
CSE 307 – Principles of Programming Languages
Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Programming Language Syntax

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Regular Expressions
 A regular expression is one of the following:
 A character
 The empty string, denoted by ε
 Two regular expressions concatenated
 Two regular expressions separated by | (i.e., or)
 A regular expression followed by the Kleene star (concatenation

of zero or more strings)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Regular Expressions
 Numerical literals in Pascal may be generated by the

following:

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Context-Free Grammars
 The notation for context-free grammars (CFG) is sometimes

called Backus-Naur Form (BNF)
 A CFG consists of
 A set of terminals T
 A set of non-terminals N
 A start symbol S (a non-terminal)
 A set of productions

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Context-Free Grammars
 Expression grammar with precedence and associativity

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Context-Free Grammars
 Parse tree for expression grammar (with precedence) for 3

+ 4 * 5

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Context-Free Grammars
 Parse tree for expression grammar (with left associativity)

for 10 - 4 - 3

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Recall scanner is responsible for
 tokenizing source
 removing comments
 (often) dealing with pragmas (i.e., significant comments)
 saving text of identifiers, numbers, strings
 saving source locations (file, line, column) for error messages

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Suppose we are building an ad-hoc (hand-written) scanner

for Pascal:
 We read the characters one at a time with look-ahead

 If it is one of the one-character tokens
{ () [] < > , ; = + - etc }
we announce that token

 If it is a ., we look at the next character
 If that is a dot, we announce .
 Otherwise, we announce . and reuse the look-ahead

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 If it is a <, we look at the next character
 if that is a = we announce <=
 otherwise, we announce < and reuse the look-ahead, etc

 If it is a letter, we keep reading letters and digits and maybe
underscores until we can't anymore
 then we check to see if it is a reserve word

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 If it is a digit, we keep reading until we find a non-digit
 if that is not a . we announce an integer
 otherwise, we keep looking for a real number
 if the character after the . is not a digit we announce an integer

and reuse the . and the look-ahead

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Pictorial representation of a scanner for calculator tokens, in

the form of a finite automaton

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 This is a deterministic finite automaton (DFA)
 Lex, scangen, etc. build these things automatically from a set of

regular expressions
 Specifically, they construct a machine that accepts the language

identifier | int const
| real const | comment | symbol | ...

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 We run the machine over and over to get one token after

another
 Nearly universal rule:
 always take the longest possible token from the input

thus foobar is foobar and never f or foo or foob
 more to the point, 3.14159 is a real const and never 3, ., and 14159

 Regular expressions "generate" a regular language; DFAs
"recognize" it

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Scanners tend to be built three ways
 ad-hoc
 semi-mechanical pure DFA

(usually realized as nested case statements)
 table-driven DFA

 Ad-hoc generally yields the fastest, most compact code by
doing lots of special-purpose things, though good
automatically-generated scanners come very close

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Writing a pure DFA as a set of nested case statements is a

surprisingly useful programming technique
 though it's often easier to use perl, awk, sed
 for details see Figure 2.11

 Table-driven DFA is what lex and scangen produce
 lex (flex) in the form of C code
 scangen in the form of numeric tables and a separate driver (for

details see Figure 2.12)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 Note that the rule about longest-possible tokens means you

return only when the next character can't be used to
continue the current token
 the next character will generally need to be saved for the next

token

 In some cases, you may need to peek at more than one
character of look-ahead in order to know whether to proceed
 In Pascal, for example, when you have a 3 and you a see a dot
 do you proceed (in hopes of getting 3.14)?

or
 do you stop (in fear of getting 3..5)?

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Scanning
 In messier cases, you may not be able to get by with any fixed

amount of look-ahead.In Fortr an, for example, we have
DO 5 I = 1,25 loop
DO 5 I = 1.25 assignment

 Here, we need to remember we were in a potentially final
state, and save enough information that we can back up to it,
if we get stuck later

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 Terminology:
 context-free grammar (CFG)
 symbols
 terminals (tokens)
 non-terminals

 production
 derivations (left-most and right-most - canonical)
 parse trees
 sentential form

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 By analogy to RE and DFAs, a context-free grammar (CFG)

is a generator for a context-free language (CFL)
 a parser is a language recognizer

 There is an infinite number of grammars for every context-
free language
 not all grammars are created equal, however

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 It turns out that for any CFG we can create a parser that runs

in O(n^3) time
 There are two well-known parsing algorithms that permit

this
 Early's algorithm
 Cooke-Younger-Kasami (CYK) algorithm

 O(n^3) time is clearly unacceptable for a parser in a
compiler - too slow

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 Fortunately, there are large classes of grammars for which we

can build parsers that run in linear time
 The two most important classes are called

LL and LR

 LL stands for
'Left-to-right, Leftmost derivation'.

 LR stands for
'Left-to-right, Rightmost derivation’

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 LL parsers are also called 'top-down', or 'predictive' parsers

& LR parsers are also called 'bottom-up', or 'shift-reduce'
parsers

 There are several important sub-classes of LR parsers
 SLR
 LALR

 We won't be going into detail on the differences between
them

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 Every LL(1) grammar is also LR(1), though right recursion

in production tends to require very deep stacks and
complicates semantic analysis

 Every CFL that can be parsed deterministically has an SLR(1)
grammar (which is LR(1))

 Every deterministic CFL with the prefix property (no valid
string is a prefix of another valid string) has an LR(0)
grammar

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

Parsing
 You commonly see LL or LR (or whatever) written with a

number in parentheses after it
 This number indicates how many tokens of look-ahead are

required in order to parse
 Almost all real compilers use one token of look-ahead

 The expression grammar (with precedence and associativity)
you saw before is LR(1), but not LL(1)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Here is an LL(1) grammar (Fig 2.15):
 program → stmt list $$$
 stmt_list → stmt stmt_list
 | ε
 stmt → id := expr
 | read id
 | write expr
 expr → term term_tail
 term_tail → add op term term_tail
 | ε

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 LL(1) grammar (continued)
 10. term → factor fact_tailt
 11. fact_tail → mult_op fact fact_tail
 | ε
 factor → (expr)
 | id
 | number
 add_op → +
 | -
 mult_op → *
 | /

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Like the bottom-up grammar, this one captures associativity

and precedence, but most people don't find it as pretty
 for one thing, the operands of a given operator aren't in a RHS

together!
 however, the simplicity of the parsing algorithm makes up for

this weakness

 How do we parse a string with this grammar?
 by building the parse tree incrementally

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Example (average program)
 read A
 read B
 sum := A + B
 write sum
 write sum / 2
 We start at the top and predict needed productions on the

basis of the current left-most non-terminal in the tree and
the current input token

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Parse tree for the average program (Figure 2.17)


(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Table-driven LL parsing: you have a big loop in which you

repeatedly look up an action in a two-dimensional table based
on current leftmost non-terminal and current input token.
The actions are
 (1) match a terminal
 (2) predict a production
 (3) announce a syntax error

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 LL(1) parse table for parsing for calculator language

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 To keep track of the left-most non-terminal, you push the as-

yet-unseen portions of productions onto a stack
 for details see Figure 2.20

 The key thing to keep in mind is that the stack contains all
the stuff you expect to see between now and the end of the
program
 what you predict you will see

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Problems trying to make a grammar LL(1)
 left recursion
 example:
 id_list → id | id_list , id
 equivalently
 id_list → id id_list_tail
 id_list_tail → , id id_list_tail
 | epsilon
 we can get rid of all left recursion mechanically in any grammar

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Problems trying to make a grammar LL(1)
 common prefixes: another thing that LL parsers can't handle
 solved by "left-factoring”
 example:
 stmt → id := expr | id (arg_list)
 equivalently
 stmt → id id_stmt_tail
 id_stmt_tail → := expr
 | (arg_list)
 we can eliminate left-factor mechanically

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Note that eliminating left recursion and common prefixes

does NOT make a grammar LL
 there are infinitely many non-LL LANGUAGES, and the

mechanical transformations work on them just fine
 the few that arise in practice, however, can generally be handled

with kludges

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Problems trying to make a grammar LL(1)
 the"dangling else" problem prevents grammars from being

LL(1) (or in fact LL(k) for any k)
 the following natural grammar fragment is ambiguous (Pascal)
 stmt → if cond then_clause else_clause | other_stuff
 then_clause → then stmt
 else_clause → else stmt
 | epsilon

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 The less natural grammar fragment can be parsed bottom-up

but not top-down
 stmt → balanced_stmt | unbalanced_stmt
 balanced_stmt → if cond then balanced_stmt
 else balanced_stmt

| other_stuff
 unbalanced_stmt → if cond then stmt

| if cond then balanced_stmt
 else unbalanced_stmt

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 The usual approach, whether top-down OR bottom-up, is to

use the ambiguous grammar together with a disambiguating
rule that says
 else goes with the closest then or
 more generally, the first of two possible productions is the one

to predict (or reduce)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Better yet, languages (since Pascal) generally employ explicit

end-markers, which eliminate this problem
 In Modula-2, for example, one says:
 if A = B then
 if C = D then E := F end
 else
 G := H
 end

 Ada says 'end if'; other languages say 'fi'

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 One problem with end markers is that they tend to bunch up.

In Pascal you say
 if A = B then …

else if A = C then …
else if A = D then …
else if A = E then …
else ...;

 With end markers this becomes
 if A = B then …

else if A = C then …
else if A = D then …
else if A = E then …
else ...;
end; end; end; end;

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 The algorithm to build predict sets is tedious (for a "real"

sized grammar), but relatively simple
 It consists of three stages:
 (1) compute FIRST sets for symbols
 (2) compute FOLLOW sets for non-terminals

(this requires computing FIRST sets for some strings)
 (3) compute predict sets or table for all productions

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 It is conventional in general discussions of grammars to use
 lower case letters near the beginning of the alphabet for

terminals
 lower case letters near the end of the alphabet for strings of

terminals
 upper case letters near the beginning of the alphabet for non-

terminals
 upper case letters near the end of the alphabet for arbitrary

symbols
 greek letters for arbitrary strings of symbols

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 Algorithm First/Follow/Predict:
 FIRST(α) == {a : α →* a β}∪ (if α =>* εTHEN {ε} ELSE NULL)
 FOLLOW(A) == {a : S →+ αA a β}∪ (if S →* αA THEN {ε} ELSE NULL)
 Predict (A → X1 ... Xm) == (FIRST (X1 ... Xm) - {ε}) ∪ (if

X1, ..., Xm →* ε then FOLLOW (A) ELSE NULL)

 Details following…

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LL Parsing
 If any token belongs to the predict set of more than one

production with the same LHS, then the grammar is not
LL(1)

 A conflict can arise because
 the same token can begin more than one RHS
 it can begin one RHS and can also appear after the LHS in some

valid program, and one possible RHS is ε

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 LR parsers are almost always table-driven:
 like a table-driven LL parser, an LR parser uses a big loop in

which it repeatedly inspects a two-dimensional table to find out
what action to take

 unlike the LL parser, however, the LR driver has non-trivial
state (like a DFA), and the table is indexed by current input
token and current state

 the stack contains a record of what has been seen SO FAR
(NOT what is expected)

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 A scanner is a DFA
 it can be specified with a state diagram

 An LL or LR parser is a PDA
 Early's & CYK algorithms do NOT use PDAs
 a PDA can be specified with a state diagram and a stack
 the state diagram looks just like a DFA state diagram, except the arcs are

labeled with <input symbol, top-of-stack symbol> pairs, and in addition
to moving to a new state the PDA has the option of pushing or popping a
finite number of symbols onto/off the stack

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 An LL(1) PDA has only one state!
 well, actually two; it needs a second one to accept with, but

that's all (it's pretty simple)
 all the arcs are self loops; the only difference between them is

the choice of whether to push or pop
 the final state is reached by a transition that sees EOF on the

input and the stack

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 An SLR/LALR/LR PDA has multiple states
 it is a "recognizer," not a "predictor"
 it builds a parse tree from the bottom up
 the states keep track of which productions we might be in the

middle

 The parsing of the Characteristic Finite State Machine
(CFSM) is based on
 Shift
 Reduce

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 To illustrate LR parsing, consider the grammar (Figure 2.24,

Page 73):
 program → stmt list $$$
 stmt_list → stmt_list stmt
 | stmt
 stmt → id := expr
 | read id
 | write expr
 expr → term
 | expr add op term

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 LR grammar (continued):
 9. term → factor
 | term mult_op factor
 factor →(expr)
 | id
 | number
 add op → +
 | -
 mult op → *
 | /

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 This grammar is SLR(1), a particularly nice class of bottom-

up grammar
 it isn't exactly what we saw originally
 we've eliminated the epsilon production to simplify the

presentation

 For details on the table driven SLR(1) parsing please note the
following slides

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing

(c) P.Fodor (CS Stony Brook) and Elsevier

Copyright © 2009 Elsevier

LR Parsing
 SLR parsing is based on
 Shift
 Reduce
 and also
 Shift & Reduce (for optimization)

