum += i;

}

assert i==10;

assert sum>10 && sum<5*10 : "sum is " + sum;

}

}

 When an assertion statement is executed, Java evaluates the

assertion

 If it is false, an AssertionError will be thrown with

the message as a parameter
8

Java Assertion Example

(c) Paul Fodor (CS Stony Brook) and Elsevier

 The AssertionError class has a no-arg constructor and

seven overloaded single-argument constructors of type int,

long, float, double, boolean, char, and

Object

 For the first assert statement in the example (with no detail

message), the no-arg constructor of AssertionError

is used

 For the second assert statement with a detail message, an

appropriate AssertionError constructor is used to

match the data type of the message

 Since AssertionError is a subclass of Error, when

an assertion becomes false, the program displays a message

on the console and exits
9

Java Assertion Example

(c) Paul Fodor (CS Stony Brook) and Elsevier

Running Programs with Assertions
 By default, the assertions are disabled at runtime

 To enable it, use the switch –enableassertions, or –ea

for short, as follows:

java –ea AssertionDemo

public class AssertionDemo {

public static void main(String[] args){

int i; int sum = 0;

for (i = 0; i < 10; i++) {

sum += i;

}

assert i!=10;

}

}

Exception in thread "main" java.lang.AssertionError

at AssertionDemo.main(AssertionDemo.java:7)
10

(c) Paul Fodor (CS Stony Brook) and Elsevier

Assertions can be selectively enabled or disabled at

class level or package level

The disable switch is –disableassertions

or –da for short

For example, the following command enables

assertions in package package1 and disables

assertions in class Class1:

java –ea:package1 –da:Class1 AssertionDemo

11

Running Programs with Assertions

(c) Paul Fodor (CS Stony Brook) and Elsevier

Using Exception Handling or Assertions?

 Assertion should not be used to replace exception

handling!

 Exception handling deals with unusual circumstances during

program execution.

 Assertions are to assure the correctness of the program

 Exception handling addresses robustness and assertion

addresses correctness

 Assertions are used for internal consistency and validity

checks

 Assertions are checked at runtime and can be turned on or off

at startup time vs. Exceptions which cannot be turned on or

off 12

(c) Paul Fodor (CS Stony Brook) and Elsevier

Do not use assertions for argument checking in

public methods:

Valid arguments that may be passed to a public method

are considered to be part of the method’s contract

The contract must always be obeyed whether assertions

are enabled or disabled

 For example, the following code in the Circle class

should be rewritten using exception handling:
public void setRadius(double newRadius) {

assert newRadius >= 0;

radius = newRadius;

}
13

Using Exception Handling or Assertions?

(c) Paul Fodor (CS Stony Brook) and Elsevier

Use assertions to reaffirm assumptions!
A common use of assertions is to represent

assumptions with assertions in the code

This gives you more confidence to assure correctness

of the program

A good use of assertions is place assertions in a switch

statement without a default case. For example:
switch (month) {

case 1: ... ; break;

case 2: ... ; break;

...

case 12: ... ; break;

default: assert false : "Invalid month: " + month;

// this default case should never be reached

}
14

Using Exception Handling or Assertions?

(c) Paul Fodor (CS Stony Brook) and Elsevier

Correctness of Algorithms
 Loop Invariants: used to prove correctness of a loop with

respect to pre- and post-conditions

[Pre-condition for the loop]

while (G)

[Statements in the body of the loop]

end while

[Post-condition for the loop]

A loop is correct with respect to its pre- and post-conditions if,

and only if, whenever the algorithm variables satisfy the pre-

condition for the loop and the loop terminates after a finite

number of steps, the algorithm variables satisfy the post-

condition for the loop

15

(c) Paul Fodor (CS Stony Brook) and Elsevier

Loop Invariant
 A loop invariant I(n) is a predicate with domain a set of integers,

which for each iteration of the loop (mathematical induction),

if the predicate is true before the iteration, the it is true after the

iteration

If the loop invariant I(0) is true before the first iteration of

the loop AND

After a finite number of iterations of the loop, the guard G becomes

false AND

The truth of the loop invariant ensures the truth of the post-

condition of the loop

then the loop will be correct with respect to it pre- and

post-conditions

16

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Correctness of a Loop to Compute a Product:

A loop to compute the product mx for a nonnegative

integer m and a real number x, without using

multiplication
[Pre-condition: m is a nonnegative integer, x is a real number, i = 0, and

product = 0]

while (i ≠ m)

product := product + x

i := i + 1

end while

[Post-condition: product = mx]

Loop invariant I(n): i = n and product = n*x

Guard G: i ≠ m
17

Loop Invariant

(c) Paul Fodor (CS Stony Brook) and Elsevier

Base Property: I (0) is “i = 0 and product = 0· x = 0”

Inductive Property: [If G ∧ I (k) is true before a loop

iteration (where k ≥ 0), then I (k+1) is true after the

loop iteration.]

Let k is a nonnegative integer such that G ∧ I (k) is true

Since i ≠ m, the guard is passed

product = product + x = kx + x = (k + 1)x

i = i + 1 = k + 1

I (k + 1): (i = k + 1 and product = (k + 1)x) is true

Eventual Falsity of Guard: [After a finite number of

iterations of the loop, G becomes false]

After m iterations of the loop: i = m and G becomes false

18

(c) Paul Fodor (CS Stony Brook) and Elsevier

Correctness of the Post-Condition: [If N is the least

number of iterations after which G is false and I

(N) is true, then the value of the algorithm

variables will be as specified in the post-

condition of the loop.]

I(N) is true at the end of the loop: i = N and product = Nx

G becomes false after N iterations, i = m, so m = i = N

The post-condition: the value of product after execution of

the loop should be m*x is true.

19

(c) Paul Fodor (CS Stony Brook) and Elsevier

Static analysis
 Static analysis: compile-time algorithms that predict

run-time behavior

Type checking, for example, is static and precise in

ML: the compiler ensures that no variable will ever be

used at run time in a way that is inappropriate for its

type

By contrast, languages like Lisp and Smalltalk accept

the run-time overhead of dynamic type checks

 In Java, type checking is mostly static, but dynamically

loaded classes and type casts require run-time checks

20

(c) Paul Fodor (CS Stony Brook) and Elsevier

Static analysis
 Examples of static analysis:

Alias analysis determines when values can be safely

cached in registers, computed “out of order,” or accessed

by concurrent threads.

Escape analysis determines when all references to a

value will be confined to a given context, allowing it to

be allocated on the stack instead of the heap, or to be

accessed without locks.

Subtype analysis determines when a variable in an

object-oriented language is guaranteed to have a certain

subtype, so that its methods can be called without

dynamic dispatch.
21

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Static analysis is usually done for Optimizations:

 optimizations can be unsafe if they may lead to incorrect code

 speculative if they usually improve performance, but may degrade it in

certain cases
 Non-binding prefetches bring data into the cache before they are needed,

 Trace scheduling rearranges code in hopes of improving the performance of the

processor pipeline and the instruction cache.

 A compiler is conservative if it applies optimizations only when it can

guarantee that they will be both safe and effective

 A compiler is optimistic if it uses speculative optimizations

 it may also use unsafe optimizations by generating two versions of the

code, with a dynamic check that chooses between them based on

information not available at compile time

 Optimizations can lead to security risks if implemented incorrectly (see

2018 Spectre hardware vulnerability: microarchitecture-level

optimizations to code execution [can] leak information)22

Other static analysis

(c) Paul Fodor (CS Stony Brook) and Elsevier

Attribute Grammars
 Both semantic analysis and (intermediate) code generation can

be described in terms of annotation, or "decoration" of a

parse or syntax tree

 attributes are properties/actions attached to the production rules

of a grammar

 ATTRIBUTE GRAMMARS provide a formal framework for

decorating a parse tree

 The attributes are divided into two groups: synthesized attributes

and inherited attributes

 Synthesized: the value is computed from the values of

attributes of the children

 S-attributed grammar = synthesized attributes only

23

(c) Paul Fodor (CS Stony Brook) and Elsevier

LR (bottom-up) grammar

for arithmetic expressions

made of constants, with

precedence and

associativity

detects of a string

follows the grammar

but says nothing about

what the program

MEANS
24

Attribute Grammars

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Attributed grammar:

defines the semantics of

the input program

 Associates expressions to

mathematical concepts!!!

Attribute rules are

definitions, not

assignments: they are not

necessarily meant to be

evaluated at any particular

time, or in any particular

order
25

copy rule

semantic function

(sum, etc.)
Attribute Grammars

(c) Paul Fodor (CS Stony Brook) and Elsevier

Attributed grammar to count the elements of

a list:

26

Attribute Grammars

(c) Paul Fodor (CS Stony Brook) and Elsevier
27

Tokens: int (attr val), var (attr name)

S -> var = E

▷ assign(var.name, E.val)

E1 -> E2 + T

▷ E1.val = add(E2.val, T.val)

E1 -> E2 - T

▷ E1.val = sub(E2.val, T.val)

E -> T

▷ E.val = T.val

T -> var

▷ T.val = lookup(var.name)

T -> int

▷ T.val = int.val
Input:

“bar = 50

foo = 100 + 200 – bar”

Attribute Grammars Example with variables

(c) Paul Fodor (CS Stony Brook) and Elsevier

Evaluating Attributes
 The process of evaluating attributes is called annotation, or

DECORATION, of the parse tree

 When the parse tree under the previous example grammar is

fully decorated, the value of the expression will be in the

val attribute of the root

 The code fragments for the rules are called SEMANTIC

FUNCTIONS

 For example:

E1.val = sum(E2.val, T.val)

 Semantic functions are not allowed to refer to any variables

or attributes outside the current production

 Action routines may do that (see later)

28

(c) Paul Fodor (CS Stony Brook) and Elsevier
29

Decoration of a parse tree for (1 + 3) * 2

needs to detect the order of attribute

evaluation:

- Curving arrows show the attribute flow

- Each box holds the output of a

single semantic rule

- The arrow is the input to the rule

- synthesized attributes: their values are

calculated (synthesized) only in

productions in which their symbol

appears on the left-hand side.

- A S-attributed grammar is a grammar

where all attributes are synthesized.

Evaluating Attributes

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Tokens have only synthesized attributes, initialized by the

scanner (name of an identifier, value of a constant, etc.).

 INHERITED attributes may depend on things above or to

the side of them in the parse tree, e.g., LL(1) grammar:

30

we cannot summarize the right

subtree of the root with a single

numeric value

subtraction is left associative:

requires us to embed the entire tree

into the attributes of a single node

Evaluating Attributes

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Decoration with left-to-right attribute flow: pass attribute

values not only bottom-up but also left-to-right in the tree

 9 can be combined in left-associative fashion with the 4 and

 5 can then be passed into the middle expr_tail node, combined

with the 3 to make 2, and then passed upward to the root

31

Evaluating Attributes

(c) Paul Fodor (CS Stony Brook) and Elsevier
32

(1) serves to copy the

left context (value of

the expression so far)

into a “subtotal” (st)

attribute.

Root rule (2) copies

the final value from

the right-most leaf

back up to the root.

(1)

(2)

Evaluating Attributes

(c) Paul Fodor (CS Stony Brook) and Elsevier
33

An attribute grammar for

constant expressions based

on an LL(1) CFG
- An attribute grammar is well

defined if its rules determine a

unique set of values for the

attributes of every possible

parse tree.

- An attribute grammar is

noncircular if it never leads to

a parse tree in which there are

cycles in the attribute flow

graph.

Evaluating Attributes

(c) Paul Fodor (CS Stony Brook) and Elsevier
34

Top-down parse tree for (1 + 3) * 2 with left-to-right attribute flow

Evaluating Attributes

(c) Paul Fodor (CS Stony Brook) and Elsevier

Synthesized Attributes (S-attributed

grammars):

Data flows bottom-up

Can be parsed by LR grammars

 Inherited Attributes:

Data flows top-down and bottom-up

Can be parsed with LL grammars

35

Evaluating Attributes

(c) Paul Fodor (CS Stony Brook) and Elsevier

 A translation scheme is an algorithm that decorates parse

trees by invoking the rules of an attribute grammar in an order

consistent with the tree’s attribute flow

 An oblivious scheme makes repeated passes over a tree, invoking any

semantic function whose arguments have all been defined, and

stopping when it completes a pass in which no values change.

 A dynamic scheme that tailors the evaluation order to the structure of

the given parse tree, e.g., by constructing a topological sort of the

attribute flow graph and then invoking rules in an order consistent

with the sort.

 An attribute grammar is L-attributed if its attributes can be evaluated by

visiting the nodes of the parse tree in a single left-to-right, depth-first

traversal (same order with a top-down parse)

36

Evaluating Attributes

(c) Paul Fodor (CS Stony Brook) and Elsevier

Syntax trees
 A one-pass compiler is a compiler that interleaves

semantic analysis and code generation with parsing

 Syntax trees: if the parsing and code generation are not

interleaved, then attribute rules must be added to create the

syntax tree:

 The attributes in these grammars point to nodes of the syntax

tree (containing unary or binary operators, pointers to the

supplied operand(s), etc.)

 The attributes hold neither numeric values nor target code

fragments

37

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Bottom-up (S-attributed)

attribute grammar to

construct a syntax tree

38

Syntax trees

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Top-down (L-attributed) attribute

grammar to construct a syntax tree:

39

Syntax trees

(c) Paul Fodor (CS Stony Brook) and Elsevier

Action Routines
 While it is possible to construct automatic tools to analyze

attribute flow and decorate parse trees, most compilers

rely on action routines, which the compiler writer

embeds in the right-hand sides of productions to evaluate

attribute rules at specific points in a parse

An action routine is like a "semantic function" that we tell

the compiler to execute at a particular point in the parse

 In an LL-family parser, action routines can be

embedded at arbitrary points in a production’s right-

hand side

They will be executed left to right during parsing

40

(c) Paul Fodor (CS Stony Brook) and Elsevier

 If semantic analysis and code generation are

interleaved with parsing, then action routines can

be used to perform semantic checks and generate

code

Later compilation phases can then consist of ad-hoc

tree traversal(s), or can use an automatic tool to

generate a translation scheme

 If semantic analysis and code generation are

broken out as separate phases, then action

routines can be used to build a syntax tree
41

Action Routines

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Entries in the attributes stack are pushed and popped

automatically

 The syntax tree is produced

42

Action Routines

(c) Paul Fodor (CS Stony Brook) and Elsevier

Decorating a Syntax Tree
 Sample of complete tree

grammar representing

structure of the syntax

tree

43

