SML

Paul Fodor
CSE260, Computer Science B: Honors
Stony Brook University

http://www.cs.stonybrook.edu/~cse260
Objectives

- Functional Programming
- Standard ML of New Jersey (SML)
- Dynamic Typing
- Function Definitions in SML
- Recursive Definitions
- Operators on integers and reals
- Tuples
- Polymorphic functions
- List Functions
- Definition by Patterns
- Higher-Order Functions
- Function Composition
- Currying (partial application)
- Lazy evaluation
- Mutually recursive functions
- Local declarations
- Nested recursions
- Tail recursion
- Records, Strings and char
- Beyond functional programming
Functional Programming

- *Function evaluation* is the basic concept for a programming paradigm that has been implemented in *functional programming languages*

- The language ML (“Meta Language”) was originally introduced in 1977 as part of a theorem proving system, and was intended for describing and implementing proof strategies in the Logic for Computable Functions (LCF) theorem prover (whose language, pplambda, a combination of the first-order predicate calculus and the simply typed polymorphic lambda calculus, had ML as its metalanguage)

- Standard ML of New Jersey (SML) is an implementation of ML
 - The basic mode of computation in SML is the use of the definition and application of functions
Install Standard ML

- Download from:
 - http://www.smlnj.org

- Start Standard ML:
 - Type `sml` from the shell (run command line in Windows)

- Exit Standard ML:
 - `Ctrl-Z` under Windows
 - `Ctrl-D` under Unix/Mac

- OR Use SML online:
 - https://sosml.org/editor
 - https://www.tutorialspoint.com/execute_smlnj_online.php
The basic cycle of SML activity has three parts:

- Read input from the user
- Evaluate it
- Print the computed value (or an error message)

This is called "Read–eval–print loop" (REPL)
First SML example

• SML prompt:
 -

• Simple example:
 - 3;

val it = 3 : int

• The first line contains the SML prompt, followed by an expression typed in by the user and ended by a semicolon

• The second line is SML’s response, indicating the value of the input expression and its type
SML has a number of built-in operators and data types. It provides the standard arithmetic operators

- \(3 + 2; \)

  ```sml```
  val it = 5 : int
  ```

The boolean values `true` and `false` are available, as are logical operators such as: `not` (negation), `andalso` (conjunction), and `orelse` (disjunction)

- `not(true);`

  ```sml```
  val it = false : bool
  ```

- `true andalso false;`

  ```sml```
  val it = false : bool
  ```
As part of the evaluation process, SML determines the type of the output value using methods of *type inference*.

Simple types include `int`, `real`, `bool`, and `string`.

One can also associate identifiers with values:

- `val five = 3+2;`
- `val five = 5 : int`

and thereby establish a new value binding:

- `five;`
- `val it = 5 : int`
Function Definitions in SML

• The general form of a function definition in SML is:

  ```sml
  fun <identifier> (<parameters>) = <expression>;
  ```

• For example,

  ```sml
  fun double(x) = 2*x;
  val double = fn : int -> int
  ```

 declares `double` as a function from integers to integers, i.e., of type `int \rightarrow int`

• Apply a function to an argument of the wrong type results in an error message:

  ```sml
  double(2.0);
  ```

 Error: operator and operand don’t agree ...
Function Definitions in SML

• The user may also explicitly indicate types:

 - fun max(x:int,y:int,z:int):int =

 if ((x>y) andalso (x>z)) then x
 else (if (y>z) then y else z);

 - max(3,2,2);

 - max(x:int,y:int,z:int):int =

 if ((x>y) andalso (x>z)) then x
 else (if (y>z) then y else z);

 - max(3,2,2);

 val max = fn : int * int * int -> int

 val it = 3 : int
Recursive Definitions

- The use of recursive definitions is a main characteristic of functional programming languages, and these languages encourage the use of recursion over iterative constructs such as while loops:

 - `fun factorial(x) = if x=0 then 1 else x*factorial(x-1);`

- The definition is used by SML to evaluate applications of the function to specific arguments:

 - `factorial(5);`
 `val it = 120 : int`
 `- factorial(10);`
 `val it = 3628800 : int`
Example: Greatest Common Divisor

- The greatest common divisor (gcd) of two positive integers can be defined recursively based on the following observations:

\[
gcd(n, n) = n,
\]
\[
gcd(m, n) = gcd(m - n, n), \text{ if } m > n,
\]
\[
gcd(m, n) = gcd(m, n - m), \text{ if } m < n.
\]

- These identities suggest the following recursive definition:

```plaintext
fun gcd(m,n):int = if m=n then n
    else if m>n then gcd(m-n,n)
    else gcd(m,n-m);
```

- Examples:

- \(\text{gcd}(12,30) \);
 \(\text{gcd}(1,20) \);
 \(\text{gcd}(125,56345) \);

- val it = 6 : int
- val it = 1 : int
- val it = 5 : int
Basic operators on the integers

<table>
<thead>
<tr>
<th>op</th>
<th>type</th>
<th>form</th>
<th>precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>int × int → int</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>−</td>
<td>int × int → int</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>*</td>
<td>int × int → int</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>div</td>
<td>int × int → int</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>mod</td>
<td>int × int → int</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>=</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><></td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><=</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>></td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>>=</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>~</td>
<td>int → int</td>
<td>prefix</td>
<td></td>
</tr>
</tbody>
</table>

- The infix operators associate to the left
- The operands are always all evaluated

unary operator minus is represented by ~
Basic operators on the reals

<table>
<thead>
<tr>
<th>op</th>
<th>type</th>
<th>form</th>
<th>precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>real × real → real</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>−</td>
<td>real × real → real</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>*</td>
<td>real × real → real</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>/</td>
<td>real × real → real</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td><</td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><=</td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>></td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>>=</td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>~</td>
<td>real → real</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs</td>
<td>real → real</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>Math.sqrt</td>
<td>real → real</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>Math.In</td>
<td>real → real</td>
<td>prefix</td>
<td></td>
</tr>
</tbody>
</table>
Basic operators on the reals

Equality for reals:

- `Real.==(1.0,1.0);`
 val it = true : bool

- `Real.==(1.0,2.0);`
 val it = false : bool
Type conversions

<table>
<thead>
<tr>
<th>op</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>real</td>
<td>int → real</td>
</tr>
<tr>
<td>ceil</td>
<td>real → int</td>
</tr>
<tr>
<td>floor</td>
<td>real → int</td>
</tr>
<tr>
<td>round</td>
<td>real → int</td>
</tr>
<tr>
<td>trunc</td>
<td>real → int</td>
</tr>
</tbody>
</table>

- `real(2) + 3.5 ;`
- `val it = 5.5 : real`
- `ceil(23.65) ;`
- `val it = 24 : int`
- `ceil(~23.65) ;`
- `val it = ~23 : int`
- `floor(23.65) ;`
- `val it = 23 : int`
More recursive functions

- fun exp(b,n) = if n=0 then 1.0 else b * exp(b,n-1);

val exp = fn : real * int -> real

- exp(2.0,10);

val it = 1024.0 : real
Tuples in SML

- In SML tuples are finite sequences of arbitrary but fixed length, where different components need not be of the same type

- `(1, "two")`

  ```sml```
  val it = (1,"two") : int * string
  ```

- `val t1 = (1,2,3);`

  ```sml```
  val t1 = (1,2,3) : int * int * int
  ```

- `val t2 = (4,(5.0,6));`

  ```sml```
  val t2 = (4,(5.0,6)) : int * (real * int)
  ```

- The components of a tuple can be accessed by applying the built-in functions `#i`, where `i` is a positive number

  ```sml```
  - #1(t1);
  val it = 1 : int
  - #2(t2);
  val it = (5.0,6) : real * int
  ```

If a function `#i` is applied to a tuple with fewer than `i` components, an error results.
Tuples in SML

- Functions using tuples should completely define the type of tuples, otherwise SML cannot detect the type, e.g., nth argument

```sml
fun firstThird(Tuple:'a * 'b * 'c):'a * 'c =
    (#1(Tuple), #3(Tuple));
val firstThird = fn : 'a * 'b * 'c -> 'a * 'c

- firstThird((1,"two",3));
val it = (1,3) : int * int
```

- Without types, we would get an error:

```sml
fun firstThird(Tuple) = (#1(Tuple), #3(Tuple));
stdIn: Error: unresolved flex record (need to know the names of ALL the fields in this context)
```
Polymorphic functions

- fun id x = x;
val id = fn : 'a -> 'a
- (id 1, id "two");
val it = (1,"two") : int * string
- fun fst(x,y) = x;
val fst = fn : 'a * 'b -> 'a
- fun snd(x,y) = y;
val snd = fn : 'a * 'b -> 'b
- fun switch(x,y) = (y,x);
val switch = fn : 'a * 'b -> 'b * 'a
Polymorphic functions

- 'a means "any type", while ' 'a means "any type that can be compared for equality" (see the `concat` function later which compares a polymorphic variable list with `[]`)
- There will be a "Warning: calling `polyEqual`" that means that you're comparing two values with polymorphic type for equality
 - Why does this produce a warning? Because it's less efficient than comparing two values of known types for equality
 - How do you get rid of the warning? By changing your function to only work with a specific type instead of any type
 - Should you do that or care about the warning? Probably not. In most cases having a function that can work for any type is more important than having the most efficient code possible, so you should just ignore the warning.
Lists in SML

- A list in SML is a finite sequence of objects, all of the same type:
 - `[1,2,3];
 val it = [1,2,3] : int list
 - `[true,false,true];
 val it = [true,false,true] : bool list
 - `[[1,2,3],[4,5],[6]];
 val it = [[1,2,3],[4,5],[6]] : int list list

- The last example is a list of lists of integers
Lists in SML

• All objects in a list must be of the **same type:**
 - `[1, [2]]`;
 Error: operator and operand don’t agree

• An empty list is denoted by one of the following expressions:
 - `[]`;
 val it = [] : 'a list
 - `nil`;
 val it = [] : 'a list

• Note that the type is described in terms of a type variable `'a`. Instantiating the type variable, by types such as `int`, results in (different) empty lists of corresponding types
 - `tl([1])`;
 val it = [] : int list
Operations on Lists

- SML provides various functions for manipulating lists
 - The function **hd** returns the first element of its argument list
 - `hd([1,2,3]);`
 - `hd([[1,2],[3]]);`
 - `val it = 1 : int`
 - `val it = [1,2] : int list`
 - Applying this function to the empty list will result in an error.
 - The function **tl** removes the first element of its argument lists, and returns the remaining list
 - `tl[1,2,3];`
 - `tl([[1,2],[3]]);`
 - `val it = [2,3] : int list`
 - `val it = [[3]] : int list list`
 - The application of this function to the empty list will also result in an error.
Operations on Lists

- Lists can be constructed by the (binary) function \(:: \) (read \textit{cons}) that adds its first argument to the front of the second argument.
 - \(5 :: [] \);
 - \(1 :: [2,3] \);

\[
\begin{align*}
\text{val it} &= [5] : \text{int list} \\
\text{val it} &= [1,2,3] : \text{int list} \\
\text{val it} &= [[1,2],[3],[4,5,6,7]] : \text{int list list}
\end{align*}
\]

- \([1] :: [2,3] \);

\textbf{IMPORTANT:} The arguments must be of the right type (such that the result is a list of elements of the \textit{same} type):
 - \([1] :: [2,3] \);

\textbf{Error: operator and operand don’t agree}
Operations on Lists

- :: is right associative:
 - `1::2::[]`;
 val it = [1,2] : int list
 - `1::(2::[])`;
 val it = [1,2] : int list

- Once a type is inferred even empty list cannot change the type:
 - `1::tl([true])`;
 Error: operator and operand don't agree [overload conflict]
 operator domain: [int ty] * [int ty] list
 operand: [int ty] * bool list
Lists can also be compared for equality:

- \([1,2,3]=\[1,2,3\];\)
 \text{val it = true : bool}

- \([1,2]=\[2,1\];\)
 \text{val it = false : bool}

- \text{tl[1] = [];}\)
 \text{val it = true : bool}
Defining List Functions

- **Recursion** is particularly useful for defining functions that process lists.

For example, consider the problem of defining an SML function that takes as arguments two lists of the same type and returns the *concatenated* list.

- `concat([1,2,3],[4,5,6]);`
 `val it = [1,2,3,4,5,6] : int list`

- `concat([[true,false],[true]]);`
 `[true,false,true] : bool list`
Defining List Functions

- In defining such list functions, it is helpful to keep in mind that a list is either
 - an empty list \([\]\) or
 - of the form \(\text{hd}(L) :: \text{tl}(L)\) if it contains at least an element
Concatenation

• In designing a function for concatenating two lists L_1 and L_2 we thus distinguish two cases, depending on the form of L_1:
 • If L_1 is an empty list $[]$, then concatenating $L_1 = []$ with L_2 yields just L_2.
 • If L_1 has at least 1 element, then concatenating L_1 with L_2 is a list of the form $\text{hd}(L_1) : : L_3$, where L_3 is the result of concatenating $\text{tl}(L_1)$ with L_2.
Concatenation

- fun concat(L1,L2)=if L1=[] then L2 else hd(L1)::concat(tl(L1),L2);
val concat = fn : ''a list * ''a list -> ''a list

• Applying the function yields the expected results:
 - concat([1,2],[3,4,5]);
 val it = [1,2,3,4,5] : int list
 - concat([], [1,2]);
 val it = [1,2] : int list
 - concat([1,2], []);
 val it = [1,2] : int list
Length

- The following function computes the length of its argument list:

```ml
fun length(L) = if L=nil then 0
  else 1 + length(tl(L));
val length = fn : ''a list -> int
  - length[1,2,3];
val it = 3 : int
  - length[[5,4,3],[2,1]]; 
val it = 2 : int
  - length[];
val it = 0 : int
```
Length

- How does it work?

 \[
 \text{length([true,false,true,false])} = 1 + \text{length([false,true,false])} = 1 + 1 + \text{length([true,false])} = 1 + 1 + 1 + \text{length([false])} = 1 + 1 + 1 + 1 + \text{length([[]])} = 1 + 1 + 1 + 1 + 0 = 4
 \]
Length

- A tail-recursive way to write length:
 - fun length_helper(L,P) = if L=[] then P
 else length_helper(tl(L), P+1);
 - fun length(L) = length_helper(L,0);
 - length([true,false,true,false]);

 = length_helper([true,false,true,false],0)
 = length_helper([false,true,false],1)
 = length_helper([true,false],2)
 = length_helper([false],3)
 = length_helper([],4)
 = 4
The following function doubles all the elements in its argument list (of integers):

- fun doubleall(L) = if L=[] then [] else (2*hd(L))::doubleall(tl(L))

val doubleall = fn : int list -> int list

- doubleall([1,3,5,7]);
val it = [2,6,10,14] : int list
Reversing a List

- fun reverse(L) = if L = nil then nil else concat(reverse(tl(L)), [hd(L)]);

val reverse = fn : ''a list -> ''a list

How does it work?

- reverse [1,2,3];
calls:
 - concat(reverse([2,3]), [1]);
...
 - concat([3,2], [1]);
val it = [3,2,1] : int list
Reversing a List

- Concatenation of lists (for which we gave a recursive definition) is actually a built-in operator in SML, denoted by the symbol @
 - We can use this operator in reversing:

```sml
fun reverse(L) = if L = nil then nil else reverse(tl(L)) @ [hd(L)];
val reverse = fn : ''a list -> ''a list
- reverse [1,2,3];
val it = [3,2,1] : int list
```
Reversing a List

fun reverse(L) =
if L = nil then nil
else concat(reverse(tl(L)), [hd(L)]);

Complexity analysis:

\[T(N) = T(N-1) + (N-1) = \]
\[reverse(tl(L)) \text{ concat} \]
\[= T(N-2) + (N-2) + (N-1) = \]
\[= 1 + 2 + 3 + \ldots + N-1 = N \times \frac{(N-1)}{2} \]

This method is not efficient: \(O(n^2) \)
Reversing a List

- This way (using an accumulator) is better: $O(n)$
- `fun reverse_helper(L, L2) =`

 `if L = nil then L2`

 `else reverse_helper(tl(L), hd(L)::L2);`

- `fun reverse(L) = reverse_helper(L, []);`

- `reverse [1,2,3];`
- `reverse_helper([[1,2,3], []]);`
- `reverse_helper([[2,3], [1]]);`
- `reverse_helper([[3], [2,1]]);`
- `reverse_helper([], [3,2,1]);`

$[3,2,1]$
Removing List Elements

- The following function removes all occurrences of its first argument from its second argument list.

```ml
fun remove (x, L) = if L = [] then []
  else if x = hd (L) then remove (x, tl (L))
  else hd (L) :: remove (x, tl (L));
```

```ml
define remove = fn : 'a * 'a list -> 'a list
- remove (1, [5, 3, 1]);
val it = [5, 3] : int list
- remove (2, [4, 2, 4, 2, 4, 2, 2]);
val it = [4, 4, 4] : int list
```
Removing Duplicates

- The remove function can be used in the definition of another function that removes all duplicate occurrences of elements from its argument list:

 - fun removedupl(L) =
 if (L=[])) then []
 else hd(L)::removedupl(remove(hd(L),tl(L)));

 - removedupl([3,2,4,6,4,3,2,3,4,3,2,1]);
 - val it = [3,2,4,6,1] : int list
Definition by Patterns

• In SML functions can also be defined via patterns.
 • The general form of such definitions is:

 fun <identifier>(<pattern1>) = <expression1>
 | <identifier>(<pattern2>) = <expression2>
 | ...
 | <identifier>(<patternK>) = <expressionK>

 where the identifiers, which name the function, are all the same, all
 patterns are of the same type, and all expressions are of the same type.

• Example:

 - fun reverse(nil) = nil
 | reverse(H::T) = reverse(T) @ [H];

 val reverse = fn : 'a list -> 'a list

 The patterns are inspected in order and the first match determines the value of the function.
fun member(H,L) =
 if L=[] then false
 else if H=hd(L) then true
 else member(H,tl(L));

OR with patterns:
fun member(H,[]) = false
 | member(H,H2::T2) =
 if (H=H2) then true
 else member(H,T2);

member(1,[1,2]); (* true *)
member(1,[2,1]); (* true *)
member(1,[2,3]); (* false *)
fun union(L1,L2) =
 if L1=[] then L2
 else if member(hd(L1),L2)
 then union(tl(L1),L2)
 else hd(L1)::union(tl(L1),L2);

or

fun union([],L2) = L2
 | union(H::T,L2) =
 if member(H,L2) then union(T,L2)
 else H::union(T,L2);

union([1,5,7,9],[2,3,5,10]);
 (* [1,7,9,2,3,5,10] *)
union([],[1,2]);
 (* [1,2] *)
union([1,2],[]);
 (* [1,2] *)
union([1,2],[1,2]);
 (* [1,2] *)
fun intersection(L1,L2) =
 if L1=[] then []
 else if member(hd(L1),L2)
 then hd(L1)::intersection(tl(L1),L2)
 else intersection(tl(L1),L2)

intersection([1,5,7,9],[2,3,5,10]);
(* [5] *)
Sets \cap with patterns

fun intersection([],L2) = []

| intersection(L1,[]) = []

| intersection(H::T,L2) =

 if member(H,L2)

 then H::intersection(T,L2)

 else intersection(T,L2);

Sets \cap with patterns
fun subset(L1,L2) = if L1=[] then true
 else if L2=[] then false
 else if member(hd(L1),L2)
 then subset(tl(L1),L2)
 else false;

subset([1,5,7,9],[2,3,5,10]); (* false *)
subset([5,2],[2,3,5,10]); (* true *)
fun subset([],L2) = true
| subset(L1,[]) = false
| subset(H::T,L2) =
 if member(H,L2)
 then subset(T,L2)
 else false;
Sets equal

fun setEqual(L1,L2) =
 subset(L1,L2) andalso subset(L2,L1);

setEqual([1,5,7],[7,5,1,2]); (* false *)
setEqual([1,5,7],[7,5,1]); (* true *)
fun minus(L1,L2) = if L1=[] then []
 else if member(hd(L1),L2)
 then minus(tl(L1),L2)
 else hd(L1)::minus(tl(L1),L2);

minus([1,5,7,9],[2,3,5,10]);
(* [1,7,9] *)
fun minus([],L2) = []
| minus(H::T,L2) =
 if member(H,L2)
 then minus(T,L2)
 else H::minus(T,L2);

minus([1,5,7,9],[2,3,5,10]);
(* [1,7,9] *)
fun product_one(X,L) = if L=[,] then []
 else (X,hd(L))::product_one(X,tl(L));

product_one(1,[2,3]);
(* [(1,2),(1,3)] *)

fun product(L1,L2) = if L1=[,] then []
 else concat(product_one(hd(L1),L2),
 product(tl(L1),L2));

product([1,5,7,9],[2,3,5,10]);
(* [(1,2),(1,3),(1,5),(1,10),(5,2),(5,3),(5,5),(5,10),(7,2),(7,3),...] *)
fun product_one(X, []) = []
 | product_one(X, H2 :: T2) =
 (X, H2) :: product_one(X, T2);

product_one(1, [2, 3]); (* [(1, 2), (1, 3)] *)

fun product([], L2) = []
 | product(L1, []) = []
 | product(H :: T, L2) =
 union(product_one(H, L2),
 product(T, L2));

product([1, 5, 7, 9], [2, 3, 5, 10]);
 (* [(1, 2), (1, 3), (1, 5), (1, 10), (5, 2),
 (5, 3), (5, 5), (5, 10), (7, 2), (7, 3), ...] *)
We want a function to compute the powerset of a set:

- `powerSet([1,2,3]);`
 `[[], [1], [2], [3], [1,2], [1,3], [2,3], [1,2,3]]`
- `powerSet([2,3]);`
 `[[], [2], [3], [2,3]]`

The recursive relation shows us that the powerset can be computed by computing the powerset of a tail and UNION it with the sets where the head is inserted in each subset in the powerset of the tail

\[
[[], [1], [2], [3], [1,2], [1,3], [2,3], [1,2,3]] = [[], [2], [3], [2,3]] \text{ UNION } \text{insert_all}(1, [[]], [[2], [3], [2,3]])
\]
\[
= [[], [2], [3], [2,3]] \text{ UNION } [[1], [1,2], [1,3], [1,2,3]]
\]
fun insert_all(E,L) =
 if L=[] then []
 else (E:::hd(L)) ::: insert_all(E,tl(L));

insert_all(1,[[],[2],[3],[2,3]]);
(* [[1], [1,2], [1,3], [1,2,3]] *)

fun powerSet(L) =
 if L=[] then [[]]
 else powerSet(tl(L)) @ (* concat *)
 insert_all(hd(L),powerSet(tl(L)));

powerSet([[]]; (* [[]] *)
powerSet([1,2,3]); (* [[]],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3] *)
powerSet([2,3]);(* [[]],[2],[3],[2,3]] *)
fun insert_all(E,[]) = []
 | insert_all(E,H2::T2) = (E::H2)::insert_all(E,T2);
insert_all(1,[],[2],[3],[2,3]);
 (* [[1], [1,2], [1,3], [1,2,3]] *)

fun powerSet([]) = [[]]
 | powerset(H::T) = powerSet(T) @
 insert_all(H,powerSet(T));

powerSet([]); (* [[]] *)
powerSet([1,2,3]); (* [[], [1], [2], [3], [1,2],
 [1,3], [2,3], [1,2,3]] *)
powerSet([2,3]);(* [[], [2], [3], [2,3]] *)
Higher-Order Functions

- In functional programming languages functions (called *first-class functions*) can be used as parameters or return value in definitions of other (called *higher-order*) functions.
 - The following function, `map`, applies its first argument (a function) to all elements in its second argument (a list of suitable type):

```
- fun map(f,L) = if L=[] then []
    else f(hd(L))::(map(f,tl(L)));
```

```
val map = fn : (''a -> 'b) * ''a list -> 'b list
```

- We may apply `map` with any function as argument:

```
- fun square(X) = (X:int)*X;
val square = fn : int -> int
- map(square,[2,3,4]);
val it = [4,9,16] : int list
```
McCarthy's 91 function

- McCarthy's 91 function:
 - fun mc91(N) = if N>100 then N-10
 else mc91(mc91(N+11))

val mc91 = fn : int -> int

- map mc91 [101, 100, 99, 98, 97, 96];
val it = [91,91,91,91,91,91,91] : int list
Anonymous functions:

- `map(fn X=>X+1, [1,2,3,4,5]);`
 val it = [2,3,4,5,6] : int list

- `fun incr(list) = map (fn X=>X+1, list);`
 val incr = fn : int list -> int list
 - `incr[1,2,3,4,5];`
 val it = [2,3,4,5,6] : int list
Filter = findall

• **Filter** function: keep in a list only the values that satisfy some logical condition/boolean function:

\[
\text{fun filter}(f, L) = \\
\quad \text{if } L = [] \text{ then } [] \\
\quad \text{else if } f(\text{hd } L) \\
\quad \quad \text{then } (\text{hd } L)::(\text{filter} (f, \text{tl } L)) \\
\quad \text{else } \text{filter}(f, \text{tl } L); \\
\text{val filter} = \text{fn} : ('a -> bool) * 'a list -> 'a list
\]

- \text{filter}((\text{fn } X \Rightarrow X>0), \ [-1,0,1,2,3,-2,4]); \\
\text{val it} = [1,2,3,4] : int list
Find (first)

- Pick only the first element of a list that satisfies a given predicate:

  ```ml
  fun myFind pred nil = raise Fail "No such element"
  | myFind pred (H::T) = 
    if pred H then H
    else myFind pred T;

  val myFind = fn : ('a -> bool) -> 'a list -> 'a

  - myFind (fn X => X > 0) [-1, -3, 5, 7];
    val it = 5 : int
  ```

  ```ml
  - myFind (fn X => X > 0.0) [-1.2, -3.4, 5.6, 7.8];
    val it = 5.6 : real
  ```
Reduce (aka. foldr)

- We can generalize the notion of recursion over lists as follows: all recursions have a base case, an iterative case, and a way of combining results:

 - fun reduce f B nil = B
 | reduce f B (H::T) = f(H, reduce f B T);

Note: This is called fold right (foldr) because the function is applied on returning.

- fun sumList aList = reduce (op +) 0 aList;
 val sumList = fn : int list -> int

 - sumList [1, 2, 3];
 val it = 6 : int
foldl

- fun foldl(f: 'a*'b->'b, Acc: 'b, L: ''a list):'b =
 if L=[] then Acc
 else foldl(f, f(hd(L),Acc), tl(L));

Note: This is called fold left (foldl) because the function is applied incrementally.

- fun sum(L:int list):int =
 foldl((fn (X,Acc) => Acc+X), 0, L);
- sum[1, 2, 3];
 val it = 6 : int

• foldl walks the list from left to right while evaluating f
• foldr evaluates f on the way back: f(H, reduce f B T)
foldr vs. foldl execution

- foldr:
 - `sumList [1, 2, 3];`
 - `1 + sumlist[2,3]`
 - `1 + 2 + sumlist[3]`
 - `1 + 2 + 3 + sumlist[]`
 - `1 + 2 + 3 + 0`
 - `1 + 2 + 3`
 - `1 + 5`
 - `6`

- foldl:
 - `sum 0 [1, 2, 3];`
 - `sum 1 [2, 3];`
 - `sum 3 [3];`
 - `sum 6 []`
 - `6`
Collect like in Java streams

- fun collect(Acc, combine, accept, nil) = accept(Acc)
 | collect(Acc, combine, accept, H::T) =
 collect(combine(Acc,H), combine, accept, T);
- fun average(aList) = collect((0,0),
 (fn ((total,count),X) => (total+X,count+1)),
 (fn (total,count) => real(total)/real(count)),
 aList);
- average [1, 2, 4];
val it = 2.333333333333333 : real

• it is like foldl, but it also applies an accept
 function at the end
Numerical integration

- Computation of $\int_{a}^{b} f(x) \, dx$ by the trapezoidal rule:

\[h = \frac{(b - a)}{n} \]

\[\text{Area} = h \times \left(\frac{f(a) + f(a+h)}{2} \right) \]

n intervals

(c) Paul Fodor (CS Stony Brook)
Numerical integration

- fun integrate (f,a,b,n) =
 if n <= 0 orelse b <= a then 0.0
 else (((b-a) / real n) * (f(a) + f(a+(b-a) / real n))) / 2.0 +
 integrate (f,a+(b-a) / real n),b,n-1);
val integrate = fn : (real → real) * real * real * int → real

- fun cube x:real = x * x * x ;
val cube = fn : real -> real

- integrate (cube , 0.0 , 2.0 , 10) ;
val it = 4.04 : real
Sum square sequence

- fun sum f N =
 if N = 0 then 0
 else f(N) + sum f (N-1);

val sum = fn : (int → int) → int → int

- sum (fn X => X * X) 3 ;
val it = 14 : int

because

f(3) + f(2) + f(1) + 0 = 9 + 4 + 1 + 0 = 14
Composition

- Composition is another example of a higher-order function:

```ml
fun comp(f,g)(X) = f(g(X));
val comp = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b
val h = comp(Math.sin, Math.cos);
val h = fn : real -> real
- h(0.25);
val it = 0.824270418114 : real
- Math.sin(Math.cos(0.25));
val it = 0.824270418114 : real

SAME WITH:
- val i = Math.sin o Math.cos;
  (* Composition "o" is predefined symbol *)
- i(0.25);
val it = 0.824270418114 : real
```
Permutations

- We want a function to return all permutations of a list:

  ```
  permutations([1,2,3]);
  val it = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],
            [3,2,1]] : int list list
  
  permutations([2,3]);
  val it = [[2,3],[3,2]] : int list list
  ```

- The recursive relation is to insert the head in every possible position in each permutation of the tail

  ```
  inserting 1 in [2,3] generates:
  [1,2,3], [2,1,3], [2,3,1]
  ```

  ```
  inserting 1 in [3,2] generates:
  [1,3,2], [3,1,2], [3,2,1]
  ```
Permutations

- fun interleave(X,[]) = [[X]]
 | interleave(X,H::T) =
 | (X::H::T)::((
 | map((fn L => H::L), interleave(X,T))));

- interleave(1,[]);
val it = [[1]] : int list list

- interleave(1,[3]);
val it = [[1,3],[3,1]] : int list list

- interleave(1,[2,3]);
val it = [[1,2,3],[2,1,3],[2,3,1]] : int list list
Permutations

- fun appendAll(nil) = nil
 | appendAll(H::T) = H @ (appendAll(T));
 flattens one level of the list

- appendAll([[1,2],[2,1]]);
 val it = [[1,2],[2,1]] : int list list

- fun permutations(nil) = [[]]
 | permutations(H::T) = appendAll(
 map((fn L => interleave(H,L)), permutations(T)));

- permutations([1,2,3]);
 val it = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]] : int list list
Permutations

Without higher-order functions:

fun insertAllAux(E,L,Prefix,Result) = if L=[] then Result@([Prefix @ [E]])
else insertAllAux(E,tl(L),Prefix@[hd(L)],Result@([Prefix@[E]@L]));

fun insertAll(E,L) = insertAllAux(E,L,[],[]);

insertAll(1,[2,3]);
[[1,2,3],[2,1,3],[2,3,1]]

fun insertOneThenAll(E,P) = if P=[] then []
else insertAll(E,hd(P)) @ insertOneThenAll(E,tl(P));

fun permutations(L) = if L=[] then [[]]
else insertOneThenAll(hd(L),permutations(tl(L)));

permutations([1,2]);
[[1,2],[2,1]]
permutations([1,2,3]);
[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
Currying = partial application

- fun sum A B = A + B;
val f = fn : int -> int -> int
val f = fn : int -> (int -> int)

- val incl1 = sum(1);
val incl1 = fn : int -> int

- incl1(3);
val it = 4 : int

- sum(1) (3);
val it = 4 : int
Currying = partial application

- fun f A B C = A+B+C;
val f = fn : int -> int -> int -> int
val f = fn : int -> (int -> (int -> int))
- val incl1 = f(1);
val incl1 = fn : int -> int -> int
val incl1 = fn : int -> (int -> int)
- val incl12 = incl1(2);
val incl12 = fn : int -> int
- incl12(3);
val it = 6 : int
Currying and **Lazy evaluation**

- fun mult X Y = if X = 0 then 0 else X * Y;

Eager evaluation (SML): reduce as much as possible before applying the function

\[
\text{mult (1-1) (3 div 0);}
\]

\[
\rightarrow (\text{fn} \ x \Rightarrow (\text{fn} \ y \Rightarrow \text{if} \ x = 0 \ \text{then} \ 0 \ \text{else} \ x \ast y)) \ (1-1) \ (3 \text{ div 0})
\]

\[
\rightarrow (\text{fn} \ x \Rightarrow (\text{fn} \ y \Rightarrow \text{if} \ x = 0 \ \text{then} \ 0 \ \text{else} \ x \ast y)) \ 0 \ (3 \text{ div 0})
\]

\[
\rightarrow (\text{fn} \ y \Rightarrow \text{if} \ 0 = 0 \ \text{then} \ 0 \ \text{else} \ 0 \ast y) \ (3 \text{ div 0})
\]

\[
\rightarrow (\text{fn} \ y \Rightarrow \text{if} \ 0 = 0 \ \text{then} \ 0 \ \text{else} \ 0 \ast y) \ \text{error}
\]

\[
\rightarrow \ \text{error}
\]

Lazy evaluation (Haskell): delay evaluation until it is necessary.

\[
\text{mult (1-1) (3 div 0);}
\]

\[
\rightarrow (\text{fn} \ x \Rightarrow (\text{fn} \ y \Rightarrow \text{if} \ x = 0 \ \text{then} \ 0 \ \text{else} \ x \ast y)) \ (1-1) \ (3 \text{ div 0})
\]

\[
\rightarrow (\text{fn} \ y \Rightarrow \text{if} \ (1-1) = 0 \ \text{then} \ 0 \ \text{else} \ (1-1) \ast y) \ (3 \text{ div 0})
\]

\[
\rightarrow \text{if} \ (1-1) = 0 \ \text{then} \ 0 \ \text{else} \ (1-1) \ast (3 \text{ div 0})
\]

\[
\rightarrow \text{if} \ 0 = 0 \ \text{then} \ 0 \ \text{else} \ (1-1) \ast (3 \text{ div 0})
\]

\[
\rightarrow 0
\]
Currying and Lazy evaluation

- Argument evaluation as late as possible (possibly never)
 - Evaluation only when indispensable for a reduction
- Property: If the eager evaluation of expression e gives n_1 and the lazy evaluation of e gives n_2 then $n_1 = n_2$
 - But, lazy evaluation gives a result more often than eager evaluation

- SML uses eager evaluation (like C and Java)
- Some languages, most notably Haskell, use only lazy evaluation
Mutually recursive function definitions

- fun odd(n) = if n=0 then false
 else even(n-1)

and

 even(n) = if n=0 then true
 else odd(n-1);

val odd = fn : int -> bool
val even = fn : int -> bool
- even(1);
val it = false : bool
- odd(0);
val it = false : bool
- odd(1);
val it = true : bool
Sorting

- **Merge-Sort:**
 - To sort a list L:
 - first split L into two disjoint sublists (of about equal size),
 - then (recursively) sort the sublists, and
 - finally merge the (now sorted) sublists
 - It requires suitable functions for
 - splitting a list into two sublists AND
 - merging two sorted lists into one sorted list
Splitting

- We split a list by applying two functions, *take* and *skip*, which extract alternate elements; respectively, the elements at odd-numbered positions and the elements at even-numbered positions.

- The definitions of the two functions mutually depend on each other, and hence provide an example of mutual recursion, as indicated by the SML-keyword *and*:

  ```sml
  fun take(L) = 
    if L = nil then nil 
    else hd(L)::skip(tl(L))

  and

  skip(L) = 
    if L=nil then nil 
    else take(tl(L));

  val take = fn : `'a list -> `'a list
  val skip = fn : `'a list -> `'a list

  take[1,2,3,4,5,6,7];
  val it = [1,3,5,7] : int list
  skip[1,2,3,4,5,6,7];
  val it = [2,4,6] : int list
  ```
Merging

- Merge pattern definition:

  ```
  fun merge([],R) = R
  | merge(L,[]) = L
  | merge(H::T,H2::T2) =
      if (H:int)<H2 then H::merge(T,H2::T2)
      else H2::merge(H::T,T2);
  ```

  ```
  val merge = fn : int list * int list -> int list
  ```

- merge([1,5,7,9],[2,3,6,8,10]);
- merge([],[1,2]);
- merge([1,2],[]);
- merge([1,2],[1,2]);
- merge([1,2],[1,2]);
Merge Sort

- fun sort(L) =
 if L=[] orelse tl(L)=[] then L
 else merge(sort(take(L)),sort(skip(L)));
val sort = fn : int list -> int list

- sort[5,3,6,2,1,9];
val it = [1,2,3,5,6,9] : int list
Local declarations

- fun gcd(N,M) = if N=M then N
 else if N>M then gcd(M,N-M)
 else gcd(N,M-N);
- fun fraction (n,d) =
 let val k = gcd (n,d)
 in
 (n div k , d div k)
 end;

- The identifier \(k \) is local to the expression after `in`
 - Its binding exists only during the evaluation of this expression
 - All other declarations of \(k \) are hidden during the evaluation of this expression
- fraction(10,25);
 val it = (2,5) : int * int
Sorting with comparison

• How to sort a list of elements of type α?

 • We need the comparison function/operator for elements of type α!

  ```
  fun sort order [ ] = [ ]
  | sort order [x] = [x]
  | sort order T =
    let fun merge [ ] M = M
    | merge L [ ] = L
    | merge (L as H::T) (M as H2::T2) =
      if order(H,H2) then H::merge T M
      else H2::merge L T2
    in merge (sort order T2) (sort order zs) end;
  ```

  ```
  sort (op >) [5.1, 3.4, 7.4, 0.3, 4.0] ;
  ```

 val it = [7.4, 5.1, 4.0, 3.4, 0.3] : real list
Sorting with comparison

- fun split_helper(L: 'a list, Acc:'a list * 'a list) : 'a list * 'a list =
 if L=[] then Acc
 else split_helper(tl(L), (#2(Acc), (hd(L)) :: #1(Acc)));

- fun split(L) = split_helper(L, ([][], [][]));
- split([1,2,3,4,5,6]);
 split([1,2,3,4,5,6])
 split_helper([1,2,3,4,5,6], ([],[]))
 split_helper([2,3,4,5,6], ([],[1]))
 split_helper([3,4,5,6], ([1],[2]))
 split_helper([4,5,6], ([2],[3,1]))
 split_helper([5,6], ([3,1],[4,2]))
 split_helper([6], ([4,2],[5,3,1]))
 split_helper([], ([5,3,1],[6,4,2]))
 ([5,3,1],[6,4,2])
fun split(L) = if L=[] or else tl(L)=[] then (L,[])
else let val (L1,L2) = split(tl(tl(L)))
in (hd(L)::L1, hd(tl(L))::L2) end;

split([1,2,3,4,5,6])
([5,3,1],[6,4,2])
Quicksort

- C.A.R. Hoare, in 1962: Average-case running time: $\Theta(n \log n)$
- fun sort [] = []

| sort (H::T) =
| let val (S,B) = partition (H,T)
| in (sort S) @ (H :: (sort B))
| end;

Double recursion and no tail-recursion

- fun partition (p,[]) = ([],[])
| partition (p,H::T) =
| let val (S,B) = partition (p,T)
| in if H < p then (H::S,B) else (S,H::B)
| end
Nested recursion

For $m, n \geq 0$:

$$\text{acker}(0, m) = m+1$$

$$\text{acker}(n, 0) = \text{acker}(n-1, 1) \text{ for } n > 0$$

$$\text{acker}(n, m) = \text{acker}(n-1, \text{acker}(n, m-1)) \text{ for } n, m > 0$$

- fun acker 0 m = m+1
 | acker n 0 = acker (n-1) 1
 | acker n m = acker (n-1) (acker n (m-1));

It is guaranteed to end because of lexicographic order:

$$(n', m') < (n, m) \text{ iff } n' < n \text{ or } (n' = n \text{ and } m' < m)$$
Nested recursion

- **Knuth's up-arrow operator** \uparrow^n (invented by Donald Knuth):

 $a \uparrow^1 b = a^b$

 $a \uparrow^n b = a \uparrow^{n-1} (b \uparrow^{n-1} b)$ for $n > 1$

 - fun opKnuth n a b = opKnuth (n-1) a (opKnuth (n-1) b b);

 - opKnuth 2 3.0 3.0 ;
 val it = 7.62559748499E12 : real
 - opKnuth 3 3.0 3.0 ;
 ! Uncaught exception: Overflow;

- **Graham's number** (also called the “largest” number):

 - opKnuth 63 3.0 3.0 ;
Tail recursion

- fun length [] = 0
 | length (H::T) = 1 + length T;

- The recursive call of length is nested in an expression: during the evaluation, all the terms of the sum are stored, hence the memory consumption for expressions & bindings is proportional to the length of the list!

 length [5,8,4,3]
 -> 1 + length [8,4,3]
 -> 1 + (1 + length [4,3])
 -> 1 + (1 + (1 + length [3]))
 -> 1 + (1 + (1 + (1 + length []))))
 -> 1 + (1 + (1 + (1 + 0)))
 -> 1 + (1 + (1 + 1))
 -> 1 + (1 + 2)
 -> 1 + 3
 -> 4
Tail recursion

- `fun lengthAux [] acc = acc |
 lengthAux (H::T) acc = lengthAux T (acc+1);`
- `fun length L = lengthAux L 0;`
- `length [5,8,4,3];`
 -> `lengthAux [5,8,4,3] 0`
 -> `lengthAux [8,4,3] (0+1)`
 -> `lengthAux [8,4,3] 1`
 -> `lengthAux [4,3] (1+1)`
 -> `lengthAux [4,3] 2`
 -> `lengthAux [3] (2+1)`
 -> `lengthAux [3] 3`
 -> `lengthAux [] (3+1)`
 -> `lengthAux [] 4`
 -> 4

- **Tail recursion**: recursion is the outermost operation
 - **Space complexity**: *constant* memory consumption for expressions & bindings (SML can use the same stack frame/activation record)
 - **Time complexity**: (still) one traversal of the list
Optional: SML Extras: Records

- Records
- Strings and char
Records

- Records are structured data types of heterogeneous elements that are labeled
 - \{x=2, y=3\};
 - The order does not matter:
 - \{make="Toyota", model="Corolla", year=2017, color="silver"\}
 = \{model="Corolla", make="Toyota", color="silver", year=2017\};

val it = true : bool

- fun full_name\{first:string, last:string, age:int, balance:real\}:string =
 first ^ " " ^ last;
 (* ^ is the string concatenation operator *)

val full_name=fn:{age:int, balance:real, first:string, last:string} -> string
string and char

- "a";
val it = "a" : string
- #"a";
val it = #"a" : char
- explode("ab");
val it = [#"a",#"b"] : char list
- implode([#"a",#"b"]);
val it = "ab" : string
- "abc" ^ "def" = "abcdef";
val it = true : bool
- size ("abcd");
val it = 4 : int
string and char

- `String.sub("abcde",2);`
 `val it = #"c" : char`
- `substring("abcdefgij",3,4);`
 `val it = "defg" : string`
- `concat ["AB"," ","CD"];`
 `val it = "AB CD" : string`
- `str(#"x");`
 `val it = "x" : string`
Functional programming in SML

- Covered fundamental elements:
 - Evaluation by reduction of expressions
 - Recursion
 - Polymorphism via type variables
 - Strong typing
 - Type inference
 - Pattern matching
 - Higher-order functions
 - Tail recursion
Beyond functional programming

- **Relational programming** (aka logic programming)
 - For which triples does the **append** relation hold?

```prolog
append([], L, L).
append([H|T], L, [H|T2]) :-
    append(T, L, T2).
?- append([1,2], [3], X).
Yes
X = [1,2,3]
?- append([1,2], X, [1,2,3]).
X = [3]
?- append(X, Y, [1,2,3]).
X = [], Y = [1,2,3];
X = [1], Y = [2,3];
...
X = [1,2,3], Y = [];
```

- No differentiation between arguments and results!
Logic programming

- *Backtracking* mechanism to enumerate all the possibilities
- *Unification* mechanism, as a generalization of pattern matching
Beyond functional programming

• **Constraint Processing:**
 • Constraint Satisfaction Problems (CSPs)
 • Variables: X_1, X_2, \ldots, X_n
 • Domains of the variables: D_1, D_2, \ldots, D_n
 • Constraints on the variables: examples: $3 \cdot X_1 + 4 \cdot X_2 \leq X_4$
 • What is a solution?
 • An assignment to each variable of a value from its domain, such that all the constraints are satisfied

• **Objectives:**
 • Find a solution
 • Find all the solutions
 • Find an optimal solution, according to some cost expression on the variables
Beyond functional programming

• Example: The n-Queens Problem:
 • How to place n queens on an n \times n chessboard such that no queen is threatened?
 • Variables: X_1, X_2, \ldots, X_n (one variable for each column)
 • Domains of the variables: D_i = \{1, 2, \ldots, n\} (the rows)
 • Constraints on the variables:
 • No two queens are in the same column: this is impossible by the choice of the variables!
 • No two queens are in the same row: X_i \neq X_j, for each i \neq j
 • No two queens are in the same diagonal: | X_i - X_j | \neq | i - j |, for each i \neq j
 • Number of candidate solutions: n^n

• Exhaustive Enumeration
 • *Generation* of possible values of the variables.
 • *Test* of the constraints.

• Optimization:
 • Where to place a queen in column k such that it is compatible with r_{k+1}, \ldots, r_n?
 • Eliminate possible locations as we place queens
Beyond functional programming

- Applications:
 - Scheduling
 - Planning
 - Transport
 - Logistics
 - Games
 - Puzzles

- Complexity
 - Generally these problems are NP-complete with exponential complexity
Conclusion

• Conclusion for this course
 • That is all!
 • I hope that this course has sparked a lot of ideas and encourages you to exercise programming
• Thank you!