
CSE 307 – Principles of Programming Languages
Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Programming Language Syntax

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Regular Expressions
 A regular expression is one of the following:
 A character
 The empty string, denoted by ε
 Two regular expressions concatenated
 Two regular expressions separated by | (i.e., or)
 A regular expression followed by the Kleene star (concatenation

of zero or more strings)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Regular Expressions
 Numerical literals in Pascal may be generated by the

following:

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Context-Free Grammars
 The notation for context-free grammars (CFG) is sometimes

called Backus-Naur Form (BNF)
 A CFG consists of
 A set of terminals T
 A set of non-terminals N
 A start symbol S (a non-terminal)
 A set of productions

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Context-Free Grammars
 Expression grammar with precedence and associativity

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Context-Free Grammars
 Parse tree for expression grammar (with precedence) for 3

+ 4 * 5

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Context-Free Grammars
 Parse tree for expression grammar (with left associativity)

for 10 - 4 - 3

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Recall scanner is responsible for
 tokenizing source
 removing comments
 (often) dealing with pragmas (i.e., significant comments)
 saving text of identifiers, numbers, strings
 saving source locations (file, line, column) for error messages

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Suppose we are building an ad-hoc (hand-written) scanner

for Pascal:
 We read the characters one at a time with look-ahead

 If it is one of the one-character tokens
{ () [] < > , ; = + - etc }
we announce that token

 If it is a ., we look at the next character
 If that is a dot, we announce .
 Otherwise, we announce . and reuse the look-ahead

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 If it is a <, we look at the next character
 if that is a = we announce <=
 otherwise, we announce < and reuse the look-ahead, etc

 If it is a letter, we keep reading letters and digits and maybe
underscores until we can't anymore
 then we check to see if it is a reserve word

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 If it is a digit, we keep reading until we find a non-digit
 if that is not a . we announce an integer
 otherwise, we keep looking for a real number
 if the character after the . is not a digit we announce an integer

and reuse the . and the look-ahead

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Pictorial representation of a scanner for calculator tokens, in

the form of a finite automaton

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 This is a deterministic finite automaton (DFA)
 Lex, scangen, etc. build these things automatically from a set of

regular expressions
 Specifically, they construct a machine that accepts the language

identifier | int const
| real const | comment | symbol | ...

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 We run the machine over and over to get one token after

another
 Nearly universal rule:
 always take the longest possible token from the input

thus foobar is foobar and never f or foo or foob
 more to the point, 3.14159 is a real const and never 3, ., and 14159

 Regular expressions "generate" a regular language; DFAs
"recognize" it

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Scanners tend to be built three ways
 ad-hoc
 semi-mechanical pure DFA

(usually realized as nested case statements)
 table-driven DFA

 Ad-hoc generally yields the fastest, most compact code by
doing lots of special-purpose things, though good
automatically-generated scanners come very close

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Writing a pure DFA as a set of nested case statements is a

surprisingly useful programming technique
 though it's often easier to use perl, awk, sed
 for details see Figure 2.11

 Table-driven DFA is what lex and scangen produce
 lex (flex) in the form of C code
 scangen in the form of numeric tables and a separate driver (for

details see Figure 2.12)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Note that the rule about longest-possible tokens means you

return only when the next character can't be used to
continue the current token
 the next character will generally need to be saved for the next

token

 In some cases, you may need to peek at more than one
character of look-ahead in order to know whether to proceed
 In Pascal, for example, when you have a 3 and you a see a dot
 do you proceed (in hopes of getting 3.14)?

or
 do you stop (in fear of getting 3..5)?

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 In messier cases, you may not be able to get by with any fixed

amount of look-ahead.In Fortr an, for example, we have
DO 5 I = 1,25 loop
DO 5 I = 1.25 assignment

 Here, we need to remember we were in a potentially final
state, and save enough information that we can back up to it,
if we get stuck later

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 Terminology:
 context-free grammar (CFG)
 symbols
 terminals (tokens)
 non-terminals

 production
 derivations (left-most and right-most - canonical)
 parse trees
 sentential form

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 By analogy to RE and DFAs, a context-free grammar (CFG)

is a generator for a context-free language (CFL)
 a parser is a language recognizer

 There is an infinite number of grammars for every context-
free language
 not all grammars are created equal, however

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 It turns out that for any CFG we can create a parser that runs

in O(n^3) time
 There are two well-known parsing algorithms that permit

this
 Early's algorithm
 Cooke-Younger-Kasami (CYK) algorithm

 O(n^3) time is clearly unacceptable for a parser in a
compiler - too slow

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 Fortunately, there are large classes of grammars for which we

can build parsers that run in linear time
 The two most important classes are called

LL and LR

 LL stands for
'Left-to-right, Leftmost derivation'.

 LR stands for
'Left-to-right, Rightmost derivation’

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 LL parsers are also called 'top-down', or 'predictive' parsers

& LR parsers are also called 'bottom-up', or 'shift-reduce'
parsers

 There are several important sub-classes of LR parsers
 SLR
 LALR

 We won't be going into detail on the differences between
them

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 Every LL(1) grammar is also LR(1), though right recursion

in production tends to require very deep stacks and
complicates semantic analysis

 Every CFL that can be parsed deterministically has an SLR(1)
grammar (which is LR(1))

 Every deterministic CFL with the prefix property (no valid
string is a prefix of another valid string) has an LR(0)
grammar

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 You commonly see LL or LR (or whatever) written with a

number in parentheses after it
 This number indicates how many tokens of look-ahead are

required in order to parse
 Almost all real compilers use one token of look-ahead

 The expression grammar (with precedence and associativity)
you saw before is LR(1), but not LL(1)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Here is an LL(1) grammar (Fig 2.15):
 program → stmt list $$$
 stmt_list → stmt stmt_list
 | ε
 stmt → id := expr
 | read id
 | write expr
 expr → term term_tail
 term_tail → add op term term_tail
 | ε

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 LL(1) grammar (continued)
 10. term → factor fact_tailt
 11. fact_tail → mult_op fact fact_tail
 | ε
 factor → (expr)
 | id
 | number
 add_op → +
 | -
 mult_op → *
 | /

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Like the bottom-up grammar, this one captures associativity

and precedence, but most people don't find it as pretty
 for one thing, the operands of a given operator aren't in a RHS

together!
 however, the simplicity of the parsing algorithm makes up for

this weakness

 How do we parse a string with this grammar?
 by building the parse tree incrementally

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Example (average program)
 read A
 read B
 sum := A + B
 write sum
 write sum / 2
 We start at the top and predict needed productions on the

basis of the current left-most non-terminal in the tree and
the current input token

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Parse tree for the average program (Figure 2.17)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Table-driven LL parsing: you have a big loop in which you

repeatedly look up an action in a two-dimensional table based
on current leftmost non-terminal and current input token.
The actions are
 (1) match a terminal
 (2) predict a production
 (3) announce a syntax error

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 LL(1) parse table for parsing for calculator language

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 To keep track of the left-most non-terminal, you push the as-

yet-unseen portions of productions onto a stack
 for details see Figure 2.20

 The key thing to keep in mind is that the stack contains all
the stuff you expect to see between now and the end of the
program
 what you predict you will see

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Problems trying to make a grammar LL(1)
 left recursion
 example:
 id_list → id | id_list , id
 equivalently
 id_list → id id_list_tail
 id_list_tail → , id id_list_tail
 | epsilon
 we can get rid of all left recursion mechanically in any grammar

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Problems trying to make a grammar LL(1)
 common prefixes: another thing that LL parsers can't handle
 solved by "left-factoring”
 example:
 stmt → id := expr | id (arg_list)
 equivalently
 stmt → id id_stmt_tail
 id_stmt_tail → := expr
 | (arg_list)
 we can eliminate left-factor mechanically

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Note that eliminating left recursion and common prefixes

does NOT make a grammar LL
 there are infinitely many non-LL LANGUAGES, and the

mechanical transformations work on them just fine
 the few that arise in practice, however, can generally be handled

with kludges

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Problems trying to make a grammar LL(1)
 the"dangling else" problem prevents grammars from being

LL(1) (or in fact LL(k) for any k)
 the following natural grammar fragment is ambiguous (Pascal)
 stmt → if cond then_clause else_clause | other_stuff
 then_clause → then stmt
 else_clause → else stmt
 | epsilon

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 The less natural grammar fragment can be parsed bottom-up

but not top-down
 stmt → balanced_stmt | unbalanced_stmt
 balanced_stmt → if cond then balanced_stmt
 else balanced_stmt

| other_stuff
 unbalanced_stmt → if cond then stmt

| if cond then balanced_stmt
 else unbalanced_stmt

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 The usual approach, whether top-down OR bottom-up, is to

use the ambiguous grammar together with a disambiguating
rule that says
 else goes with the closest then or
 more generally, the first of two possible productions is the one

to predict (or reduce)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Better yet, languages (since Pascal) generally employ explicit

end-markers, which eliminate this problem
 In Modula-2, for example, one says:
 if A = B then
 if C = D then E := F end
 else
 G := H
 end

 Ada says 'end if'; other languages say 'fi'

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 One problem with end markers is that they tend to bunch up.

In Pascal you say
 if A = B then …

else if A = C then …
else if A = D then …
else if A = E then …
else ...;

 With end markers this becomes
 if A = B then …

else if A = C then …
else if A = D then …
else if A = E then …
else ...;
end; end; end; end;

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 The algorithm to build predict sets is tedious (for a "real"

sized grammar), but relatively simple
 It consists of three stages:
 (1) compute FIRST sets for symbols
 (2) compute FOLLOW sets for non-terminals

(this requires computing FIRST sets for some strings)
 (3) compute predict sets or table for all productions

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 It is conventional in general discussions of grammars to use
 lower case letters near the beginning of the alphabet for

terminals
 lower case letters near the end of the alphabet for strings of

terminals
 upper case letters near the beginning of the alphabet for non-

terminals
 upper case letters near the end of the alphabet for arbitrary

symbols
 greek letters for arbitrary strings of symbols

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Algorithm First/Follow/Predict:
 FIRST(α) == {a : α →* a β}∪ (if α =>* εTHEN {ε} ELSE NULL)
 FOLLOW(A) == {a : S →+ αA a β}∪ (if S →* αA THEN {ε} ELSE NULL)
 Predict (A → X1 ... Xm) == (FIRST (X1 ... Xm) - {ε}) ∪ (if

X1, ..., Xm →* ε then FOLLOW (A) ELSE NULL)

 Details following…

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 If any token belongs to the predict set of more than one

production with the same LHS, then the grammar is not
LL(1)

 A conflict can arise because
 the same token can begin more than one RHS
 it can begin one RHS and can also appear after the LHS in some

valid program, and one possible RHS is ε

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 LR parsers are almost always table-driven:
 like a table-driven LL parser, an LR parser uses a big loop in

which it repeatedly inspects a two-dimensional table to find out
what action to take

 unlike the LL parser, however, the LR driver has non-trivial
state (like a DFA), and the table is indexed by current input
token and current state

 the stack contains a record of what has been seen SO FAR
(NOT what is expected)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 A scanner is a DFA
 it can be specified with a state diagram

 An LL or LR parser is a PDA
 Early's & CYK algorithms do NOT use PDAs
 a PDA can be specified with a state diagram and a stack
 the state diagram looks just like a DFA state diagram, except the arcs are

labeled with <input symbol, top-of-stack symbol> pairs, and in addition
to moving to a new state the PDA has the option of pushing or popping a
finite number of symbols onto/off the stack

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 An LL(1) PDA has only one state!
 well, actually two; it needs a second one to accept with, but

that's all (it's pretty simple)
 all the arcs are self loops; the only difference between them is

the choice of whether to push or pop
 the final state is reached by a transition that sees EOF on the

input and the stack

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 An SLR/LALR/LR PDA has multiple states
 it is a "recognizer," not a "predictor"
 it builds a parse tree from the bottom up
 the states keep track of which productions we might be in the

middle

 The parsing of the Characteristic Finite State Machine
(CFSM) is based on
 Shift
 Reduce

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 To illustrate LR parsing, consider the grammar (Figure 2.24,

Page 73):
 program → stmt list $$$
 stmt_list → stmt_list stmt
 | stmt
 stmt → id := expr
 | read id
 | write expr
 expr → term
 | expr add op term

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 LR grammar (continued):
 9. term → factor
 | term mult_op factor
 factor →(expr)
 | id
 | number
 add op → +
 | -
 mult op → *
 | /

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 This grammar is SLR(1), a particularly nice class of bottom-

up grammar
 it isn't exactly what we saw originally
 we've eliminated the epsilon production to simplify the

presentation

 For details on the table driven SLR(1) parsing please note the
following slides

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 SLR parsing is based on
 Shift
 Reduce
 and also
 Shift & Reduce (for optimization)

