
Python
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Pearson

Python’s History
Created by Guido van Rossum in

Netherlands in 1990

Open source: http://www.python.org

2

http://www.python.org/

(c) Paul Fodor (CS Stony Brook) and Pearson

Python 2.7x vs. Python 3.x
Python 3.x is a newer version, but it is

not backward compatible with Python

2.7x

That means if you write a program

using Python 2, it may not work on

Python 3.x

We use Python 3.x for homeworks
3

(c) Paul Fodor (CS Stony Brook) and Pearson

Launch Python

4

(c) Paul Fodor (CS Stony Brook) and Pearson

Launch Python IDLE

5

Editor, Command line interface, Debugger

Many other IDEs.

(c) Paul Fodor (CS Stony Brook) and Pearson

A Simple Python Program

Welcome.py

Display two messages

print("Welcome to Python")

print("Python is fun")

Comment in Python

6

(c) Paul Fodor (CS Stony Brook) and Pearson

Run Python Script

7

(c) Paul Fodor (CS Stony Brook) and Pearson

Python Example
Dynamic Type inference:
Assign a radius

radius = 20 # radius is now 20

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius " +

str(radius) + " is " + str(area))

8

(c) Paul Fodor (CS Stony Brook) and Pearson

Reading Input from the Console

• Use the input function

variable = input("Enter a string: ");

• Use the eval function
variable = eval("51 + (54 * (3 + 2))");

print(variable);

321

9

(c) Paul Fodor (CS Stony Brook) and Pearson

Variables
Compute the first area

radius = 1.0

area = radius * radius * 3.14159

print("The area is ", area, " for radius ", radius)

Compute the second area

radius = 2.0

area = radius * radius * 3.14159

print("The area is ", area, " for radius ", radius)

10

(c) Paul Fodor (CS Stony Brook) and Pearson

Types
 In Python 3, there is effectively no limit to how long an integer

value can be - of course, it is constrained by the amount of

memory your system has, as are all things, but beyond that an

integer can be as long as you need it to be

 The following strings can be prepended to an integer value to

indicate a base other than 10:

0b, oB Binary (base 2)

0o, 0O (zero + uppercase letter 'O') Octal (base 8)

0x, 0X Hexadecimal (base 16)

11

(c) Paul Fodor (CS Stony Brook) and Pearson

Types
>>> 10

10

>>> 0x10

16

>>> 0b10

2

>>> type(10)

<class 'int'>

>>> type(0o10)

<class 'int'>

>>> type(0x10)

<class 'int'>

12

(c) Paul Fodor (CS Stony Brook) and Pearson

Types
 The float type in Python designates a floating-point number:

values are specified with a decimal point

https://docs.python.org/3.6/tutorial/floatingpoint.html

 Optionally, the character e or E followed by a positive or negative

integer may be appended to specify scientific notation:

>>> 4.2

4.2

>>> type(4.2)

<class 'float'>

>>> 4.

4.0

>>> .2

0.2
13

>>> .4e7

4000000.0

>>> type(.4e7)

<class 'float'>

>>> 4.2e-4

0.00042

https://docs.python.org/3.6/tutorial/floatingpoint.html

(c) Paul Fodor (CS Stony Brook) and Pearson

Types
 Float values as 64-bit “double-precision” values, according to the

IEEE 754 standard (https://en.wikipedia.org/wiki/IEEE_754-

2008_revision). The maximum value a floating-point number can

have is approximately 1.8X10308. Python will indicate a number

greater than that by the string inf:
>>> 1.79e308

1.79e+308

>>> 1.8e308

inf

 The closest a nonzero number can be to zero is approximately

5.0⨉10-324. Anything closer to zero than that is effectively zero:
>>> 5e-324

5e-324

>>> 1e-325

0.0
14

https://en.wikipedia.org/wiki/IEEE_754-2008_revision

(c) Paul Fodor (CS Stony Brook) and Pearson

Types
Floating point numbers are represented

internally as binary (base-2) fractions

Most decimal fractions cannot be represented

exactly as binary fractions, so in most cases the

internal representation of a floating-point number is

an approximation of the actual value

 In practice, the difference between the actual value and

the represented value is very small and should not usually

cause significant problems

15

(c) Paul Fodor (CS Stony Brook) and Pearson

Expression
x = 1 # Assign 1 to variable x

radius = 1.0 # Assign 1.0 to variable radius

Assign the value of the expression to x

x = 5 * (3 / 2) + 3 * 2

print(x)

13.5

x = 5 * (3 // 2) + 3 * 2

print(x)

11

16

(c) Paul Fodor (CS Stony Brook) and Pearson

Overflow
When a variable is assigned a value that

is too large (in size) to be stored, it

causes overflow. For example,

executing the following statement

causes overflow:

17

>>>245.0 ** 1000000

OverflowError: 'Result too large'

(c) Paul Fodor (CS Stony Brook) and Pearson

Type Conversion and Rounding
 datatype(value) :

int(4.5) => 4

float(4) => 4.0

str(4) => '4'

round(4.6) => 5

round(4.5) => 4

round(4.5)=> 4 # in Python 3

round(4.5)=> 5 # in Python 2
https://docs.python.org/2/library/functions.html#round

https://docs.python.org/3/library/functions.html#round

Note: 2 vs 3
18

https://docs.python.org/2/library/functions.html#round
https://docs.python.org/3/library/functions.html#round

(c) Paul Fodor (CS Stony Brook) and Pearson

Built-in Functions and math Module

>>> max(2, 3, 4) # Returns a maximum number

4

>>> min(2, 3, 4) # Returns a minimum number

2

>>> round(3.51) # Rounds to its nearest integer

4

>>> round(3.4) # Rounds to its nearest integer

3

>>> abs(-3) # Returns the absolute value

3

>>> pow(2, 3) # Same as 2 ** 3

8

19

(c) Paul Fodor (CS Stony Brook) and Pearson

Function Description Example

fabs(x) Returns the absolute value of the argument. fabs(-2) is 2

ceil(x) Rounds x up to its nearest integer and ceil(2.1) is 3

 returns this integer. ceil(-2.1) is -2

floor(x) Rounds x down to its nearest integer and floor(2.1) is 2

 returns this integer. floor(-2.1) is -3

exp(x) Returns the exponential function of x (e^x). exp(1) is 2.71828

log(x) Returns the natural logarithm of x. log(2.71828) is 1.0

log(x, base) Returns the logarithm of x for the specified log10(10, 10) is 1

 base.

sqrt(x) Returns the square root of x. sqrt(4.0) is 2.0

sin(x) Returns the sine of x. x represents an angle sin(3.14159 / 2) is 1

 in radians. sin(3.14159) is 0

asin(x) Returns the angle in radians for the inverse asin(1.0) is 1.57

 of sine. asin(0.5) is 0.523599

cos(x) Returns the cosine of x. x represents an cos(3.14159 / 2) is 0

 angle in radians. cos(3.14159) is -1

acos(x) Returns the angle in radians for the inverse acos(1.0) is 0

 of cosine. acos(0.5) is 1.0472

tan(x) Returns the tangent of x. x represents an tan(3.14159 / 4) is 1

 angle in radians. tan(0.0) is 0

fmod(x, y) Returns the remainder of x/y as double. fmod(2.4, 1.3) is 1.1

degrees(x) Converts angle x from radians to degrees degrees(1.57) is 90

radians(x) Converts angle x from degrees to radians radians(90) is 1.57

20

from math import fabs

import math
or

(c) Paul Fodor (CS Stony Brook) and Pearson
21

Strings and Characters

letter = 'A' # Same as letter = "A"

numChar = '4' # Same as numChar = "4"

message = "Good morning"

Same as message = 'Good morning'

A string is a sequence of characters. String literals

can be enclosed in matching single quotes (') or

double quotes ("). Python does not have a data type

for characters. A single-character string represents a

character.

(c) Paul Fodor (CS Stony Brook) and Pearson

Raw string literals
 A "raw string literal" is a slightly different syntax for a string literal,

in which a backslash, \, is taken as meaning "just a backslash"

(except when it comes right before a quote that would otherwise

terminate the literal) -- no "escape sequences" to represent newlines,

tabs, backspaces, form-feeds:

>>> print('\nsadasd')

sadasd

>>> print(r'\nsadasd')

\nsadasd

>>>

22

(c) Paul Fodor (CS Stony Brook) and Pearson

Functions ord and chr
>>> ch = 'a'

>>> ord(ch)

97

>>> chr(98)

'b'

23

(c) Paul Fodor (CS Stony Brook) and Pearson
24

The str Function
The str function can be used to convert a

number into a string. For example,

>>> s = str(3.4) # Convert a float to string

>>> s

'3.4'

>>> s = str(3) # Convert an integer to string

>>> s

'3'

(c) Paul Fodor (CS Stony Brook) and Pearson
25

The String Concatenation Operator
You can use the + operator to add two numbers.

The + operator can also be used to concatenate

(combine) two strings. Here are some examples:

>>> message = "Welcome " + "to " + "Python"

>>> message

'Welcome to Python'

>>> chapterNo = 1

>>> s = "Chapter " + str(chapterNo)

>>> s

'Chapter 1'

>>> s = "Chapter " + chapterNo

TypeError: Can't convert 'int' object to str implicitly

(c) Paul Fodor (CS Stony Brook) and Pearson
26

Introduction to Objects and Methods

In Python, all data—including numbers

and strings—are actually objects.

An object is an entity. Each object has an

id and a type. Objects of the same kind

have the same type. You can use the id

function and type function to get these

information for an object.

(c) Paul Fodor (CS Stony Brook) and Pearson
27

Object Types and Ids
The id and type functions are rarely used in

programming, but they are good pedagogical tools

for understanding objects.

>>> n = 3 # n is an int

>>> id(n)

505408904

>>> type(n)

<class ’int’>

>>> f = 3.0 # f is a float

>>> id(f)

26647120

>>> type(f)

<class ’float’>

>>> s = "Welcome"

>>> id(s)

36201472

>>> type(s)

<class ’str’>

(c) Paul Fodor (CS Stony Brook) and Pearson

str Object Methods
>>> s = "Welcome"

>>> s1 = s.lower() # Invoke the lower method

>>> s1

'welcome'

>>> s2 = s.upper() # Invoke the upper method

>>> s2

'WELCOME'

28

(c) Paul Fodor (CS Stony Brook) and Pearson
29

Formatting Floating-Point Numbers

 10 . 2 f

print(format(57.467657, '10.2f'))

print(format(12345678.923, '10.2f'))

print(format(57.4, '10.2f'))

print(format(57, '10.2f'))

field width

precision

conversion code

format specifier

?????57.47

12345678.9

?????57.40

?????57.00

10

(c) Paul Fodor (CS Stony Brook) and Pearson

Blocks
Python 3 uses indentation of 4 spaces for

blocks

Tabs should be used solely to remain

consistent with code that is already indented

with tabs
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces

"Python 3 disallows mixing the use of tabs and

spaces for indentation."

30

https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces

(c) Paul Fodor (CS Stony Brook) and Pearson

if...else Example
from math import pi

if radius >= 0:

area = radius * radius * pi

print("The area for the ",

"circle of radius ",

radius, " is ", area)

else:

print("Negative input")

31

(c) Paul Fodor (CS Stony Brook) and Pearson
32

Multiple Alternative if Statements

 if score >= 90.0:
 grade = 'A'

else:

 if score >= 80.0:

 grade = 'B'

 else:

 if score >= 70.0:

 grade = 'C'

 else:

 if score >= 60.0:

 grade = 'D'

 else:

 grade = 'F'

(a)

Equivalent

if score >= 90.0:

 grade = 'A'

elif score >= 80.0:

 grade = 'B'

elif score >= 70.0:

 grade = 'C'

elif score >= 60.0:

 grade = 'D'

else:

 grade = 'F'

(b)

This is better

(c) Paul Fodor (CS Stony Brook) and Pearson
33

Loops
Initialize loop-control variable

i = initialValue

while i < endValue:

Loop body

...

i+=1 # Adjust loop-control variable

for i in range(initialValue, endValue):

Loop body

(c) Paul Fodor (CS Stony Brook) and Pearson
34

range(a, b)
for i in range(4, 8):

print(i)

4

5

6

7

(c) Paul Fodor (CS Stony Brook) and Pearson
35

range(b)
for i in range(4):

print(i)

0

1

2

3

(c) Paul Fodor (CS Stony Brook) and Pearson
36

range(a, b, step)
for v in range(3, 9, 2):

print(v)

3

5

7

(c) Paul Fodor (CS Stony Brook) and Pearson
37

Functions
def sum(i1, i2):

''' This is the doc '''

result = 0

for i in range(i1, i2):

result += i

return result

def main():

print("Sum from 1 to 10 is", sum(1, 10))

print("Sum from 20 to 37 is", sum(20, 37))

print("Sum from 35 to 49 is", sum(35, 49))

main() # Call the main function

(c) Paul Fodor (CS Stony Brook) and Pearson
38

Classes
import math

class Circle:

Construct a circle object

def __init__(self, radius = 1):

self.radius = radius

def getPerimeter(self):

return 2 * self.radius * math.pi

def getArea(self):

return self.radius * self.radius * math.pi

def setRadius(self, radius):

self.radius = radius

def __str__(self):

return "Circle: radius=" + str(radius)

(c) Paul Fodor (CS Stony Brook) and Pearson
39

from Circle import Circle

def main():

Create a circle with radius 1

circle1 = Circle()

print("The area of the circle of radius", circle1.radius,

"is", circle1.getArea())

Create a circle with radius 25

circle2 = Circle(25)

print("The area of the circle of radius", circle2.radius,

"is", circle2.getArea())

Create a circle with radius 125

circle3 = Circle(125)

print("The area of the circle of radius", circle3.radius,

"is", circle3.getArea())

Modify circle radius

circle2.radius = 100

print("The area of the circle of radius", circle2.radius,

"is", circle2.getArea())

main() # Call the main function

(c) Paul Fodor (CS Stony Brook) and Pearson
40

Inheritance
from GeometricObject import GeometricObject

import math

class Circle(GeometricObject):

def __init__(self, radius):

super().__init__()

self.__radius = radius

def getRadius(self):

return self.__radius

def setRadius(self, radius):

self.__radius = radius

def getArea(self):

return self.__radius * self.__radius * math.pi

def getDiameter(self):

return 2 * self.__radius

def getPerimeter(self):

return 2 * self.__radius * math.pi

def printCircle(self):

print(self.__str__() + " radius: " +

str(self.__radius))

(c) Paul Fodor (CS Stony Brook) and Pearson
41

Adding fields to Objects dynamically

class Employee:

pass

Create an empty employee record

john = Employee()

Add the fields of the record

john.name = 'John Doe'

john.dept = 'computer lab'

john.salary = 1000

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Single and double underscores have a meaning in

Python variable and method names

Some of that meaning is merely by convention and

intended as a hint to the programmer—and some of

it is enforced by the Python interpreter.

42

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Single Leading Underscore: _var

https://pep8.org/#descriptive-naming-styles

Naming convention indicating a name is meant for

internal/private use

 Python does not have strong distinctions between “private” and

“public” variables like Java does

Generally not enforced by the Python interpreter

(except in wildcard imports – see next)

43

https://pep8.org/#descriptive-naming-styles

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Single Leading Underscore: _var
This is my_module.py:

def _internal_func():

return 42

>>> from my_module import *

>>> _internal_func()

NameError: "name '_internal_func' is not defined"

 Wildcard imports should be avoided as they make it

unclear which names are present in the namespace.

 It’s better to stick to regular imports for the sake of

clarity.

44

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Single Trailing Underscore: var_

 Used by convention to avoid naming conflicts with Python

keywords. Sometimes the most fitting name for a variable is

already taken by a keyword. Therefore names like class

cannot be used as variable names in Python.

 You can append a single underscore to break the naming

conflict:

>>> def make_object(name, class):

SyntaxError: "invalid syntax"

>>> def make_object(name, class_):

... pass

>>>

45

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Double Leading Underscore: __var

 causes the Python interpreter to rewrite the attribute name

in order to avoid naming conflicts in subclasses (called name

mangling—the interpreter changes the name of the

variable in a way that makes it harder to create collisions

when the class is extended later)

46

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Double Leading Underscore: __var
class Test:

def __init__(self):

self.foo = 11

self._bar = 23

self.__baz = 23

>>> t = Test()

>>> dir(t)

['_Test__baz', '__class__', '__delattr__', '__dict__', '__dir__',

'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',

'__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__',

'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',

'__setattr__', '__sizeof__', '__str__', '__subclasshook__',

'__weakref__', '_bar', 'foo']

47

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
class ExtendedTest(Test):

def __init__(self):

super().__init__()

self.foo = 'overridden'

self._bar = 'overridden'

self.__baz = 'overridden'

>>> t2 = ExtendedTest()

>>> t2.foo

'overridden'

>>> t2._bar

'overridden'

>>> t2.__baz
AttributeError: "'ExtendedTest' object has no attribute '__baz'"

>>> t2._ExtendedTest__baz

'overridden'

 __baz got turned into _ExtendedTest__baz to prevent accidental modification

 The original _Test__baz is also still around:

>>> t2._Test__baz

4248

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Not in the class itself:
class ManglingTest:

def __init__(self):

self.__mangled = 'hello'

def get_mangled(self):

return self.__mangled

>>> ManglingTest().get_mangled()

'hello'

>>> ManglingTest().__mangled

AttributeError: "'ManglingTest' object has no

attribute '__mangled'"

>>> ManglingTest()._ManglingTest__mangled

'hello'

49

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Not in the class itself:
class MangledMethod:

def __method(self):

return 42

def call_it(self):

return self.__method()

>>> MangledMethod().__method()

AttributeError: "'MangledMethod' object has no

attribute '__method'"

>>> MangledMethod().call_it()

42

>>> MangledMethod()._MangledMethod__method()

42

50

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Weird:
_MangledGlobal__mangled = 23

class MangledGlobal:

def test(self):

return __mangled

>>> MangledGlobal().test()

23

51

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Double underscores are often referred to as “dunders” in the

Python community
 The reason is that double underscores appear quite often in Python

code and to avoid fatiguing their jaw muscles Pythonistas often shorten

“double underscore” to “dunder.”

 It’s like a secret handshake for Python developers

 Name mangling is not applied if a name starts and ends with double

underscores
class PrefixPostfixTest:

def __init__(self):

self.__bam__ = 42

>>> PrefixPostfixTest().__bam__

42

52

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Names that have both leading and trailing double

underscores are reserved for special use in the language
 This rule covers things like __init__ for object constructors, or

__call__ to make an object callable

 Indicates special methods defined by the Python language.
 Avoid this naming scheme for your own attributes.

 These dunder methods are often referred to as magic methods

53

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 Single Underscore has 2 uses:

 _ used as a name for temporary or insignificant variables (“don’t

care”).

>>> for _ in range(32):

... print('Hello, World.')

54

(c) Paul Fodor (CS Stony Brook) and Pearson

Underscores
 REPLs that represents the result of the last expression evaluated

by the interpreter
>>> 20 + 3

23

>>> _

23

>>> print(_)

23

>>> list()

[]

>>> _.append(1)

>>> _.append(2)

>>> _.append(3)

>>> _

[1, 2, 3]
55

(c) Paul Fodor (CS Stony Brook) and Pearson
56

Exceptions
from GeometricObject import GeometricObject

import math

class Circle(GeometricObject):

def __init__(self, radius):

super().__init__()

self.setRadius(radius)

def setRadius(self, radius):

if radius < 0:

raise RuntimeError("Negative radius")

else:

self.__radius = radius

(c) Paul Fodor (CS Stony Brook) and Pearson
57

The str Class

Creating Strings

s1 = str() # Create an empty string

s2 = str("Welcome") # Create a string Welcome

Python provides a simple syntax for creating string using a

string literal. For example,

s1 = "" # Same as s1 = str()

s2 = "Welcome"

Same as s2 = str("Welcome")

(c) Paul Fodor (CS Stony Brook) and Pearson
58

Strings are Immutable
A string object is immutable. Once it is created, its contents

cannot be changed. To optimize performance, Python uses

one object for strings with the same contents.

 both s1 and s2 refer to the same string object.

>>> s1 = "Welcome"

>>> s2 = "Welcome"

>>> id(s1)

505408902

>>> id(s2)

505408902

: str

str object for "Welcome"

s1

s2

(c) Paul Fodor (CS Stony Brook) and Pearson
59

Functions for str
>>> s = "Welcome"

>>> len(s)

7

>>> max(s)

o

>>> min(s)

W

(c) Paul Fodor (CS Stony Brook) and Pearson
60

The +, *, [:], and in Operators
>>> s1 = "Welcome"

>>> s2 = "Python"

>>> s3 = s1 + " to " + s2

>>> s3

'Welcome to Python'

>>> s4 = 2 * s1

>>> s4

'WelcomeWelcome'

>>> s1[3 : 6]

'com'

>>> 'W' in s1

True

>>> 'X' in s1

False

(c) Paul Fodor (CS Stony Brook) and Pearson
61

Negative Index
>>> s1 = "Welcome"

>>> s1[-1]

'e'

>>> s1[-3 : -1]

'om'

(c) Paul Fodor (CS Stony Brook) and Pearson
62

The in and not in Operators
>>> s1 = "Welcome"

>>> "come" in s1

True

>>> "come" not in s1

False

>>>

(c) Paul Fodor (CS Stony Brook) and Pearson
63

Foreach Loops
for ch in string:

print(ch)

for i in range(0, len(s), 2):

print(s[i])

(c) Paul Fodor (CS Stony Brook) and Pearson

>>> s1 = "green"

>>> s2 = "glow"

>>> s1 == s2

False

>>> s1 != s2

True

>>> s1 > s2

True

>>> s1 >= s2

True

>>> s1 < s2

False

>>> s1 <= s2

False64

Comparing Strings

(c) Paul Fodor (CS Stony Brook) and Pearson

str

isalnum(): bool

isalpha(): bool

isdigit(): bool

isidentifier(): bool

islower(): bool

isupper(): bool

isspace(): bool

Return True if all characters in this string are alphanumeric

and there is at least one character.

Return True if all characters in this string are alphabetic and

there is at least one character.

Return True if this string contains only number characters.

Return True if this string is a Python identifier.

Return True if all characters in this string are lowercase letters
and there is at least one character.

Return True if all characters in this string are uppercase letters

and there is at least one character.

Return True if this string contains only whitespace characters.

65

Testing Characters in a String

(c) Paul Fodor (CS Stony Brook) and Pearson
66

Searching for Substrings

str

endswith(s1: str): bool

startswith(s1: str): bool

find(s1): int

rfind(s1): int

count(subtring): int

Returns True if the string ends with the substring s1.

Returns True if the string starts with the substring s1.

Returns the lowest index where s1 starts in this string, or -1 if

s1 is not found in this string.

Returns the highest index where s1 starts in this string, or -1 if

s1 is not found in this string.

Returns the number of non-overlapping occurrences of this

substring.

(c) Paul Fodor (CS Stony Brook) and Pearson
67

Converting Strings

str

capitalize(): str

lower(): str

upper(): str

title(): str

swapcase(): str

replace(old, new): str

Returns a copy of this string with only the first character capitalized.

Returns a copy of this string with all characters converted to lowercase.

Returns a copy of this string with all characters converted to uppercase.

Returns a copy of this string with the first letter capitalized in each word.

Returns a copy of this string in which lowercase letters are converted to

uppercase and uppercase to lowercase.

Returns a new string that replaces all the occurrence of the old string with a

new string.

(c) Paul Fodor (CS Stony Brook) and Pearson
68

Stripping Whitespace Characters

str

lstrip(): str

rstrip(): str

strip(): str

Returns a string with the leading whitespace characters removed.

Returns a string with the trailing whitespace characters removed.

Returns a string with the starting and trailing whitespace characters

removed.

(c) Paul Fodor (CS Stony Brook) and Pearson
69

Formatting Strings

str

center(width): str

ljust(width): str

rjust(width): str

Returns a copy of this string centered in a field of the given width.

Returns a string left justified in a field of the given width.

Returns a string right justified in a field of the given width.

(c) Paul Fodor (CS Stony Brook) and Pearson
70

Creating Lists

list1 = list() # Create an empty list

list2 = list([2, 3, 4]) # Create a list with elements 2, 3, 4

list3 = list(["red", "green", "blue"]) # Create a list with strings

list4 = list(range(3, 6)) # Create a list with elements 3, 4, 5

list5 = list("abcd") # Create a list with characters a, b, c, d

list1 = [] # Same as list()

list2 = [2, 3, 4] # Same as list([2, 3, 4])

list3 = ["red", "green"] # Same as list(["red", "green"])

Creating list using the list class

For convenience, you may create a list using the

following syntax:

(c) Paul Fodor (CS Stony Brook) and Pearson
71

list Methods

list

append(x: object): None

insert(index: int, x: object):

None

remove(x: object): None

index(x: object): int

count(x: object): int

sort(): None

reverse(): None

extend(l: list): None

pop([i]): object

Add an item x to the end of the list.

Insert an item x at a given index. Note that the first element in

the list has index 0.

Remove the first occurrence of the item x from the list.

Return the index of the item x in the list.

Return the number of times item x appears in the list.

Sort the items in the list.

Reverse the items in the list.

Append all the items in L to the list.

Remove the item at the given position and return it. The square
bracket denotes that parameter is optional. If no index is

specified, list.pop() removes and returns the last item in the

list.

(c) Paul Fodor (CS Stony Brook) and Pearson
72

Functions for lists
>>> list1 = [2, 3, 4, 1, 32]

>>> len(list1)

5

>>> max(list1)

32

>>> min(list1)

1

>>> sum(list1)

42

>>> import random

>>> random.shuffle(list1) # Shuffle the items in the

list

>>> list1

[4, 1, 2, 32, 3]

(c) Paul Fodor (CS Stony Brook) and Pearson

>>> list1 = [2, 3]

>>> list2 = [1, 9]

>>> list3 = list1 + list2

>>> list3

[2, 3, 1, 9]

>>> list3 = 2 * list1

>>> list3

[2, 3, 2, 3]

>>> list4 = list3[2 : 4]

>>> list4

[2, 3]

73

The +, *, [:], and in Operators

(c) Paul Fodor (CS Stony Brook) and Pearson
74

>>> list1 = [2, 3, 5, 2, 33, 21]

>>> list1[-1]

21

>>> list1[-3]

2

>>> list1 = [2, 3, 5, 2, 33, 21]

>>> 2 in list1

True

>>> list1 = [2, 3, 5, 2, 33, 21]

>>> 2.5 in list1

False

The +, *, [:], and in Operators

(c) Paul Fodor (CS Stony Brook) and Pearson
75

Comparing Lists
>>>list1 = ["green", "red", "blue"]

>>>list2 = ["red", "blue", "green"]

>>>list2 == list1

False

>>>list2 != list1

True

>>>list2 >= list1

True

>>>list2 > list1

True

>>>list2 < list1

False

>>>list2 <= list1

False

(c) Paul Fodor (CS Stony Brook) and Pearson
76

Splitting a String to a List

items = "Welcome to CSE307".split()

print(items)

['Welcome', 'to', 'CSE307']

items = "34#13#78#45".split("#")

print(items)

['34', '13', '78', '45']

(c) Paul Fodor (CS Stony Brook) and Pearson
77

def main():

x = 1 # x represents an int value

y = [1, 2, 3] # y represents a list

m(x, y) # Invoke f with arguments x and y

print("x is " + str(x))

print("y[0] is " + str(y[0]))

def m(number, numbers):

number = 1001 # Assign a new value to number

numbers[0] = 5555 # Assign a new value to numbers[0]

main()

Pass-by-Value Example

(c) Paul Fodor (CS Stony Brook) and Pearson

Use binary search to find the key in the list

def binarySearch(lst, key):

low = 0

high = len(lst) - 1

while high >= low:

mid = (low + high) // 2

if key < lst[mid]:

high = mid - 1

elif key == lst[mid]:

return mid

else:

low = mid + 1

Now high < low, key not found

return -low - 1

78

Binary Search

(c) Paul Fodor (CS Stony Brook) and Pearson
79

Selection Sort
def selectionSort(lst):

for i in range(0, len(lst) - 1):

Find the minimum in the lst[i..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

Swap lst[i] with lst[currentMinIndex] if necessary

if currentMinIndex != i:

lst[currentMinIndex] = lst[i]

lst[i] = currentMin

return lst

(c) Paul Fodor (CS Stony Brook) and Pearson

Write to a File
outfile = open("test.txt", "w")

outfile.write("Welcome to Python")

file

read([number: int]): str

readline(): str

readlines(): list

write(s: str): None

close(): None

Returns the specified number of characters from the file. If the

argument is omitted, the entire remaining contents are read.

Returns the next line of file as a string.

Returns a list of the remaining lines in the file.

Writes the string to the file.

Closes the file.

80

(c) Paul Fodor (CS Stony Brook) and Pearson
81

Testing File Existence
import os.path

if os.path.isfile("Presidents.txt"):

print("Presidents.txt exists")

(c) Paul Fodor (CS Stony Brook) and Pearson

Write/Read in/from File
def main():

write

w = open("a.txt", "w")

w.write("de")

w.close()

read

r = open("a.txt", "r")

for line in r:

print(line)

r.close()

main()
82

(c) Paul Fodor (CS Stony Brook) and Pearson
83

Tuples
t1 = () # Create an empty tuple

t2=(1,3,5) # Create a set with three elements

Create a tuple from a list

t3 = tuple([2*x for x in range(1,5)])

Create a tuple from a string

t4 = tuple("abac") # t4 is ['a', 'b', 'a', 'c']

• Tuples vs. lists: you cannot modify a tuple!

(c) Paul Fodor (CS Stony Brook) and Pearson
84

List Comprehensions
List comprehensions are a concise way to create

lists

>> squares = [x**2 for x in range(10)]

>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

same with:

>>> squares = []

>>> for x in range(10):

... squares.append(x**2)

but shorter

(c) Paul Fodor (CS Stony Brook) and Pearson
85

List Comprehensions
>>> vec = [-4, -2, 0, 2, 4]

create a new list with the values doubled

>>> [x*2 for x in vec]

[-8, -4, 0, 4, 8]

filter the list to exclude negative numbers

>>> [x for x in vec if x >= 0]

[0, 2, 4]

apply a function to all the elements

>>> [abs(x) for x in vec]

[4, 2, 0, 2, 4]

(c) Paul Fodor (CS Stony Brook) and Pearson
86

List Comprehensions
 A list comprehension consists of brackets containing an

expression followed by a for clause, then zero or

more for or if clauses

 the result will be a new list resulting from evaluating the

expression in the context of the for and if clauses

which follow it

 example: combines the elements of two lists if they are

not equal

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

(c) Paul Fodor (CS Stony Brook) and Pearson
87

List Comprehensions
>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

is the same with:

>>> combs = []

>>> for x in [1,2,3]:

... for y in [3,1,4]:

... if x != y:

... combs.append((x, y))

(c) Paul Fodor (CS Stony Brook) and Pearson
88

List Comprehensions
create a list of 2-tuples like (number, square)

>>> [(x, x**2) for x in range(6)]

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

flatten a list using a listcomp with two 'for'

>>> vec = [[1,2,3], [4,5,6], [7,8,9]]

>>> [num for elem in vec for num in elem]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

(c) Paul Fodor (CS Stony Brook) and Pearson
89

List Comprehensions
Nested List Comprehensions

>>> matrix = [

... [1, 2, 3, 4],

... [5, 6, 7, 8],

... [9, 10, 11, 12],

...]

>>> [[row[i] for row in matrix]

for i in range(len(matrix[0]))]

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

(c) Paul Fodor (CS Stony Brook) and Pearson
90

all and any
all(iterable) returns True if all elements of the

iterable are true (or if the iterable is empty)

 The internal implementation:

def all(iterable):

for element in iterable:

if not element:

return False

return True

(c) Paul Fodor (CS Stony Brook) and Pearson
91

all and any
any(iterable) returns True if any element of the

iterable is true. If the iterable is empty, return

False.

 The internal implementation:

def any(iterable):

for element in iterable:

if element:

return True

return False

(c) Paul Fodor (CS Stony Brook) and Pearson
92

all and any Example
def is_prime(element):

if element == 2:

return True

elif element <= 1 or element % 2 == 0:

return False

else:

return all(element%i for i

in range(3,element,2))

myList = [4, 5, 9, 12]

if not any(is_prime(x) for x in myList):

print("The list did not contain a prime")

else:

print("The list contains a prime")

(c) Paul Fodor (CS Stony Brook) and Pearson
93

Python’s iterator protocol
 Objects that support the __iter__ and __next__ dunder methods

automatically work with for-in loops
class Repeater:

def __init__(self, value):

self.value = value

def __iter__(self):

return RepeaterIterator(self)

class RepeaterIterator:

def __init__(self, source):

self.source = source

def __next__(self):

return self.source.value

repeater = Repeater('Hello')

for item in repeater:

print(item)

Hello

Hello

...

(c) Paul Fodor (CS Stony Brook) and Pearson
94

Python’s iterator protocol
class BoundedRepeater:

def __init__(self, value, max_repeats):

self.value = value

self.max_repeats = max_repeats

self.count = 0

def __iter__(self):

return self

def __next__(self):

if self.count >= self.max_repeats:

raise StopIteration

self.count += 1

return self.value

>>> repeater = BoundedRepeater('Hello', 3)

>>> for item in repeater:

print(item)

Hello

Hello

Hello

(c) Paul Fodor (CS Stony Brook) and Pearson

Sets
Create an empty set

s1 = set()

Create a set with three elements

s2 = {1, 3, 5}

Create a set from a list

s3 = set([1, 3, 5])

Create a set from a list

s4 = set([x * 2 for x in range(1, 10)])

Create a set from a string

s5 = set("abac") # s5 is {'a', 'b', 'c'}

95

(c) Paul Fodor (CS Stony Brook) and Pearson
96

Manipulating and Accessing Sets
>>> s1 = {1, 2, 4}

>>> s1.add(6)

>>> s1

{1, 2, 4, 6}

>>> len(s1)

4

>>> max(s1)

6

>>> min(s1)

1

>>> sum(s1)

13

>>> 3 in s1

False

>>> s1.remove(4)

>>> s1

{1, 2, 6}

>>>

(c) Paul Fodor (CS Stony Brook) and Pearson
97

Equality Test
>>> s1 = {1, 2, 4}

>>> s2 = {1, 4, 2}

>>> s1 == s2

True

>>> s1 != s2

False

>>>

(c) Paul Fodor (CS Stony Brook) and Pearson
98

Subset and Superset
>>> s1 = {1, 2, 4}

>>> s2 = {1, 4, 5, 2, 6}

>>> s1.issubset(s2) # s1 is a subset of s2

True

>>>

>>> s2.issuperset(s1) #s2 is a superset of s1

True

>>>

(c) Paul Fodor (CS Stony Brook) and Pearson
99

Comparison Operators

• Note that it makes no sense to compare the sets using

the conventional comparison operators (>, >=, <=, <),

because the elements in a set are not ordered.

• However, these operators have special meaning when

used for sets.

s1 > s2 returns true is s1 is a proper superset of s2.

s1 >= s2 returns true is s1 is a superset of s2.

s1 < s2 returns true is s1 is a proper subset of s2.

s1 <= s2 returns true is s1 is a subset of s2.

(c) Paul Fodor (CS Stony Brook) and Pearson
100

Set Operations (union, |)
>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.union(s2)

{1, 2, 3, 4, 5}

same with:

>>> s1 | s2

{1, 2, 3, 4, 5}

(c) Paul Fodor (CS Stony Brook) and Pearson
101

Set Operations (intersection, &)
>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.intersection(s2)

{1}

same with:

>>> s1 & s2

{1}

(c) Paul Fodor (CS Stony Brook) and Pearson
102

Set Operations (difference, -)

>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.difference(s2)

{2, 4}

>>> s1 - s2

{2, 4}

(c) Paul Fodor (CS Stony Brook) and Pearson
103

Creating a Dictionary
Create an empty dictionary

dictionary = {}

Create a dictionary

dictionary = {"john":40,

"peter":45}

(c) Paul Fodor (CS Stony Brook) and Pearson
104

Looping Entries
for key in dictionary:

print(key + ":" +

str(dictionary[key]))

(c) Paul Fodor (CS Stony Brook) and Pearson
105

Lambda Expressions
 Small anonymous functions

 a function can return a function
>>> def make_incrementor(n):

... return lambda x: x + n

...

>>> f = make_incrementor(42)

>>> f(0)

42

>>> f(1)

43

(c) Paul Fodor (CS Stony Brook) and Pearson
106

Standard Library
Operating System Interface:
>>> import os

Return the current working directory

>>> os.getcwd()

'C:\\Python35'

Run the command mkdir

>>> os.system('mkdir today')

0

(c) Paul Fodor (CS Stony Brook) and Pearson
107

Standard Library
Operating System Interface:
>>> import shutil

>>> shutil.copyfile('data.db', 'archive.db')

'archive.db'

>>> shutil.move('/build/executables', 'installdir')

'installdir'

(c) Paul Fodor (CS Stony Brook) and Pearson
108

Standard Library
 String Pattern Matching Interface:
>>> import re

>>> re.findall(r'\bf[a-z]*',

'which foot or hand fell fastest')

['foot', 'fell', 'fastest']

(c) Paul Fodor (CS Stony Brook) and Pearson
109

Standard Library
Mathematics:
>>> import random

>>> random.choice(['apple', 'pear', 'banana'])

'apple'

sampling without replacement

>>> random.sample(range(100), 10)

[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random() # random float

0.17970987693706186

(c) Paul Fodor (CS Stony Brook) and Pearson
110

Standard Library
Mathematics:
>>> import statistics

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]

>>> statistics.mean(data)

1.6071428571428572

>>> statistics.median(data)

1.25

>>> statistics.variance(data)

1.3720238095238095

(c) Paul Fodor (CS Stony Brook) and Pearson
111

Standard Library
 Internet Access:
>>> from urllib.request import urlopen

>>> with urlopen('http://www.cs.stonybrook.edu') as response:

for line in response:

print(line)

(c) Paul Fodor (CS Stony Brook) and Pearson
112

Standard Library
Dates and Times:
>>> from datetime import date

>>> now = date.today()

>>> now

>>> birthday = date(2000, 5, 23)

>>> age = now - birthday

>>> age.days

(c) Paul Fodor (CS Stony Brook) and Pearson
113

Standard Library
Data Compression:
>>> import zlib

>>> s = b'data archiving and compression'

A prefix of 'b' means that the chars are encoded in byte type

may only contain ASCII characters

>>> t = zlib.compress(s)

>>> zlib.decompress(t)

b'data archiving and compression'

>>> zlib.crc32(s)

3701065259

(c) Paul Fodor (CS Stony Brook) and Pearson
114

Standard Library
Testing:

 doctest: scans a module and validate tests embedded in a program’s

docstrings

def average(values):

"""Computes the arithmetic mean of a list of numbers.

>>> print(average([20, 30, 70]))

40.0

"""

return sum(values) / len(values)

import doctest

doctest.testmod() # automatically validate the embedded tests

(c) Paul Fodor (CS Stony Brook) and Pearson
115

Standard Library
Testing:

 unittest: comprehensive set of tests to be maintained in a separate file

import unittest

class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):

self.assertEqual(average([20, 30, 70]), 40.0)

self.assertEqual(round(average([1, 5, 7]), 1), 4.3)

with self.assertRaises(ZeroDivisionError):

average([])

with self.assertRaises(TypeError):

average(20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

(c) Paul Fodor (CS Stony Brook) and Pearson
116

Standard Library
 Logging:

import logging

logging.debug('Debugging information')

logging.info('Informational message')

logging.warning('Warning:config file %s not found', 'server.conf')

logging.error('Error occurred')

logging.critical('Critical error -- shutting down')

logging.getLogger().setLevel('INFO')

 by default, informational and debugging messages are suppressed:

Level Numeric value

CRITICAL 50

ERROR 40

WARNING 30

INFO 20

DEBUG 10

NOTSET 0

(c) Paul Fodor (CS Stony Brook) and Pearson
117

Python GUIs with tkinter
from tkinter import * # Import tkinter

root = Tk() # Create a root window

Create a label

label = Label(root, text = "Welcome to Python")

Create a button

button = Button(root, text = "Click Me")

label.pack() # Display the label in the window

button.pack() # Display the button in the window

root.mainloop() # Create an event loop

(c) Paul Fodor (CS Stony Brook) and Pearson
118

What else?
 Lots:

 The Python Standard Library: built-in functions, collections, and many

modules: https://docs.python.org/3/library/index.html#library-index

 Installing Python Modules: pip, virtual environments

https://docs.python.org/3/installing/index.html#installing-index

 The Python Language Reference: the syntax and “core semantics”

https://docs.python.org/3/reference/index.html#reference-index

https://docs.python.org/3/library/index.html#library-index
https://docs.python.org/3/installing/index.html#installing-index
https://docs.python.org/3/reference/index.html#reference-index

