
CSE 305 – Principles of Database Systems

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse305

Overview and History of

Databases and Transactions

1

http://www.cs.stonybrook.edu/~cse305

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Database?

2

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Database?
Collection of data central to some enterprise

Essential to operation of enterprise
 Contains the only record of enterprise activity

An asset in its own right
 Historical data can guide enterprise strategy

 Of interest to other enterprises

State of database mirrors state of enterprise
 Database is persistent

3

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Database Management System?

4

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Database Management System?

DBMS is a program that manages a database:

 Supports a high-level access language (e.g. SQL).

Application describes database accesses using that

language.

DBMS interprets statements of language to perform

requested database access.

5

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Transaction?

6

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Transaction?
When an event in the real world changes the state of

the enterprise, a "transaction" is executed to cause the

corresponding change in the database state

With an on-line database, the event causes the

transaction to be executed in real time

A transaction is an application program with special

properties (i.e., ACID=Atomicity, Consistency,

Isolation, Durability) to guarantee it maintains

database correctness

 7

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Transaction Processing System?
Transaction execution is controlled by a Transaction

Processing (TP) monitor

Creates the abstraction of a transaction, analogous to the

way an operating system creates the abstraction of a

process

TP monitor and DBMS together guarantee the special

properties of transactions

A Transaction Processing System consists of TP monitor,

possibly multiple databases, and transactions

8

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction

9

TP Monitor

DBMS database tr
an

sa
ct

io
n
s DBMS database

Transaction Processing System

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Database Systems Requirements:
High Availability: on-line => must be

operational while enterprise is functioning

High Reliability: correctly tracks state, does
not lose data, controlled concurrency

High Throughput: many users => many
transactions/sec

Low Response Time: on-line => users are
waiting

10

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Database Systems Requirements:

Long Lifetime: complex systems are not easily

replaced

Must be designed so they can be easily extended as

the needs of the enterprise change

Security: sensitive information must be

carefully protected since system is accessible to

many users

Authentication, authorization, encryption

11

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Roles in Design, Implementation, and

Maintenance of a TPS:
System Analyst - specifies system using input from

customer; provides complete description of

functionality from customer’s and user’s point of view

Database Designer - specifies structure of data that

will be stored in database

Application Programmer - implements

application programs (transactions) that access data

and support enterprise rules

12

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Roles in Design, Implementation, and

Maintenance of a TPS:

Database Administrator - maintains database

once system is operational: space allocation,

performance optimization, database security

System Administrator - maintains transaction

processing system: monitors interconnection of

HW and SW modules, deals with failures and

congestion

 13

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
On-line Transaction Processing (OLTP)

Day-to-day handling of transactions that result

from enterprise operation

Maintains correspondence between database

state and enterprise state

On-line Analytic Processing (OLAP)

Analysis of information in a database for the

purpose of making management decisions

14

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
 On-line Analytic Processing (OLAP):

 Analyzes historical data (terabytes) using complex queries

 Summarizes the data and makes forecasts!

 Example: it answers operational questions like “What are the
average sales of cars, by region and by year?"

 Due to volume of data and complexity of queries, OLAP
often uses a data warehouse and mining

 Data Warehouse - (offline) repository of historical data
generated from OLTP or other sources

 Data Mining - use of warehouse data to discover
relationships (discovers hidden patterns in data) that might
influence enterprise strategy
 15

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Example: Supermarket:

OLTP

 For the event of buying 1 milk and 1 box of diapers, the

OLTP will update the database to reflect that event

OLAP

 Last winter in all stores in northeast, how many customers

bought milk and diapers together?

Data Mining

 Are there any interesting combinations of products that

customers frequently bought together?

16

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Brief History of Database Systems
 Pre-relational era (1970’s)

 Hierarchical (IMS), Network (Codasyl)

 Complex data structures and low-level query language

 Relational DBMSs (1980s)

 Edgar F. Codd's relational model in 1970

 Set of tuples (i.e., tables) as data model

 Powerful high-level query language

 Object-Oriented DBMSs (1990s)

 Motivated by “impedance mismatch” between RDBMS and OO PL

 Persistent types in C++, Java or Small Talk

 Issues: Lack of high level QL, no standards, performance

17

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Object-relational DBMS (OR-DBMS) (1990s)

 Relational DBMS vendors’ answer to OO

 User-defined types, functions (spatial, multimedia)

 Nested tables

 SQL: 1999 (2003) standards. Plus performance.

 XML/DBMS (2000s)

 Web and XML are merging

 Native support of XML through ORDBMS extension or native XML

DBMS

 Decision support system (DSS) (2000s)

 Data warehousing and OLAP

18

A Brief History of Database Systems

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Data stream management systems (2000s)

 Continuous query against data streams

 The era of big data (mid 2000-now):

 Big data: datasets that grow so large (terabytes to petabytes) that they

become awkward to work with traditional DBMS

 Parallel DBMSs continue to push the scale of data

 MapReduce dominates on Web data analysis

 “NoSQL” (not only SQL) is fast growing

19

A Brief History of Database Systems

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Stay updated

 http://db-engines.com/en/ranking 20

http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Stay updated

 http://db-engines.com/en/ranking 21

http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Brief History of DBMS Products
 First hierarchy DBMS: IBM Information Management System

(IMS)

 starting in 1966 for the Apollo program

 Still going strong over 40 years later

 Mainframe only

 IDMS (Integrated Database Management System) is a network

model based system

 The roots of IDMS go back to Dr. Charles Bachman's IDS

(Integrated Data Store) developed at GE

 Since 1989 the product has been owned by Computer

Associates, who renamed it as CA-IDMS

 Mainframe only
22

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Brief History of DBMS Products
 Two early RDBMS projects started and were operational in late

1970s:INGRES and System R

 INGRES (INteractive Graphics REtrieval System) started at UC

Berkeley, by Michael Stonebraker and Eugene Wong

 In the early 1980s, Ingres competed head-to-head with Oracle, but lost

market due to Oracle’s marketing and Ingres’ own proprietary QUEL

 Since the mid-1980s, Ingres has spawned into: Sybase, Microsoft SQL

Server, NonStop SQL, etc

 Postgres (Post Ingres) started in the mid-1980s, later evolved into

PostgreSQL

 In the 1990s Stonebraker commercialized Postgres as Illustra, later sold

to Informix (sold to IBM in 2001)

23

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Brief History of DBMS Products
 IBM System R was a research project at IBM San Jose Research

(now IBM Almaden Research) in the 1970s

 SQL/DS was IBM's first commercial DBMS for mainframe built

around SQL in early 1980s

 A little later, in 1983, IBM released DB2 on its MVS mainframe

platform

 IBM brought DB2 to other platforms (LUW) in 90s. DB2 renamed

as DB2 UDB z/OS, DB2 UDB LUW

 Larry Ellison and his friends started Software Development

Laboratories (SDL) in 1977, which developed the original version of

Oracle

 The name Oracle comes from the code-name of a CIA-funded project

Ellison had worked before
24

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL
 SQL: Structured Query Language Invented in 1974 by Donald

Chamberlin and Raymond Boyce for IBM

 Initially called SEQUEL, changed to SQL due to trademark issue

 In late 1970s, Relational Software, Inc. (now Oracle Corporation)

introduced the first commercially available implementation of SQL in

Oracle V2

 Multiple standard revisions and multiple flavors (implementations)

exist

25

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL Standard Revisions
 SEQUEL/Original SQL - 1974

 SQL86: ratification and acceptance of a formal SQL standard by ANSI

and ISO

 SQL2 (a.k.a. SQL92): still strictly relational, with new primitive data

types, operations and join types

 SQL3: working documents discussing new specs for OR systems, but

also for recursion, active rules, OLAP

 SQL:1999: added user defined types, etc

 SQL:2003: added XML-related features, etc

 SQL:2006: increased support for XML support for XQuery, an XML-

SQL interface standard

 SQL:2011: added temporal support

 And evolution continues…
26

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

NoSQL Systems

27

Category Data Model Example Databases

Key-Value (Global) collection of K-V pairs BerkeleyDB, LevelDB, Memcached, Project

Voldemort, Redis, Riak

Column Families Big table, column families Amazon SimpleDB, Cassandra, HBase,

Hypertable

Document Collections of K-V Collections CouchDB, MongoDB, OrientDB, RavenDB,

Terrastore

Graph Nodes, relations, K-V on both Apache Tinkerpop, FlockDB,

HerperGraphDB, Infinite Graph,

AllegroGraph, Neo4j, OrientDB

Search engines Inverted indexes, tries,

Information retrieval

Apache Lucene, Apache Solr, Elasticsearch

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Distributed DBMS: CAP

28

RDBMS

NoSQL (most)

Availability

Partition
Tolerance Consistency

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

record types arranged as a hierarchy

each type has a single parent

29

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

some problems:

 Information repeated:

 Schema#1: part info repeated for each supplier that

supplies the part

 Schema#2: supplier info repeated for each part

30

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

some problems:

 Existence depends on parent data

 Schema#1: what if there is a part not currently

supplied by anyone?

31

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

 DL/1 programming language for IMS: "record-at-a-time"

language: the programmer constructs an algorithm for

solving a query and IMS executes it

32

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

 Different underlying storage = different restrictions on

commands: heavy coupling between storage format used

(sequential/B-tree/hashed) and client application

 Different sets of data = different optimization opportunities
 even if the optimization is programmed by the programmer

33

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Data Independence:

A Simple Idea: Applications should be insulated from

how data is structured and stored

 Logical data independence:

protection from changes in

the logical structure of data.

 Physical data independence:

protection from changes in

the physical structure of data.

34

Physical Schema

Conceptual Schema

View 1 View 2 View 3

DB

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS

Logical data independence:

 changes to physical/logical structure should not require changes

at the application level (ideally)

 in general, should not require expensive changes to apps

 Impossible to achieve in the hierarchical model, where:

 trees are difficult to reorganize

 the record-at-a-time language delegates the optimization to the

programmer

35

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Graph / Network model (CODASYL 1969):

 Schema arranged in a graph model

36

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Graph / Network model (CODASYL 1969):

 Instances

37

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Graph / Network model (CODASYL 1969):

 Improvement:

 entities can exist without their parents

 Limitations:

 still using the record-at-a-time DML language

 still no physical independence

 more difficult to program against a graph than a tree

 graphs are more complex: the whole graph must be loaded at once

(IMS trees could be loaded individually)

38

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Relational model (1970)

Ted Codd was motivated by the heavy maintenance

required by the IMS applications

data stored in tables (see next class)

High level, set oriented DML

underlying physical storage is up to vendors

39

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Entity Relationship (mid 1970s)

Proposed by Peter Chen

Relationships with attributes and multiplicities

 As a physical model: never caught on (little benefit)

 As a conceptual model: widely used for database schema design

because it offers a methodology for creating initial tables and some

normalization on E-R models can be done automatically

40

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Semantic data model (early 1980s)

View relations as classes

 multiple inheritance

 class-wide attributes

Vendors were more

concerned with

performance

Can be simulated

with relational

41

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 OO DBs (mid 1980s)

 Integrate data persistency into OO programming

languages

 extend a OO programming language (e.g., C++) with

database functionality to support data persistence

 initial work targeted towards engineering niche market (e.g.,

CAD)

 Persistent part p;

 Persistent int i;

 Did not go because vendors did not want change!

 42

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Object-Relational DBs (mid 1980s)

motivated by spatial queries: INGRES team had a

"haunting" interest in GIS (geographical information

system)
 B-trees are inefficient to solve such queries

 User defined data types (box) and operators (box intersects box, R-tree indexing)

 Major prototype: Postgres showed how to build a DBMS engine so new

types and functions can be plugged in

 Also Sybase contributed with stored procedures: user defined functions

for application logic, not just operators

 Postgres was commercialized by Illustra (acquired by Informix)

43

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Semi-structured era (~2000+)

 Schema Evolution / Schema "later": data is self describing

 Complex graph oriented data models

 Also, a Response to the growth of Web services and XML as a

language (same for JSON as Javascript)

44

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Semi-structured era (~2000+)

 Schema Evolution / Schema "later": data is self describing
 Relational DBMS have heavy-weight mechanisms to change schema (ALTER)

 XML and JSON as a data model:

 records can be hierarchical,

 records can reference to other records

 schema can be defined "later" in DTDs and XMLSchema

 XQuery is essentially an Object-Relational SQL

 OR DBMSs adapted to support XML

45

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Finally

46

Stop following me!

http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques

http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques

