
CSE 305 – Principles of Database Systems

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse305

Overview and History of

Databases and Transactions

1

http://www.cs.stonybrook.edu/~cse305

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Database?

2

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Database?
Collection of data central to some enterprise

Essential to operation of enterprise
 Contains the only record of enterprise activity

An asset in its own right
 Historical data can guide enterprise strategy

 Of interest to other enterprises

State of database mirrors state of enterprise
 Database is persistent

3

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Database Management System?

4

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Database Management System?

DBMS is a program that manages a database:

 Supports a high-level access language (e.g. SQL).

Application describes database accesses using that

language.

DBMS interprets statements of language to perform

requested database access.

5

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Transaction?

6

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Transaction?
When an event in the real world changes the state of

the enterprise, a "transaction" is executed to cause the

corresponding change in the database state

With an on-line database, the event causes the

transaction to be executed in real time

A transaction is an application program with special

properties (i.e., ACID=Atomicity, Consistency,

Isolation, Durability) to guarantee it maintains

database correctness

 7

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
What is a Transaction Processing System?
Transaction execution is controlled by a Transaction

Processing (TP) monitor

Creates the abstraction of a transaction, analogous to the

way an operating system creates the abstraction of a

process

TP monitor and DBMS together guarantee the special

properties of transactions

A Transaction Processing System consists of TP monitor,

possibly multiple databases, and transactions

8

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction

9

TP Monitor

DBMS database tr
an

sa
ct

io
n
s DBMS database

Transaction Processing System

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Database Systems Requirements:
High Availability: on-line => must be

operational while enterprise is functioning

High Reliability: correctly tracks state, does
not lose data, controlled concurrency

High Throughput: many users => many
transactions/sec

Low Response Time: on-line => users are
waiting

10

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Database Systems Requirements:

Long Lifetime: complex systems are not easily

replaced

Must be designed so they can be easily extended as

the needs of the enterprise change

Security: sensitive information must be

carefully protected since system is accessible to

many users

Authentication, authorization, encryption

11

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Roles in Design, Implementation, and

Maintenance of a TPS:
System Analyst - specifies system using input from

customer; provides complete description of

functionality from customer’s and user’s point of view

Database Designer - specifies structure of data that

will be stored in database

Application Programmer - implements

application programs (transactions) that access data

and support enterprise rules

12

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Roles in Design, Implementation, and

Maintenance of a TPS:

Database Administrator - maintains database

once system is operational: space allocation,

performance optimization, database security

System Administrator - maintains transaction

processing system: monitors interconnection of

HW and SW modules, deals with failures and

congestion

 13

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
On-line Transaction Processing (OLTP)

Day-to-day handling of transactions that result

from enterprise operation

Maintains correspondence between database

state and enterprise state

On-line Analytic Processing (OLAP)

Analysis of information in a database for the

purpose of making management decisions

14

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
 On-line Analytic Processing (OLAP):

 Analyzes historical data (terabytes) using complex queries

 Summarizes the data and makes forecasts!

 Example: it answers operational questions like “What are the
average sales of cars, by region and by year?"

 Due to volume of data and complexity of queries, OLAP
often uses a data warehouse and mining

 Data Warehouse - (offline) repository of historical data
generated from OLTP or other sources

 Data Mining - use of warehouse data to discover
relationships (discovers hidden patterns in data) that might
influence enterprise strategy
 15

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Introduction
Example: Supermarket:

OLTP

 For the event of buying 1 milk and 1 box of diapers, the

OLTP will update the database to reflect that event

OLAP

 Last winter in all stores in northeast, how many customers

bought milk and diapers together?

Data Mining

 Are there any interesting combinations of products that

customers frequently bought together?

16

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Brief History of Database Systems
 Pre-relational era (1970’s)

 Hierarchical (IMS), Network (Codasyl)

 Complex data structures and low-level query language

 Relational DBMSs (1980s)

 Edgar F. Codd's relational model in 1970

 Set of tuples (i.e., tables) as data model

 Powerful high-level query language

 Object-Oriented DBMSs (1990s)

 Motivated by “impedance mismatch” between RDBMS and OO PL

 Persistent types in C++, Java or Small Talk

 Issues: Lack of high level QL, no standards, performance

17

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Object-relational DBMS (OR-DBMS) (1990s)

 Relational DBMS vendors’ answer to OO

 User-defined types, functions (spatial, multimedia)

 Nested tables

 SQL: 1999 (2003) standards. Plus performance.

 XML/DBMS (2000s)

 Web and XML are merging

 Native support of XML through ORDBMS extension or native XML

DBMS

 Decision support system (DSS) (2000s)

 Data warehousing and OLAP

18

A Brief History of Database Systems

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Data stream management systems (2000s)

 Continuous query against data streams

 The era of big data (mid 2000-now):

 Big data: datasets that grow so large (terabytes to petabytes) that they

become awkward to work with traditional DBMS

 Parallel DBMSs continue to push the scale of data

 MapReduce dominates on Web data analysis

 “NoSQL” (not only SQL) is fast growing

19

A Brief History of Database Systems

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Stay updated

 http://db-engines.com/en/ranking 20

http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Stay updated

 http://db-engines.com/en/ranking 21

http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Brief History of DBMS Products
 First hierarchy DBMS: IBM Information Management System

(IMS)

 starting in 1966 for the Apollo program

 Still going strong over 40 years later

 Mainframe only

 IDMS (Integrated Database Management System) is a network

model based system

 The roots of IDMS go back to Dr. Charles Bachman's IDS

(Integrated Data Store) developed at GE

 Since 1989 the product has been owned by Computer

Associates, who renamed it as CA-IDMS

 Mainframe only
22

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Brief History of DBMS Products
 Two early RDBMS projects started and were operational in late

1970s:INGRES and System R

 INGRES (INteractive Graphics REtrieval System) started at UC

Berkeley, by Michael Stonebraker and Eugene Wong

 In the early 1980s, Ingres competed head-to-head with Oracle, but lost

market due to Oracle’s marketing and Ingres’ own proprietary QUEL

 Since the mid-1980s, Ingres has spawned into: Sybase, Microsoft SQL

Server, NonStop SQL, etc

 Postgres (Post Ingres) started in the mid-1980s, later evolved into

PostgreSQL

 In the 1990s Stonebraker commercialized Postgres as Illustra, later sold

to Informix (sold to IBM in 2001)

23

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Brief History of DBMS Products
 IBM System R was a research project at IBM San Jose Research

(now IBM Almaden Research) in the 1970s

 SQL/DS was IBM's first commercial DBMS for mainframe built

around SQL in early 1980s

 A little later, in 1983, IBM released DB2 on its MVS mainframe

platform

 IBM brought DB2 to other platforms (LUW) in 90s. DB2 renamed

as DB2 UDB z/OS, DB2 UDB LUW

 Larry Ellison and his friends started Software Development

Laboratories (SDL) in 1977, which developed the original version of

Oracle

 The name Oracle comes from the code-name of a CIA-funded project

Ellison had worked before
24

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL
 SQL: Structured Query Language Invented in 1974 by Donald

Chamberlin and Raymond Boyce for IBM

 Initially called SEQUEL, changed to SQL due to trademark issue

 In late 1970s, Relational Software, Inc. (now Oracle Corporation)

introduced the first commercially available implementation of SQL in

Oracle V2

 Multiple standard revisions and multiple flavors (implementations)

exist

25

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL Standard Revisions
 SEQUEL/Original SQL - 1974

 SQL86: ratification and acceptance of a formal SQL standard by ANSI

and ISO

 SQL2 (a.k.a. SQL92): still strictly relational, with new primitive data

types, operations and join types

 SQL3: working documents discussing new specs for OR systems, but

also for recursion, active rules, OLAP

 SQL:1999: added user defined types, etc

 SQL:2003: added XML-related features, etc

 SQL:2006: increased support for XML support for XQuery, an XML-

SQL interface standard

 SQL:2011: added temporal support

 And evolution continues…
26

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

NoSQL Systems

27

Category Data Model Example Databases

Key-Value (Global) collection of K-V pairs BerkeleyDB, LevelDB, Memcached, Project

Voldemort, Redis, Riak

Column Families Big table, column families Amazon SimpleDB, Cassandra, HBase,

Hypertable

Document Collections of K-V Collections CouchDB, MongoDB, OrientDB, RavenDB,

Terrastore

Graph Nodes, relations, K-V on both Apache Tinkerpop, FlockDB,

HerperGraphDB, Infinite Graph,

AllegroGraph, Neo4j, OrientDB

Search engines Inverted indexes, tries,

Information retrieval

Apache Lucene, Apache Solr, Elasticsearch

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Distributed DBMS: CAP

28

RDBMS

NoSQL (most)

Availability

Partition
Tolerance Consistency

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

record types arranged as a hierarchy

each type has a single parent

29

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

some problems:

 Information repeated:

 Schema#1: part info repeated for each supplier that

supplies the part

 Schema#2: supplier info repeated for each part

30

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

some problems:

 Existence depends on parent data

 Schema#1: what if there is a part not currently

supplied by anyone?

31

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

 DL/1 programming language for IMS: "record-at-a-time"

language: the programmer constructs an algorithm for

solving a query and IMS executes it

32

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Hierarchical model (~1968):

 Different underlying storage = different restrictions on

commands: heavy coupling between storage format used

(sequential/B-tree/hashed) and client application

 Different sets of data = different optimization opportunities
 even if the optimization is programmed by the programmer

33

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
Data Independence:

A Simple Idea: Applications should be insulated from

how data is structured and stored

 Logical data independence:

protection from changes in

the logical structure of data.

 Physical data independence:

protection from changes in

the physical structure of data.

34

Physical Schema

Conceptual Schema

View 1 View 2 View 3

DB

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS

Logical data independence:

 changes to physical/logical structure should not require changes

at the application level (ideally)

 in general, should not require expensive changes to apps

 Impossible to achieve in the hierarchical model, where:

 trees are difficult to reorganize

 the record-at-a-time language delegates the optimization to the

programmer

35

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Graph / Network model (CODASYL 1969):

 Schema arranged in a graph model

36

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Graph / Network model (CODASYL 1969):

 Instances

37

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Graph / Network model (CODASYL 1969):

 Improvement:

 entities can exist without their parents

 Limitations:

 still using the record-at-a-time DML language

 still no physical independence

 more difficult to program against a graph than a tree

 graphs are more complex: the whole graph must be loaded at once

(IMS trees could be loaded individually)

38

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Relational model (1970)

Ted Codd was motivated by the heavy maintenance

required by the IMS applications

data stored in tables (see next class)

High level, set oriented DML

underlying physical storage is up to vendors

39

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Entity Relationship (mid 1970s)

Proposed by Peter Chen

Relationships with attributes and multiplicities

 As a physical model: never caught on (little benefit)

 As a conceptual model: widely used for database schema design

because it offers a methodology for creating initial tables and some

normalization on E-R models can be done automatically

40

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Semantic data model (early 1980s)

View relations as classes

 multiple inheritance

 class-wide attributes

Vendors were more

concerned with

performance

Can be simulated

with relational

41

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 OO DBs (mid 1980s)

 Integrate data persistency into OO programming

languages

 extend a OO programming language (e.g., C++) with

database functionality to support data persistence

 initial work targeted towards engineering niche market (e.g.,

CAD)

 Persistent part p;

 Persistent int i;

 Did not go because vendors did not want change!

 42

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Object-Relational DBs (mid 1980s)

motivated by spatial queries: INGRES team had a

"haunting" interest in GIS (geographical information

system)
 B-trees are inefficient to solve such queries

 User defined data types (box) and operators (box intersects box, R-tree indexing)

 Major prototype: Postgres showed how to build a DBMS engine so new

types and functions can be plugged in

 Also Sybase contributed with stored procedures: user defined functions

for application logic, not just operators

 Postgres was commercialized by Illustra (acquired by Informix)

43

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Semi-structured era (~2000+)

 Schema Evolution / Schema "later": data is self describing

 Complex graph oriented data models

 Also, a Response to the growth of Web services and XML as a

language (same for JSON as Javascript)

44

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More on evolution of DBMS
 Semi-structured era (~2000+)

 Schema Evolution / Schema "later": data is self describing
 Relational DBMS have heavy-weight mechanisms to change schema (ALTER)

 XML and JSON as a data model:

 records can be hierarchical,

 records can reference to other records

 schema can be defined "later" in DTDs and XMLSchema

 XQuery is essentially an Object-Relational SQL

 OR DBMSs adapted to support XML

45

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Finally

46

Stop following me!

http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques

http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques

