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Introduction 
What is a Database? 
Collection of data central to some enterprise 

Essential to operation of enterprise 
 Contains the only record of enterprise activity 

An asset in its own right 
 Historical data can guide enterprise strategy 

 Of interest to other enterprises 

State of database mirrors state of enterprise 
 Database is persistent 
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Introduction 
What is a Database Management System? 

DBMS is a program that manages a database: 

 Supports a high-level access language (e.g. SQL). 

Application describes database accesses using that 

language. 

DBMS interprets statements of language to perform 

requested database access. 
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Introduction 
What is a Transaction? 
When an event in the real world changes the state of 

the enterprise, a "transaction" is executed to cause the 

corresponding change in the database state 

With an on-line database, the event causes the 

transaction to be executed in real time 

A transaction is an application program with special 

properties (i.e., ACID=Atomicity, Consistency, 

Isolation, Durability) to guarantee it maintains 

database correctness 
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Introduction 
What is a Transaction Processing System? 
Transaction execution is controlled by a Transaction 

Processing (TP) monitor 

Creates the abstraction of a transaction, analogous to the 

way an operating system creates the abstraction of a 

process 

TP monitor and DBMS together guarantee the special 

properties of transactions 

A Transaction Processing System consists of TP monitor, 

possibly multiple databases, and transactions 
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Introduction 
Database Systems Requirements: 
High Availability: on-line => must be 

operational while enterprise is functioning 

High Reliability: correctly tracks state, does 
not lose data, controlled concurrency 

High Throughput: many users => many 
transactions/sec 

Low Response Time: on-line => users are 
waiting 
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Introduction 
Database Systems Requirements: 

Long Lifetime: complex systems are not easily 

replaced 

Must be designed so they can be easily extended as 

the needs of the enterprise change 

Security: sensitive information must be 

carefully protected since system  is accessible to 

many users 

Authentication, authorization, encryption 
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Introduction 
Roles in Design, Implementation, and 

Maintenance of a TPS: 
System Analyst - specifies system using input from 

customer; provides complete description of 

functionality from customer’s and user’s point of view 

Database Designer - specifies structure of data that 

will be stored in database 

Application Programmer - implements 

application programs (transactions) that access data 

and support enterprise rules 
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Introduction 
Roles in Design, Implementation, and 

Maintenance of a TPS: 

Database Administrator - maintains database 

once system is operational: space allocation, 

performance optimization, database security 

System Administrator - maintains transaction 

processing system: monitors interconnection of 

HW and SW modules, deals with failures and 

congestion 
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Introduction 
On-line Transaction Processing (OLTP)  

Day-to-day handling of transactions that result 

from enterprise operation  

Maintains correspondence between database 

state and enterprise state 

On-line Analytic Processing (OLAP)  

Analysis of information in a database for the 

purpose of making management decisions 
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Introduction 
 On-line Analytic Processing (OLAP): 

 Analyzes historical data (terabytes) using complex queries 

 Summarizes the data and makes forecasts! 

 Example: it answers operational questions like “What are the 
average sales of cars, by region and by year?" 

 Due to volume of data and complexity of queries, OLAP 
often uses a data warehouse and mining 

 Data Warehouse - (offline) repository of historical data 
generated from OLTP or other sources 

 Data Mining - use of warehouse data to discover 
relationships (discovers hidden patterns in data) that might 
influence enterprise strategy 
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Introduction 
Example: Supermarket: 

OLTP 

 For the event of buying 1 milk and 1 box of diapers, the 

OLTP will update the database to reflect that event 

OLAP 

 Last winter in all stores in northeast, how many customers 

bought milk and diapers together? 

Data Mining 

 Are there any interesting combinations of products that 

customers frequently bought together? 
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A Brief History of Database Systems 
 Pre-relational era (1970’s)  

 Hierarchical (IMS), Network (Codasyl) 

 Complex data structures and low-level query language 

 Relational DBMSs (1980s) 

 Edgar F. Codd's relational model in 1970 

 Set of tuples (i.e., tables) as data model 

 Powerful high-level query language 

 Object-Oriented DBMSs (1990s) 

 Motivated by “impedance mismatch” between RDBMS and OO PL 

 Persistent types in C++, Java or Small Talk 

 Issues: Lack of high level QL, no standards,  performance 
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 Object-relational DBMS (OR-DBMS) (1990s) 

 Relational DBMS vendors’ answer to OO 

 User-defined types, functions (spatial, multimedia) 

 Nested tables 

 SQL: 1999 (2003) standards. Plus performance. 

 XML/DBMS (2000s) 

 Web and XML are merging 

 Native support of XML through ORDBMS extension or native XML 

DBMS 

 Decision support system (DSS) (2000s) 

 Data warehousing and OLAP 

 

18 

A Brief History of Database Systems 



(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) 

 Data stream management systems (2000s) 

 Continuous query against data streams 

 The era of big data (mid 2000-now):  

 Big data: datasets that grow so large (terabytes to petabytes) that they 

become awkward to work with traditional DBMS 

 Parallel DBMSs continue to push the scale of data 

 MapReduce dominates on Web data analysis 

 “NoSQL” (not only SQL) is fast growing 
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Stay updated 
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A Brief History of DBMS Products 
 First hierarchy DBMS: IBM Information Management System 

(IMS)  

 starting in 1966 for the Apollo program 

 Still going strong over 40 years later 

 Mainframe only 

 IDMS (Integrated Database Management System) is a network 

model based system 

 The roots of IDMS go back to Dr. Charles Bachman's IDS 

(Integrated Data Store) developed at GE 

 Since 1989 the product has been owned by Computer 

Associates, who renamed it as CA-IDMS 

 Mainframe only 
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A Brief History of DBMS Products 
 Two early RDBMS projects started and were operational in late 

1970s:INGRES and System R 

 INGRES (INteractive Graphics REtrieval System) started at UC 

Berkeley, by Michael Stonebraker and Eugene Wong 

 In the early 1980s, Ingres competed head-to-head with Oracle, but lost 

market due to Oracle’s marketing and Ingres’ own proprietary QUEL  

 Since the mid-1980s, Ingres has spawned into: Sybase, Microsoft SQL 

Server, NonStop SQL, etc 

 Postgres (Post Ingres) started in the mid-1980s, later evolved into 

PostgreSQL 

 In the 1990s Stonebraker commercialized Postgres as Illustra, later sold 

to Informix (sold to IBM in 2001) 
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A Brief History of DBMS Products 
 IBM System R was a research project at IBM San Jose Research 

(now IBM Almaden Research) in the 1970s 

 SQL/DS was IBM's first commercial DBMS for mainframe built 

around SQL in early 1980s 

 A little later, in 1983, IBM released DB2 on its MVS mainframe 

platform 

 IBM brought DB2 to other platforms (LUW) in 90s. DB2 renamed 

as DB2 UDB z/OS, DB2 UDB LUW 

 Larry Ellison and his friends started Software Development 

Laboratories (SDL) in 1977, which developed the original version of 

Oracle 

 The name Oracle comes from the code-name of a CIA-funded project 

Ellison had worked before 
24 
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SQL 
 SQL: Structured Query Language Invented in 1974 by Donald 

Chamberlin and Raymond Boyce for IBM 

 Initially called SEQUEL, changed to SQL due to trademark issue 

 In late 1970s, Relational Software, Inc. (now Oracle Corporation) 

introduced the first commercially available implementation of SQL in 

Oracle V2 

 Multiple standard revisions and multiple flavors (implementations) 

exist 
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SQL Standard Revisions 
 SEQUEL/Original SQL - 1974 

 SQL86: ratification and acceptance of a formal SQL standard by ANSI 

and ISO 

 SQL2 (a.k.a. SQL92): still strictly relational, with new primitive data 

types, operations and join types 

 SQL3: working documents discussing new specs for OR systems, but 

also for recursion, active rules, OLAP 

 SQL:1999: added user defined types, etc 

 SQL:2003: added XML-related features, etc 

 SQL:2006: increased support for XML support for XQuery, an XML-

SQL interface standard 

 SQL:2011: added temporal support 

 And evolution continues… 
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NoSQL Systems 
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Category Data Model Example Databases 

Key-Value  (Global) collection of K-V pairs BerkeleyDB, LevelDB, Memcached, Project 

Voldemort, Redis, Riak 

Column Families Big table, column families Amazon SimpleDB, Cassandra, HBase, 

Hypertable 

Document  Collections of K-V Collections CouchDB, MongoDB, OrientDB, RavenDB, 

Terrastore 

Graph Nodes, relations, K-V on both Apache  Tinkerpop, FlockDB, 

HerperGraphDB, Infinite Graph, 

AllegroGraph, Neo4j, OrientDB 

Search engines Inverted indexes, tries, 

Information retrieval 

Apache Lucene, Apache Solr, Elasticsearch 
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Distributed DBMS: CAP  
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RDBMS 

NoSQL (most) 

Availability 

Partition  
Tolerance Consistency 
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More on evolution of DBMS 
Hierarchical model (~1968): 

record types arranged as a hierarchy 

each type has a single parent 
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More on evolution of DBMS 
Hierarchical model (~1968): 

some problems: 

 Information repeated:  

 Schema#1: part info repeated for each supplier that 

supplies the part 

 Schema#2: supplier info repeated for each part  
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More on evolution of DBMS 
Hierarchical model (~1968): 

some problems: 

 Existence depends on parent data 

 Schema#1: what if there is a part not currently 

supplied by anyone?  
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More on evolution of DBMS 
Hierarchical model (~1968): 

 DL/1 programming language for IMS: "record-at-a-time" 

language: the programmer constructs an algorithm for 

solving a query and IMS executes it 
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More on evolution of DBMS 
Hierarchical model (~1968): 

 Different underlying storage = different restrictions on 

commands: heavy coupling between storage format used 

(sequential/B-tree/hashed) and client application 

 Different sets of data = different optimization opportunities 
 even if the optimization is programmed by the programmer 
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More on evolution of DBMS 
Data Independence:  

A Simple Idea: Applications should be insulated from 

how data is structured and stored 

 Logical data independence:   

protection from changes in  

the logical structure of data. 

 Physical data independence:   

protection from changes in  

the physical structure of data. 
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More on evolution of DBMS 
 

Logical data independence:  

 changes to physical/logical structure should not require changes 

at the application level (ideally) 

 in general, should not require expensive changes to apps 

 Impossible to achieve in the hierarchical model, where: 

 trees are difficult to reorganize 

 the record-at-a-time language delegates the optimization to the 

programmer 
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More on evolution of DBMS 
 Graph / Network model (CODASYL 1969): 

 Schema arranged in a graph model 
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More on evolution of DBMS 
 Graph / Network model (CODASYL 1969): 

 Instances 
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More on evolution of DBMS 
 Graph / Network model (CODASYL 1969): 

 Improvement:  

 entities can exist without their parents 

 Limitations: 

 still using the record-at-a-time DML language 

 still no physical independence 

 more difficult to program against a graph than a tree 

 graphs are more complex: the whole graph must be loaded at once 

(IMS trees could be loaded individually) 

38 



(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) 

More on evolution of DBMS 
 Relational model (1970) 

Ted Codd was motivated by the heavy maintenance 

required by the IMS applications 

data stored in tables (see next class) 

High level, set oriented DML 

underlying physical storage is up to vendors  

39 



(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) 

More on evolution of DBMS 
 Entity Relationship (mid 1970s) 

Proposed by Peter Chen 

Relationships with attributes and multiplicities 

 

 

 

 As a physical model: never caught on (little benefit) 

 As a conceptual model: widely used for database schema design 

because it offers a methodology for creating initial tables and some 

normalization on E-R models can be done automatically 
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More on evolution of DBMS 
 Semantic data model (early 1980s) 

View relations as classes 

 multiple inheritance  

 class-wide attributes 

Vendors were more 

concerned with  

performance 

Can be simulated  

with relational 
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More on evolution of DBMS 
 OO DBs (mid 1980s) 

 Integrate data persistency into OO programming 

languages 

 extend a OO programming language (e.g., C++) with 

database functionality to support data persistence 

 initial work targeted towards engineering niche market (e.g., 

CAD) 

 Persistent part p; 

 Persistent int i; 

 Did not go because vendors did not want change! 
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More on evolution of DBMS 
 Object-Relational DBs (mid 1980s) 

motivated by spatial queries: INGRES team had a 

"haunting" interest in GIS (geographical information 

system) 
 B-trees are inefficient to solve such queries 

 User defined data types (box) and operators (box intersects box, R-tree indexing) 

 Major prototype: Postgres showed how to build a DBMS engine so new 

types and functions can be plugged in 

 Also Sybase contributed with stored procedures: user defined functions 

for application logic, not just operators 

 Postgres was commercialized by Illustra (acquired by Informix)  
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More on evolution of DBMS 
 Semi-structured era (~2000+) 

 Schema Evolution / Schema "later": data is self describing 

 

 

 

 

 

 

 Complex graph oriented data models 

 Also, a Response to the growth of Web services and XML as a 

language (same for JSON as Javascript) 

 

44 



(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook) 

More on evolution of DBMS 
 Semi-structured era (~2000+) 

 Schema Evolution / Schema "later": data is self describing 
 Relational DBMS have heavy-weight mechanisms to change schema (ALTER) 

 XML and JSON as a data model:  

 records can be hierarchical,  

 records can reference to other records 

 schema can be defined "later" in DTDs and XMLSchema 

 XQuery is essentially an Object-Relational SQL 

 OR DBMSs adapted to support XML  
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Finally 
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