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Regular Expressions

* A regular expression is one of the following:
® A character
® The empty string, denoted by €
® Two regular expressions concatenated
® Two regular expressions separated by | (i.e., or)

* A regular expression followed by the Kleene star (concatenation

of zero or more strings)
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Regular Expressions

® Numerical literals in Pascal may be generated by the

following:

digt. — 0| 1] 2]|3]4]|56]|6|7]|8]29
unsigned_integer —  digit digit *

unsigned_number —  unsigned_integer ( (. unsigned_integer) | €)
(((e | E) (+ | - | €) unsigned_integer) | €)
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Context-Free Grammars

® The notation for context-free grammars (CFG) is sometimes
called Backus-Naur Form (BNF)

® A CFG consists of
® A set of terminalsT
® A set of non-terminals N
® A start symbol S (a non-terminal)

® A set of productions
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Context-Free Grammars

® Expression grammar with precedence and associativity

1. expr — term | expr add_op term

2. term ——  factor | term mult_op factor

3. factor — id | number | - factor | ( expr)
4. addop — + | -

5. mult.op —  * | /
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Context-Free Grammars

® Parse tree for expression grammar (with precedence) for 3

+ 4 % 5
expr
/ \
eTpT add_op term
T T —
te -;!*m + term mult_op factor
factor factor J: numb{lr (5)

number (3) number (4)
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Context-Free Grammars

® Parse tree for expression grammar (with left associativity)

for 10-4-3
expr
//
erpr add_op term
/\
expr add_op term - Jactor
term - factor number (3)
factor number (4)

number (10)
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Scanning

® Recall scanner is responsible for
® tokenizing source
® removing comments
® (often) dealing with pragmas (i.e., significant comments)
® saving text of identifiers, numbers, strings

® saving source locations (file, line, column) for error messages
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Scanning

® Suppose we are building an ad-hoc (hand-written) scanner

for Pascal:

® We read the characters one at a time with look-ahead

e If it is one of the one-character tokens
{O[1<>,;=+-etc}

we announce that token

e Ifitisa ., we look at the next character
e If that is a dot, we announce .

® Otherwise, we announce . and reuse the look-ahead
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Scanning

e [fitisa <, we look at the next character
e if that is a = we announce <=
® otherwise, we announce < and reuse the look-ahead, etc

* If it is a letter, we keep reading letters and digits and maybe
underscores until we can't anymore

® then we check to see if it is a reserve word
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Scanning

* If it is a digit, we keep reading until we find a non-digit
® if that is not a . we announce an integer
® otherwise, we keep looking for a real number

e if the character after the .is nota digit we announce an integer
and reuse the . and the look-ahead
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Scanning

o

-

. . ™, space, tab, newline :
® Pictorial r N o ns, in
1 | e ———
| - —
- r{:}_\ﬂ-‘/ll L T "-u.\\. - -
the form C Start 'x_lf"‘.t — I newline \‘x /
L \
A ,{____.--r{’:‘a;‘—“\ .
\f A — inon-newline I
—_ ..'I-;"L\_"{:.-l- . .
div * P T
! 3*;1;
1 l_.-'"_ ! p, _-""\-\._‘
( ;.-‘—ﬂ__ Pa )
N e non-{ or® — %
. ( 'j“\ "::\f = >
I', Y -"-r:'-._:""-\‘L "‘_“ N . o,
\ Esj-llparen { Jjrparen  (f S{H plus l,g?é_lmmus |_;}1'§I5;.It|mes
L T— —m'fl f’l 1-'{:1- 3) '
\ Ny (12)} assign
\\\:__ Faly
= 13 ]
S digit
1
- digit N, digit
Ndigie ()N ()
I o y
S s
| @
\ nurmber nurnber
"‘\Iemr o I!frrf.l’. digit
. — d
- e ="’
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Scanning

® This is a deterministic finite automaton (DFA)

® Lex, scangen, etc. build these things automatically from a set of

regular expressions

® Specifically, they construct a machine that accepts the language
identifier | int const

| real const | comment | symbol | ...
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Scanning

® We run the machine over and over to get one token after

another

° Nearly universal rule:

always take the longest possible token from the input

thus foobar is foobar and never f or foo or foob

more to the point, 3.14159 is a real const and never 3, ., and 14159

® Regular expressions "generate" a regular language; DFAs

"recognize" it
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Scanning

® Scanners tend to be built three ways
® ad-hoc

® semi-mechanical pure DFA

(usually realized as nested case statements)

® table-driven DFA
® Ad-hoc generally yields the fastest, most compact code by
doing lots of special-purpose things, though good

automatically—generated scanners come very close
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Scanning

® Writing a pure DFA as a set of nested case statements is a
surprisingly useful programming technique
* though it's often easier to use perl, awk, sed

® for details see Figure 2.11
e Table-driven DFA is what lex and scangen produce

® lex (flex) in the form of C code

® scangen in the form of numeric tables and a separate driver (for

details see Figure 2.12)
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Scanning

® Note that the rule about longest—possible tokens means you
return only when the next character can't be used to
continue the current token

® the next character will generally need to be saved for the next

token

® In some cases, you may need to peek at more than one
character of look-ahead in order to know whether to proceed

® In Pascal, for example, when you have a 3 and you a see a dot

do you proceed (in hopes of getting 3.14)?

or

do you stop (in fear of getting 3..5)?
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Scanning

® In messier cases, you may not be able to get by with any fixed
amount of look-ahead.In Fortr an, for example, we have
DO 51= 1,25 loop
DO 51=1.25 assignhment

® Here, we need to remember we were in a potentially final
state, and save enough information that we can back up to it,

if we get stuck later
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Parsing

® Terminology:
* context-free grammar (CFG)

® symbols
terminals (tokens)

non-terminals
® production
® derivations (left-most and right-most - canonical)
® parse trees

® sentential form
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Parsing

* By analogy to RE and DFAs, a context-free grammar (CFG)

is a generator for a context-free language (CFL)
® a Parser 1S a language recognizer

® There is an infinite number of grammars for every context-
free language

® not all grammars are created equal, however
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Parsing

® It turns out that for any CFG we can create a parser that runs
in O(n"3) time

® There are two well-known parsing algorithms that permit
this
® Early's algorithm
® Cooke-Younger-Kasami (CYK) algorithm

* O(n"3) time is clearly unacceptable for a parser in a

compiler - too slow
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Parsing

Fortunately, there are large classes of grammars for which we
can build parsers that run in linear time

® The two most important classes are called

LL and LR
e LL stands for

'Left-to-right, Leftmost derivation'.
® |R stands for

'Left-to-right, Rightmost derivation’
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Parsing

P&I’S€I’S

e SLR
e LALR

them
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® LL parsers are also called 'top-down', or 'predictive’ parsers

& LR parsers are also called 'bottom-up', or 'shift-reduce’

® There are several important sub-classes of LR parsers

® We won't be going into detail on the differences between
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Parsing

® Every LL(1) grammar is also LR(1), though right recursion
in production tends to require very deep stacks and

complicates semantic analysis

® Every CFL that can be parsed deterministically has an SLR(1)
grammar (which is LR(1))

* Every deterministic CFL with the prefix property (no valid
string is a prefix of another valid string) has an LR(0)

grammar
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Parsing

® You commonly see LL or LR (or whatever) written with a

number in parentheses after it

® This number indicates how many tokens of look-ahead are

required in order to parse

® Almost all real compilers use one token of look-ahead

® The expression grammar (with precedence and associativity)

you saw before is LR(1), but not LL(1)
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LL Parsing

® Here is an LL(1) grammar (Fig 2.15):

® program — stmt list $$$
® stmt_list — stmt stmt_list

o | €

® stmt — id : = expr

o | read id

o | write expr

® expr — term term_ tail

* term_tail — add op term term_tail
o | e
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LL Parsing

® LL(1) grammar (continued)
® 10. term —> factor fact_tailt

® 11. fact_tail — mult_op fact fact_tail

o | €

* factor —  (expr)

o | id

o | number

® add_op— +
o | _
°* mult_op — *

® | /
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LL Parsing

e Like the bottom-

and precedence,

up grammar, this one captures assoclativity

but most people don't find it as pretty

® for one thing, the operands of a given operator aren't in a RHS

to gether!

® however, the simplicity of the parsing algorithm makes up for

this weakness

e How do we parse a string with this grammar?

° by building the parse tree incrementally

Copyright © 2009 Elsevier
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LL Parsing

® Example (average program)

o read A

o read B

° sum := A T+ B
° write sum

o write sum / 2

e We start at the top and predict needed productions on the
basis of the current left-most non-terminal in the tree and

the current input token
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LL Parsing

® Parse tree for the average program (Figure 2.17)

program

stmt_list 3%

stmit stmit_list
reﬁ(m stmt stmi_list
A
read id(B)  stml stmt_list
A T T~
id (sum) := ezxpr stmt stmit_list
] N
term term_tail write expr stmit stmit_list
factor factor_tail add_op  term term_tail  term term_tail  write expr <|5
SN N N
id (A) € factor factor_tail € factor factor_tail € term term_tail
| | | | N |
id (B) € id (sum) factor  factor_tail €

e

id(sum) rnuli_op factor factor_tail

Copyright © 2009 Elsevier
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LL Parsing

® Table-driven LL parsing: you have a big loop in which you
repeatedly look up an action in a two-dimensional table based
on current leftmost non-terminal and current input token.
The actions are
® (1) match a terminal
® (2) predict a production

® (3) announce a syntax error
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LL Parsing

® LL(1) parse table for parsing for calculator language

Top-of-stack Current input token
nonterminal id number read write := ( ) + - *x / $3
program | 1 - 1 1 = — = - = SV 1
stmit_list | 2 - 2 2 - - — _ . -~ _ 3
stmt | 4 - 5 6 . - - — - _ -~ _
expr | 7 7 - = = 7 A -
term_tail | 9 - 9 9 - - 9 8 8 — - 9
term | 10 10 — = —~ 0 = = % omw o .
factor_tail | 12 — 12 12 — - 12 12 12 11 11 12
factor | 14 15 - = O o L
add_op | — = — . - _ - 16 17 = - _
mult_op | — = = - s ws 2= oa= = IR OTH e
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LL Parsing

* To keep track of

the left-most non-terminal, you push the as-

yet-unseen portions of productions onto a stack

® for details see Figure 2.20

® The key thing to

keep in mind is that the stack contains all

the stuff you expect to see between now and the end of the

pI’O gram

® what you predict you will see

Copyright © 2009 Elsevier
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LL Parsing

® Problems trying to make a grammar LL(1)

® left recursion
example:
id_list — id | id_list , id
equivalently
id_list — id id_ list_ tail
id_list_tail — | id id_list_tail
| epsilon

we can get rid of all left recursion mechanically in any grammar
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LL Parsing

® Problems trying to make a grammar LL(1)

® common prefixes: another thing that LL parsers can't handle

solved by "left-factoring”
example:

stmt — id := expr | id (arg_list )

equivalently
stmt — id id_stmt_ tail
id_stmt_tail — := expr
| (arg_list)

we can eliminate left-factor mechanically
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LL Parsing

e Note that eliminating left recursion and common prefixes

does NOT make a grammar LL
® there are infinitely many non-LL LANGUAGES, and the

mechanical transformations work on them just fine

® the few that arise in practice, however, can generally be handled

with kiudges
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LL Parsing

® Problems trying to make a grammar LL(1)

° the"dangling else" problem prevents grammars from being

LL(1) (or in fact LL(k) for any k)

® the following natural grammar fragment is ambiguous (Pascal)
stmt — if cond then_clause else_clause | other_stuff
then_clause — then stmt
else clause — else stmt

| epsilon
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LL Parsing

® The less natural grammar fragment can be parsed bottom-up
but not top-down
® stmt — balanced_stmt | unbalanced_stmt
® balanced stmt — if cond then balanced_stmt

° else balanced_stmt
| other_stuft

® unbalanced_stmt — if cond then stmt
| if cond then balanced_stmt

° else unbalanced_ stmt
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LL Parsing

® The usual approach, whether top-down OR bottom-up, is to
use the ambiguous grammar together with a disambiguating
rule that says
® clse goes with the closest then or

® more generally, the first of two possible productions is the one

to predict (or reduce)
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LL Parsing

° else
o
° end

* Ada says 'end if';

Copyright © 2009 Elsevier
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® Better yet, languages (since Pascal) generally employ explicit

end-markers, which eliminate this problem

® In Modula-2, for example, one says:
e ifA =Bthen

if C=DthenE :=Fend
G:=H

other languages say 'fi'
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LL Parsing

® One problem with end markers is that they tend to bunch up.

In Pascal you say

o it A = B then ...
else if A = C then ...
else if A = D then ...
else it A = E then ...

else ...;

e With end markers this becomes

o if A = B then ...
else if A = C then ...
else if A = D then ...
else if A = E then ...

Copyright © 2009 Elsevier 6156 ceey
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LL Parsing

® The algorithm to build predict sets is tedious (for a "real"

sized grammar),

but relatively simple

® |t consists of three stages:

® (1) compute FIRST sets for symbols

® (2) compute FOLLOW sets for non-terminals

(this requires computing FIRST sets for some strings)

® (3) compute predict sets or table for all productions

Copyright © 2009 Elsevier
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LL Parsing

® [t is conventional in general discussions of grammars to use

® Jower case letters near the beginning of the alphabet for

terminals

® lower case letters near the end of the alphabet for strings of

terminals

® upper case letters near the beginning of the alphabet for non-

terminals

® upper case letters near the end of the alphabet for arbitrary
symbois

° greek letters for arbitrary strings of symbols
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LL Parsing

* Algorithm First/Follow/Predict:
® FIRST(a) == {a:0 —*af}
U (if @ =>* e THEN {g} ELSE NULL)
e FOLLOW(A) == {a:S =+ aAaf}
U (if S —>* o ATHEN {&} ELSE NULL)
® Predict (A — X1 ... Xm) == (FIRST (X1 ... Xm) - {€}) U (if
X1, ..., Xm —* & then FOLLOW (A) ELSE NULL)

® Details following. ..
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LL Parsing

program — stmt_list $$

stmt_list — stmt stmit_list
stmi_list — €

stmt — 1d = expr

stmt — read 1d

stmt — write expr

expr — term term_tail

term_tail — add_op term term_tail
term_tail — €

term — factor factor_tail
factor_tail — mult_op factor factor_tail
factor_tail — €

factor — ( expr )

factor — id

factor — number

add_op — +

add_op — -

mult_op — *

mult_op — /

Copyright © 2009 Elsevier

$$ € FOLLOW (stmt_list),
€ € FOLLOW ($$), and € € FOLLOW ( program)

€ € FIRST(stmt_list)

id € FIRST(stmt) and := € FOLLOW(id)
read € FIRST(stmt) and id € FOLLOW(read)
write € FIRST(stmt)

€ € FIRST(term_tail)

€ € FIRST( factor_tail)

( € FIRST(factor) and ) € FOLLOW( expr)
id € FIRST( factor)

number € FIRST( factor)

+ € FIRST(add-op)

- € FIRST(add-op)

* € FIRST(mult_op)

/ € FIRST(mult_op)

Figure 2.21: “Obvious” facts about the LL(1) calculator grammar.
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LL Parsing

FIRST
program {id, read, write, $$}
stmi_list {id, read, write, ¢}
stmt {id, read, write}
erpr { (, id, number |
term_tail J|:+, -, €}
term { (, id, number}
factor_tail {*, /, €}
factor { (, id, number }
add_op {+, -}
mult_op {*, /}
Also note that FIRST(a) = {a} ¥ tokens a.

FOLLOW
id {+, -, *, /, ), :=, id, read, write, $$}
number {+, -, *, /, ), id, read, write, $$}
read {id}

write {(, id, number}

( {(, id, number}

) {+, -, %, /,), id, read, write, $§}
:= {(, id, number}

+ {(, id, number }

- {(, id, number}

* {(, id, number}

/ {(, id, number}

$$ {c}
program {e}
stmi_list {$$}

stmt {id, read, urite, $$}

Copyright © 2009 Elsevier

erpr {), id, read, write, $$}

term_tail {), id, read, vrite, $$}

term {+, -, ), id, read, vrite, $$}
factor_tail {+, =, ), id, read, write, $%}
factor {+, =, %, /, ), id, read, write, $8}
add_op {(, id, number |

mult_op { (, id, number }

PREDICT
1 program — stmt_list $$ {id, read, write, $$}
2 st _list > stmt stmt_list {id, read, write}
3 stmtlist — € {$$}
4 stmt — id := expr {id}
5 stmt — read id {read}
6 stint — write expr {write}
7 expr — term term_tail {(, id, number }
8 term_tail — add_op term term_tail {+, -}
9 term_tail — ¢ {), id, read, write, $$}
10 term — factor factor_tail {(, id, number }
11  factor_tail — m H“_r)jl factor factor_tail {*. /}
12 factor_tail — € {+, =, ), id, read, write, $$}
13 factor — ( expr ) {(}
14 factor — id {id}
15 factor — number {number }
16 rrf}'.rf_t)g.l —wt {+]r
17 add.op — - {-}
18 mult_op — * {*}
19 mut_op — /7 {/}

Figure 2.22: FIRST, FOLLOW, and PREDICT sets for the calculator language.
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LL Parsing

o If any token belongs to the predict set of more than one

production with the same LHS, then the grammar is not
LL(1)

® A conflict can arise because
® the same token can begin more than one RHS

® it can begin one RHS and can also appear after the LHS in some

valid program, and one possible RHS is €
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LR Parsing

® LR parsers are almost always table-driven:

® like a table-driven LL parser, an LR parser uses a big loop in
which it repeatedly inspects a two-dimensional table to find out

what action to take

® unlike the LL parser, however, the LR driver has non-trivial
state (like a DFA), and the table is indexed by current input

token and current state

® the stack contains a record of what has been seen SO FAR

(NOT what is expected)
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LR Parsing

® A scanneris a DFA

® it can be specified with a state diagram

® AnLL or LR parser is a PDA
° Early's & CYK algorithms do NOT use PDAs
® a PDA can be specitied with a state diagram and a stack

the state diagram looks just like a DFA state diagram, except the arcs are
labeled with <input symbol, top-of-stack symbol> pairs, and in addition
to moving to a new state the PDA has the option of pushing or popping a

finite number of symbols onto/oft the stack
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LR Parsing

® An LL(1) PDA has only one state!

* well, actually two; it needs a second one to accept with, but
that's all (it's pretty simple)
® all the arcs are self loops; the only difference between them is

the choice of whether to push or pop

® the final state is reached by a transition that sees EOF on the
input and the stack

Copyright © 2009 Elsevier
\ (c) P.Fodor (CS Stony Brook) and Elsevier




LR Parsing

e An SLR/LALR/LR PDA has multiple states

® it is a "recognizer," not a "predictor"
® it builds a parse tree from the bottom up
® the states keep track of which productions we might be in the
middle
® The parsing of the Characteristic Finite State Machine
(CFSM) is based on
e Shift

® Reduce

Copyright © 2009 Elsevier
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LR Parsing

® To illustrate LR parsing, consider the grammar (Figure 2.24,
Page 73):
® program — stmt list $$$

® stmt_list — stmt_list stmt

o | stmt

® stmt — id := expr

o | read id

o | write expr

¢ expr — term

o | expr add op term

Copyright © 2009 Elsevier
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LR Parsing

® LR grammar (continued):

® 9 term

—

factor

| term mult_op factor

factor —( expr)

add op — +

mult op — *

Copyright © 2009 Elsevier
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| id

| number

| /
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LR Parsing

® This grammar is SLR(1), a particularly nice class of bottom-
up grammar
® it isn't exactly what we saw originally
® we've eliminated the epsilon production to simplity the

presentation

® For details on the table driven SLR(1) parsing please note the

follovving slides
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LR

Parsing

State Transitions State Transitions
0. program — . stmilist §$ on stmiist shift and goto 2 T. ezpr —— term . on FOLLOW (erpr) = | id, read, write, $%, ). +, -} reduce
e term - term o muliop factor (pop 1 state, push expr on input)
.&FJH.FJ-(I.'st - o stmilist stmit - . . _ on mult_op shift and goto 11
stmi_list + e stmi on stmt .a_slluft and reduce (pop 1 state, push stmiJist on inpu multop — . % on # shift and redice (pop 1 state, push mult_op on input)
stmt — o+ id 1= expr on id shift and goto 3 muliop — o+ / on / shift and reduce (pop 1 state, push muli_op on input)
stmt — . read id on read shift and goto 1
stmt —— . write erpr on write shift and goto 4 8 factor — ( . expr) on expr shift and goto 12
1. stmt — read . id on id shift and reduce (pop 2 states, push stmt on input) eIpr —— o term on term shift and goto 7
eIpr —— o erpr add_op term
2. program — stmi_list . $% on §§ shift and reduce (pop 2 states. push program on input) term — . factor on factor shift and reduce {pop 1 state. push ferm on input)
stmidist — simitdist o stmt on stmt =hift and reduce (pop 2 states, push stmidist on inp term — o term mult_op factos o
factor — . ( expr) on ( shift and goto &
stmt — . id := expr on id shift and goto 3 factor — . id on id shift and reduce (pop 1 state, push factor on input)
stini —— . read id on read shiflt and goto 1 factor — . nunber on number shift and reduce (pop 1 state, push factor on input)
stmt —— . write erpr on write shift and goto 4
0. stmt 2 id = expr . on FOLLOW ( stmit) = |1d, read, write, $§} reduce
3. stmt — id . = expr on = shift and goto 5 expr —— expr » add_op term (pop 3 states, push stmi on input)
on add_op shift and gote 10
4. stmt —write . expr on ezpr shift and goto 6 add_op —— + + on + shift and reduce (pop 1 state, push add_op on input)
add_op — . - on - shift and reduce (pop | state, push add_ap on input)
eIPT —+ o tETM on term shift and goto 7
expr —— « expr add_op term 10, expr — expr add_op . term on ferm shift and goto 13
term — o factor on factor shift and rednce (pop 1 state, push term on input) : .
term —— o term muli_op factor term — . factor on factor shift and reduce (pop 1 state, push term on input)
factor v o ( expr) on ( shift and goto 8 term + « term mult_op facter
factor — . id on 1d shift and reduce (pop 1 state, push foctor on input) factor — « ( capr) b ( ﬁlllt_t_““‘l goto 8 _ .
factor — . nunber on number shift and reduce (pop 1 state, push factor on inpn factor — . 1d on id shift ﬂllfll reduce (pop 1 state, push facter on input) )
actor — . nunber on number shift and rednce (pop 1 state, push factor on inpn
i b Ie! hitt 1 red 1 =tat Els t t)
5. stmnt id := . expr on erpr shift and goto 9 X ) i )
11.  term - term muliop « factor  on factor shift and reduce (pop 3 states, push ferm on input)
expr + o tETm on term shift and goto 7 3 2
eopr o ooy A facton + o (expr) o1 ( sluf_t.auul goto & ) ) ‘
i oy - - ! s s . ; factor « id on id shift and reduce (pop 1 state, push factor on input)
term — » factor on factor shift and reduce (pop 1 state, push ferm on input) B : e . 3 .
) ) ) factor — . number on number shift and reduce (pop 1 state. push facter on input)
term + o term multeop factor
factor — o ( expr) on ( shift and goto 8 ) i {ad L )
factor — . id on id shift and reduce (pop 1 state, push focior on input) 12, factor « ( expr }f) on ) Fiﬂt n_ilfflu HICL (DUT 33 Rates, push facteronduput)
factor — . number on number shift and reduce (pop 1 state, push factor on inpn £zt f IOV e QUG- RGN ongad-op sl and patedl
add_op — . + on + shift and reduce (pop | state, push add_ap on inpat)
6. stmt — write expr . on FOLLOW (stmi) = {id, read. write, $§} reduce add_op —+ . - on - shift and reduce (pop 1 state, push add_op on input)
stmnt cerpr . adi_op term (pop 2 states, push stmi on input)
on add_op shift and goto 10 13, expr — expr add_op term . on FOLLOW(expr) = {id. read, write, $§. ). +. -} reduce
add_op — . + on + shift and reduce (pop 1 state, push add_op on input) term — term . mulf_ap factor (pop 3 states, push eapr on input)
add_op — + on - shift and reduce (pop 1 state, push add_op on input) on mult_op shift and goto 11
muli_op — + * on # shift and reduce (pop 1 state, push muli_op on input)
Figure 2.25: CFSM for the calculator grammar (Figure 2.24). Basis and closure muliop — + f on / shift and reduce (pop 1 state, push muli_op on input)

items in each state are separated by a horizontal rule. Trivial reduee-only states have hoen

climinated by nse of “shift and reduce” transitions [continued ).
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2.25: (continued)
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LR Parsing

Figure 2.26: Pictorial representation of the CFSM of Figure 2.25. Symbol names
have been abbreviated for clarity. Reduce actions are not shown.
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Top-of-stack Current input symbol
state sl s e ' f ao mo id 1lit r w := ( ) + - * /  $%
0 s2 b3 - - - - - 8 - 8184 - - - - = = - =
1 — = == x= o= o= o= BB e = = e e e T
2 - B2 = = = = = 8 ~ 8l8 - = = = = = = bl
3 — = e e e - = — — = = B — = = = — = =
4 - — s6 sT b9 - - bl2 b13 - - - 8 - - — - - -
5 - - 89 s7T b9 - - bl2 b13 - - - 88 - - - - = =
6 - - - - - 810 - 6 - 6 r6 - - — bld bls - - 6
T - - = = = - 811 7 - 7 7T - — 7 r7 r7 bl6 bl7 7
8 - — 812 87T b9 - - Dbl2 b13 - - — 88 — - - — - =
9 - - - - - 810 - 4 - r4r4 - — — Dbl4d blsd - - r4
10 - - - 813 b9 - - Dbl12 13 - - - 8 - - - —  — -
11 - - - — bl0 - - Dbl2 b13 - - - 88 - - — — = e
12 - - - - - g0 - - - - - — — bll bl4 bl - - -
13 - - - - = — sl 8 - 8 - - 8 8 8 bl6 bl7T 18

Figure 2.27: SLR(1) parse table for the calculator language. Table entries indicate
whether to shift (s), reduce (r), or shift and then reduce (b). The accompanying number
is the new state when shifting, or the production that has been recognized when (shifting
and) reducing. Production numbers are given in Figure 2.24. Symbol names have been
abbreviated for the sake of formatting. A dash indicates an error. An auxiliary table, not
shown here, gives the left-hand side symbol and right-hand side length for each production.
Copyright © 2009 Elsevier
\ (c) P.Fodor (CS Stony Brook) and Elsevier




LR Parsing

e SLR parsing is base« ‘.....

e Shift

® Reduce

® and also

® Shift & Reduce (fo @3

0 stmt_list 2 id & 1= 5
2 1= 5 expr 9
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Parse stack

i

i

0 stmt_list 2

0 stmt_Jist 2 read
0 stmit_list 2

[

0 stmit_list 2
0 stmit_list
0 stmt_list :
0 stmt_list 2
0 stmtdist 2
0 stmtdist =
0 stmt_list :
0 stmt_list :
0 stmtdist 2 id
0 stmitdist 2 id
0 stmitdist 2 id

id .
id
id
id
id
id
id

0 stmifist 2 id 3
0 stmit_list 2

i

0 stmt_list 2

0 stmitlist 2 write
0 stmit_list 2 write
0 stmit_list 2 write
0 stmit_list 2 write
0 stmitlist 2 write
0 stmitlist 2 write
0 stmit_list 2

i

0 stmt_list 2
0 stmitlist 2 write
0 stmitlist 2 urite
0 stmitdist 2 write
0 stmidist 2 write
0 stmitlist 2 write
0 stmilist 2 write
0 stmitlist 2 write
0 stmitdist 2 write
0 stmit_list 2 write
0 stmitlist 2 write
0 stmit_list 2 write
0 stmt_list 2
a

0 stmit_fist 2
0

[done]

Figure

gram. States in the parse stack are shown in boldface type

i
5
=H
=5
= 5 term 7
=5
5 g
5 a
5 9 addop 10
9 add.op 10

a9
add_op 10 term 13
=

:
“
4
:
“
4 term 7
4

4 expr i

:
&

i

.

&

4 term ¥

4 term 7

4 term 7 mult_op 11
term 7 multoop 11

term 7

B e e B

erpr 6

9 add_op 10

Input stream

read & read B ...
A rTead B ..

stmt read B ...
stmit_list read B ...
read B sum ...

B sum :=

stmt sum = ...
stmt_list sum := ...
SUm = A ..
r=h

A+B ...
factor + B ...
term + B ..

+ B write ...
erpr + B write ...
+ B write ...
add_op B write ...
B write sum ...

factor write sum ...

tern Write sum ...

write sum ...
erpr write sum . ..
write sum ...
stmt write sum ...

stmit_list write sum ...

write sum ...
Sum write sum ...

factor write sum . ..

term write sum ...
write sum ...
erpr write sum . ..
write sum ...
stmt write sum ...

stmit_ist write sum ...

write sum / ...
sum /2 ...
factor / 2 ...
term / 2 ..
/288

mult_op 2 $§

2 5%

factor $§

term B

stmt $§
stmit_list §§
ik

program

Comment

shift read

shift id(4) & reduce by stmt - read id

shift stmt & reduce by stmit_fist . stmt

shift stmi_list

shift read

shift id (B & reduce by stmt - read id

shift stmt & reduce by stmitlist . stmt_list stmt

shift stmit_list

shift id (sum}

shift =

shift id(4) & reduce by factor - id
shift factor & reduce by term . foctor

shift term

reduce by expr - term

shift expr

shift + & reduce by add_op -+

shift edd.op

shift id (B) & reduce by factor - id
shift factor & reduce by term : factor
shift term

reduce by erpr —— expr add.op term
shift expr

reduce by stmt +id := erpr

shift stmt & reduce by stmit_fist . stmt
shift stmi_list

shift write

shift id (sum) & recuce by factor - id
shift factor & reduce by term factor
shift term

reduce by expr - term

shift expr

reduce by stmt - Write erpr

shift stmt & reduce by stmi_list + stmi_{ist stmt
shift stmi_list

shift write

shift id (sum) & reduce by factor - id
shift factor & reduce by term factor
shift term

shift / & reduce by mult.op — f

shift mult.op

shift number(2) & reduce by factor . numbar

shift factor & reduce by term - term mult-op factor
shift term

reduce by expr - term

shift expr

reduce by stmt . Write erpr

shift stmt & reduce by stmttist - stmitdist stmt

shift stmi_list
shift $% & reduce by program - stmt_list §%

2.20: Trace of a table-driven SLR(1) parse of the sum-and-average pro-

Syinhols in the parse stack

are for clarity only; they are not needed by the parsing algoritlnn. Parsing begins with the
initial state of the CESM (State 0) in the stack. It ends when we reduce by program —
(C) p strnd _list $% . uncovering State 0 again and pushing program onto the input strean.




