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Objectives
 Functional Programming

 Standard ML of New Jersey (SML)

 Dynamic Typing

 Function Definitions in SML

 Recursive Definitions

 Operators on integers and reals

 Tuples

 Polymorphic functions

 List Functions

 Definition by Patterns

 Higher-Order Functions

 Function Composition

 Currying (partial application)

 Lazy evaluation

 Mutually recursive functions

 Local declarations

 Nested recursions

 Tail recursion

 Records, Strings and char

 Beyond functional programming
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Functional Programming 
 Function evaluation is the basic concept for a programming 

paradigm that has been implemented in functional programming 

languages

 The language ML (“Meta Language”) was originally introduced in 

1977 as part of a theorem proving sT2tem, and was intended for 

describing and implementing proof strategies in the Logic for 

Computable Functions (LCF) theorem prover (whose language, 

pplambda, a combination of the first-order predicate calculus and 

the simply typed polymorphic lambda calculus, had ML as its 

metalanguage)

 Standard ML of New Jersey (SML) is an implementation of ML

 The basic mode of computation in SML is the use of the definition 

and application of functions
3
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Install Standard ML
 Download from:

 http://www.smlnj.org

 Start Standard ML:

 Type sml from the shell (run command line in Windows)

 Exit Standard ML:

 Ctrl-Z under Windows

 Ctrl-D under Unix/Mac

 OR Use SML online:

 https://sosml.org/editor

 https://www.tutorialspoint.com/execute_smlnj_online.php
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Standard ML
The basic cycle of SML activity has 

three parts:

Read input from the user

Evaluate it

Print the computed value (or an error 

message)

This is called "Read–eval–print loop" 

(REPL)
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First SML example
 SML prompt: 

-

 Simple example:

- 3;

val it = 3 : int

 The first line contains the SML prompt, followed by 

an expression typed in by the user and ended by a 

semicolon

 The second line is SML’s response, indicating the value

of the input expression and its type
6
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Interacting with SML
 SML has a number of built-in operators and data types.

 it provides the standard arithmetic operators

- 3+2;

val it = 5 : int

 The boolean values true and false are available, as 

are logical operators such as: not (negation), 

andalso (conjunction), and orelse (disjunction)

- not(true);

val it = false : bool

- true andalso false;

val it = false : bool7
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Types in SML
 As part of the evaluation process, SML determines the 

type of the output value using methods of type 

inference.

 Simple types include int, real, bool, and string

 One can also associate identifiers with values

- val five = 3+2;

val five = 5 : int

and thereby establish a new value binding

- five;

val it = 5 : int
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Function Definitions in SML
 The general form of a function definition in SML is:

fun <identifier> (<parameters>) = <expression>;

 For example,

- fun double(x) = 2*x;

val double = fn : int -> int

declares double as a function from integers to integers, i.e., of 

type int → int

 Apply a function to an argument of the wrong type results in 

an error message:

- double(2.0);

Error: operator and operand don’t agree ...
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Function Definitions in SML
 The user may also explicitly indicate types:

- fun max(x:int,y:int,z:int):int =

if ((x>y) andalso (x>z)) then x

else (if (y>z) then y else z);

val max = fn : int * int * int -> int

- max(3,2,2);

val it = 3 : int
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Recursive Definitions
 The use of recursive definitions is a main characteristic of functional 

programming languages, and these languages encourage the use of 

recursion over iterative constructs such as while loops:

- fun factorial(x) = if x=0 then 1

else x*factorial(x-1);

val factorial = fn : int -> int

 The definition is used by SML to evaluate applications of the function to 

specific arguments:

- factorial(5);

val it = 120 : int

- factorial(10);

val it = 3628800 : int
11
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Example: Greatest Common Divisor
 The greatest common divisor (gcd) of two positive integers can 

defined recursively based on the following observations:

gcd(n, n) = n,

gcd(m, n) = gcd(m − n, n), if m > n,

gcd(m, n) = gcd(m, n - m), if m < n.

 These identities suggest the following recursive definition:

- fun gcd(m,n):int = if m=n then n

else if m>n then gcd(m-n,n)

else gcd(m,n-m);

val gcd = fn : int * int -> int

- gcd(12,30); - gcd(1,20); - gcd(125,56345);

val it = 6 : int val it = 1 : int val it = 5 : int
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Basic operators on the integers

 The infix operators associate to the left

 The operands are alwaT2 all evaluated
13
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Basic operators on the reals
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Basic operators on the reals

15

Equality for reals:

- Real.==(1.0,1.0);

val it = true : bool

- Real.==(1.0,2.0);

val it = false : bool
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Type conversions

- real(2) + 3.5 ;

val it = 5.5 : real

- ceil(23.65) ;

val it = 24 : int

- ceil(~23.65) ;

val it = ~2̃3 : int

- foor(23.65) ;

val it = 23 : int
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More recursive functions
- fun exp(b,n) = if n=0 then 1.0 

else b * exp(b,n-1);

val exp = fn : real * int -> real

- exp(2.0,10);

val it = 1024.0 : real
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Tuples in SML
 In SML tuples are finite sequences of arbitrary but fixed length, 

where different components need not be of the same type

- (1, "two");

val it = (1,"two") : int * string

- val t1 = (1,2,3);

val t1 = (1,2,3) : int * int * int

- val t2 = (4,(5.0,6));

val t2 = (4,(5.0,6)) : int * (real * int)

 The components of a tuple can be accessed by applying the built-in 

functions #i, where i is a positive number

- #1(t1);

val it = 1 : int

- #2(t2);

val it = (5.0,6) : real * int18

If a function #i is applied to a tuple with 

fewer than i components, an error results.
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Tuples in SML
 Functions using tuples should completely define the type of tuples, 

otherwise SML cannot detect the type, e.g., nth argument  

- fun firstThird(Tuple:'a * 'b * 'c):'a * 'c = 

(#1(Tuple), #3(Tuple));

val firstThird = fn : 'a * 'b * 'c -> 'a * 'c

- firstThird((1,"two",3));

val it = (1,3) : int * int

 Without types, we would get an error:

- fun firstThird(Tuple) = (#1(Tuple), #3(Tuple));

stdIn: Error: unresolved flex record (need to know the 

names of ALL the fields in this context)
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Polymorphic functions
- fun id x = x;

val id = fn : 'a -> 'a 

- (id 1, id "two");

val it = (1,"two") : int * string

- fun fst(x,y) = x;

val fst = fn : 'a * 'b -> 'a 

- fun snd(x,y) = y;

val snd = fn : 'a * 'b -> 'b 

- fun switch(x,y) = (y,x);

val switch = fn : 'a * 'b -> 'b * 'a 

20
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Polymorphic functions
 'a means "any type", while ''a means "any type that can be 

compared for equality" (see the concat function later which 

compares a polymorphic variable list with [])

 There will be a "Warning: calling polyEqual" that means that 

you're comparing two values with polymorphic type for 

equality

 Why does this produce a warning? Because it's less efficient 

than comparing two values of known types for equality
 How do you get rid of the warning? By changing your function to 

only work with a specific type instead of any type
 Should you do that or care about the warning? Probably not. In most cases 

having a function that can work for any type is more important than having 

the most efficient code possible, so you should just ignore the warning.

21
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Lists in SML
 A list in SML is a finite sequence of objects, all of the 

same type:

- [1,2,3];

val it = [1,2,3] : int list

- [true,false,true];

val it = [true,false,true] : bool list

- [[1,2,3],[4,5],[6]];

val it = [[1,2,3],[4,5],[6]] : 

int list list

The last example is a list of lists of integers

22
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 All objects in a list must be of the same type:

- [1,[2]];

Error: operator and operand don’t agree

 An empty list is denoted by one of the following expressions:

- [];

val it = [] : ’a list

- nil;

val it = [] : ’a list

 Note that the type is described in terms of a type variable ’a. 

Instantiating the type variable, by types such as int, results in 

(different) empty lists of corresponding types
- tl([1]);

val it = [] : int list23

Lists in SML 
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Operations on Lists
 SML provides various functions for manipulating lists

 The function hd returns the first element of its argument list

- hd([1,2,3]);

val it = 1 : int

- hd[[1,2],[3]];

val it = [1,2] : int list

Applying this function to the empty list will result in an error.

 The function tl removes the first element of its argument lists, and 

returns the remaining list

- tl[1,2,3];

val it = [2,3] : int list

- tl([[1,2],[3]]);

val it = [[3]] : int list list

 The application of this function to the empty list will also result in an 

error
24
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 Lists can be constructed by the (binary) function :: (read 

cons) that adds its first argument to the front of the second 

argument. 
- 5::[];

val it = [5] : int list

- 1::[2,3];

val it = [1,2,3] : int list

- [1,2]::[[3],[4,5,6,7]];

val it = [[1,2],[3],[4,5,6,7]] : int list list

 IMPORTANT: The arguments must be of the right type (such 

that the result is a list of elements of the same type):
- [1]::[2,3];

Error: operator and operand don’t agree

25

Operations on Lists
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 :: is right associative: 
- 1::2::[];

val it = [1,2] : int list

- 1::(2::[]);

val it = [1,2] : int list

 Once a type is inferred even empty list cannot change the 

type: 
- 1::tl([true]);

Error: operator and operand don't agree [overload 

conflict]

operator domain: [int ty] * [int ty] list

operand:         [int ty] * bool list

26
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 Lists can also be compared for equality:
- [1,2,3]=[1,2,3];

val it = true : bool

- [1,2]=[2,1];

val it = false : bool

- tl[1] = [];

val it = true : bool

27

Operations on Lists
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Defining List Functions
 Recursion is particularly useful for defining functions that 

process lists

 For example, consider the problem of defining an SML 

function that takes as arguments two lists of the same type and 

returns the concatenated list.

- concat([1,2,3],[4,5,6]);

val it = [1,2,3,4,5,6] : int list

- concat([true,false],[true]);

[true,false,true] : bool list

28
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Defining List Functions
 In defining such list functions, it is helpful to keep 

in mind that a list is either

– an empty list [] or

– of the form hd(L)::tl(L) if it 

contains at least an element

29



(c) Paul Fodor (CS Stony Brook)

Concatenation
 In designing a function for concatenating two 

lists L1 and L2 we thus distinguish two cases, 

depending on the form of L1:

If L1 is an empty list [], then concatenating 

L1=[] with L2 yields just L2.

If L1 has at least 1 element, then concatenating 

L1 with L2 is a list of the form hd(L1)::L3, 

where L3 is the result of concatenating tl(L1)

with L2. 

30
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Concatenation
- fun concat(L1,L2)=if L1=[] then L2

else hd(L1)::concat(tl(L1),L2);

val concat = fn : ’’a list * ’’a list -> ’’a list

 Applying the function yields the expected results:

- concat([1,2],[3,4,5]);

val it = [1,2,3,4,5] : int list

- concat([],[1,2]);

val it = [1,2] : int list

- concat([1,2],[]);

val it = [1,2] : int list

31
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Length
 The following function computes the length of its argument list:

- fun length(L) = if L=nil then 0

else 1 + length(tl(L));

val length = fn : ’’a list -> int

- length[1,2,3];

val it = 3 : int

- length[[5,4,3],[2,1]];

val it = 2 : int

- length[];

val it = 0 : int
32
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Length
How does it work?

- length([true,false,true,false]);

= 1+ length([false,true,false])

= 1+ 1+ length([true,false])

= 1+ 1+ 1+length([false])

= 1+ 1+ 1+ 1+ length([])

= 1+ 1+ 1+ 1+ 0

= 4

33
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Length
 A tail-recursive way to write length:

- fun length_helper(L,P) = if L=[] then P

else length_helper(tl(L), P+1);

- fun length(L) = length_helper(L,0);

- length([true,false,true,false]);

=length_helper([true,false,true,false],0)

=length_helper([false,true,false],1)

=length_helper([true,false],2)

=length_helper([false],3)

=length_helper([],4)

= 4

34
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 The following function doubles all the elements in its argument 

list (of integers):

- fun doubleall(L) = if L=[] then []

else (2*hd(L))::doubleall(tl(L));

val doubleall = fn : int list -> int list

- doubleall([1,3,5,7]);

val it = [2,6,10,14] : int list

35

doubleall
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Reversing a List
- fun reverse(L) = if L = nil then nil

else concat(reverse(tl(L)),[hd(L)]);

val reverse = fn : ’’a list -> ’’a list

How does it work?
- reverse [1,2,3]; 

calls:

- concat(reverse([2,3]), [1]);

…

- concat([3,2], [1]);

val it = [3,2,1] : int list

36
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Reversing a List
Concatenation of lists (for which we gave a 

recursive definition) is actually a built-in operator 

in SML, denoted by the symbol @
 We can use this operator in reversing:

- fun reverse(L) =

if L = nil then nil

else reverse(tl(L)) @ [hd(L)];

val reverse = fn : ’’a list -> ’’a list

- reverse [1,2,3];

val it = [3,2,1] : int list
37
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Reversing a List
- fun reverse(L) =

if L = nil then nil

else concat(reverse(tl(L)),[hd(L)]);

Complexity analT2is:

T(N) = T(N-1)     + (N-1) = 

reverse(tl(L))  concat

= T(N-2) + (N-2) + (N-1) =

= 1+ 2 + 3+ … + N-1 = N * (N-1)/2

This method is not efficient: O(n2)

38
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Reversing a List
This way (using an accumulator) is better: O(n)

- fun reverse_helper(L,L2) =

if L = nil then L2

else reverse_helper(tl(L),hd(L)::L2);

- fun reverse(L) = reverse_helper(L,[]);

- reverse [1,2,3];

- reverse_helper([1,2,3],[]);

- reverse_helper([2,3],[1]);

- reverse_helper([3],[2,1]);

- reverse_helper([],[3,2,1]);

[3,2,1]
39



(c) Paul Fodor (CS Stony Brook)

Removing List Elements
 The following function removes all occurrences of its first 

argument from its second argument list 

- fun remove(x,L) = if L=[] then []

else if x=hd(L)then remove(x,tl(L))

else hd(L)::remove(x,tl(L));

val remove = fn : ’’a * ’’a list -> ’’a list

- remove(1,[5,3,1]);

val it = [5,3] : int list

- remove(2,[4,2,4,2,4,2,2]);

val it = [4,4,4] : int list

40
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Removing Duplicates
 The remove function can be used in the definition of another 

function that removes all duplicate occurrences of elements 

from its argument list:

- fun removedupl(L) =

if (L=[]) then []

else hd(L)::removedupl(remove(hd(L),tl(L)));

val removedupl = fn : ’’a list -> ’’a list

- removedupl([3,2,4,6,4,3,2,3,4,3,2,1]);

val it = [3,2,4,6,1] : int list

41
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Definition by Patterns
 In SML functions can also be defined via patterns.

 The general form of such definitions is:

fun <identifier>(<pattern1>) = <expression1>

| <identifier>(<pattern2>) = <expression2>

| ...

| <identifier>(<patternK>) = <expressionK>;

where the identifiers, which name the function, are all the same, all 

patterns are of the same type, and all expressions are of the same type. 

 Example:

- fun reverse(nil) = nil

| reverse(H::T) = reverse(T) @ [H];

val reverse = fn : ’a list -> ’a list

42

The patterns are inspected in order and the first match determines the value of the function.
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Sets with lists in SML 
fun member(H,L) =

if L=[] then false

else if H=hd(L) then true

else member(H,tl(L));

OR with patterns:

fun member(H,[]) = false

| member(H,H2::T2) = 

if (H=H2) then true

else member(H,T2);

member(1,[1,2]); (* true *)

member(1,[2,1]); (* true *)

member(1,[2,3]); (* false *)

43
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fun union(L1,L2) = 

if L1=[] then L2

else if member(hd(L1),L2) 

then union(tl(L1),L2)

else hd(L1)::union(tl(L1),L2);

or

fun union([],L2) = L2

| union(H::T,L2) =

if member(H,L2) then union(T,L2)

else H::union(T,L2);

union([1,5,7,9],[2,3,5,10]);

(* [1,7,9,2,3,5,10] *)

union([],[1,2]); (* [1,2] *)

union([1,2],[]); (* [1,2] *)

44
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fun intersection(L1,L2) = 

if L1=[] then []

else if member(hd(L1),L2) 

then hd(L1)::intersection(tl(L1),L2)

else intersection(tl(L1),L2);

intersection([1,5,7,9],[2,3,5,10]);

(* [5] *)

45

Sets Intersection (∩)
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fun intersection([],L2) = []

| intersection(L1,[]) = []

| intersection(H::T,L2) =

if member(H,L2) 

then H::intersection(T,L2)

else intersection(T,L2);

46

Sets ∩ with patterns 
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fun subset(L1,L2) = if L1=[] then true

else if L2=[] then false

else if member(hd(L1),L2) 

then subset(tl(L1),L2)

else false;

subset([1,5,7,9],[2,3,5,10]);(* false *)

subset([5,2],[2,3,5,10]); (* true *)

47

Sets subset 



(c) Paul Fodor (CS Stony Brook)

fun subset([],L2) = true

| subset(L1,[]) = false

| subset(H::T,L2) = 

if member(H,L2) 

then subset(T,L2)

else false;

48

Sets subset patterns
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fun setEqual(L1,L2) = 

subset(L1,L2) andalso subset(L2,L1);

setEqual([1,5,7],[7,5,1,2]);(* false *)

setEqual([1,5,7],[7,5,1]); (* true *)

49

Sets equal
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fun minus(L1,L2) = if L1=[] then []

else if member(hd(L1),L2) 

then minus(tl(L1),L2)

else hd(L1)::minus(tl(L1),L2);

minus([1,5,7,9],[2,3,5,10]);

(* [1,7,9] *)

50

Set difference 
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fun minus([],L2) = []

| minus(H::T,L2) =

if member(H,L2) 

then minus(T,L2)

else H::minus(T,L2);

minus([1,5,7,9],[2,3,5,10]);

(* [1,7,9] *)

51

Set difference patterns
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fun product_one(X,L) = if L=[] then []

else (X,hd(L))::product_one(X,tl(L));

product_one(1,[2,3]);

(* [(1,2),(1,3)] *)

fun product(L1,L2) = if L1=[] then []

else concat(product_one(hd(L1),L2),

product(tl(L1),L2));

product([1,5,7,9],[2,3,5,10]);

(* [(1,2),(1,3),(1,5),(1,10),(5,2),

(5,3),(5,5),(5,10),(7,2),(7,3),...] *)

52

Sets Cartesian product 
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fun product_one(X,[]) = []

| product_one(X,H2::T2) = 

(X,H2)::product_one(X,T2);

product_one(1,[2,3]);  (* [(1,2),(1,3)] *)

fun product([],L2) = []

| product(L1,[]) = []

| product(H::T,L2) =

union(product_one(H,L2),

product(T,L2));

product([1,5,7,9],[2,3,5,10]);

(* [(1,2),(1,3),(1,5),(1,10),(5,2),

(5,3),(5,5),(5,10),(7,2),(7,3),...] *)

53

Sets Cartesian product 
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 We want a function to compute the powerset of a set:
- powerSet([1,2,3]); 

[[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

- powerSet([2,3]);

[[],[2],[3],[2,3]]

 The recursive relation shows us that the powerset can be computed by 

computing the powerset of a tail and UNION it with the sets where the 

head is inserted in each subset in the powerset of the tail

[[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

= [[],[2],[3],[2,3]] UNION 

insert_all(1, [[],[2],[3],[2,3]])

= [[],[2],[3],[2,3]] UNION 

[[1],[1,2],[1,3],[1,2,3]])

Sets Powerset  
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fun insert_all(E,L) =

if L=[] then []

else (E::hd(L)) :: insert_all(E,tl(L));

insert_all(1,[[],[2],[3],[2,3]]);

(* [ [1], [1,2], [1,3], [1,2,3] ] *)

fun powerSet(L) =

if L=[] then [[]]

else powerSet(tl(L)) @ (* concat *)

insert_all(hd(L),powerSet(tl(L)));

powerSet([]); (* [[]] *)

powerSet([1,2,3]); (* [[],[1],[2],[3],[1,2],     

[1,3],[2,3],[1,2,3]] *)

powerSet([2,3]);(* [[],[2],[3],[2,3]] *)

Sets Powerset  
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fun insert_all(E,[]) = []

| insert_all(E,H2::T2) = (E::H2)::insert_all(E,T2);

insert_all(1,[[],[2],[3],[2,3]]);

(* [ [1], [1,2], [1,3], [1,2,3] ] *)

fun powerSet([]) = [[]]

| powerset(H::T) = powerSet(T) @

insert_all(H,powerSet(T));

powerSet([]); (* [[]] *)

powerSet([1,2,3]); (* [[],[1],[2],[3],[1,2],     

[1,3],[2,3],[1,2,3]] *)

powerSet([2,3]);(* [[],[2],[3],[2,3]] *)

Sets Powerset patterns
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Higher-Order Functions
 In functional programming languages functions (called first-class 

functions) can be used as parameters or return value in definitions of 

other (called higher-order) functions

 The following function, map, applies its first argument (a function) to all elements in 

its second argument (a list of suitable type):

- fun map(f,L) = if L=[] then []

else f(hd(L))::(map(f,tl(L)));
val map = fn : (’’a -> ’b) * ’’a list -> ’b list    OR

- fun map(f,[]) = []

| map(f,H::T) = f(H)::map(f,T); 

 We may apply map with any function as argument:

- fun square(X) = (X:int)*X;

val square = fn : int -> int

- map(square,[2,3,4]);

val it = [4,9,16] : int list57
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McCarthy's 91 function
 McCarthy's 91 function:

- fun mc91(N) = if N>100 then N-10 

else mc91(mc91(N+11));  

val mc91 = fn : int -> int

- map mc91 [101, 100, 99, 98, 97, 96];

val it = [91,91,91,91,91,91] : int list 
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Higher-Order Functions
Anonymous functions:

- map(fn X=>X+1, [1,2,3,4,5]);

val it = [2,3,4,5,6] : int list 

- fun incr(list) = map (fn X=>X+1, list);

val incr = fn : int list -> int list 

- incr[1,2,3,4,5];

val it = [2,3,4,5,6] : int list
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Filter = findall
 Filter function: keep in a list only the values that 

satisfy some logical condition/boolean function:

- fun filter(f,L) =

if L=[] then []

else if f(hd L)

then (hd L)::(filter (f, tl L))

else filter(f, tl L);

val filter = fn : ('a -> bool) * 'a list -> 'a list 

- filter((fn X => X>0), [~1,0,1,2,3,~2,4]);

val it = [1,2,3,4] : int list

60



(c) Paul Fodor (CS Stony Brook)

Find (first)
 Pick only the first element of a list that satisfies a given predicate:

- fun myFind pred nil = raise Fail "No such element"

| myFind pred (H::T) =

if pred H then H 

else myFind pred T;

val myFind = fn : ('a -> bool) -> 'a list -> 'a

- myFind (fn X => X > 0) [~1, ~3, 5, 7];

val it = 5 : int

- myFind (fn X => X > 0.0) [~1.2, ~3.4, 5.6, 7.8];

val it = 5.6 : real
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Reduce (aka. foldr)
 We can generalize the notion of recursion over lists as 

follows: all recursions have a base case, an iterative case, 

and a way of combining results:
- fun reduce f B nil = B

| reduce f B (H::T) = f(H, reduce f B T);

- fun sumList aList = reduce (op +) 0 aList;

val sumList = fn : int list -> int

- sumList [1, 2, 3];

val it = 6 : int

62

Note: This is called fold right (foldr) because the function is applied on returning.
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foldl
- fun foldl(f: ''a*'b->'b, Acc: 'b, 

L: ''a list):'b =

if L=[] then Acc

else foldl(f, f(hd(L),Acc), tl(L));

- fun sum(L:int list):int = 

foldl((fn (X,Acc) => Acc+X), 0, L);

- sum[1, 2, 3];

val it = 6 : int

 foldl walks the list from left to right while evaluating f

 foldr evaluates f on the way back: f(H, reduce f B T)

63

Note: This is called fold left (foldl) because the function is applied incrementally.
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foldr vs. foldl execution
- foldr:

- sumList [1, 2, 3];

- 1 + sumlist[2,3]

- 1 + 2 + sumlist[3]

- 1 + 2 + 3 + sumlist[]

- 1 + 2 + 3 + 0

- 1 + 2 + 3

- 1 + 5

- 6

- foldl:

- sum 0 [1, 2, 3];

- sum 1 [2, 3];

- sum 3 [3];

- sum 6 []

- 6
64
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Collect like in Java streams
- fun collect(Acc, combine, accept, nil) = accept(Acc)

| collect(Acc, combine, accept, H::T) = 

collect(combine(Acc,H), combine, accept, T);

- fun average(aList) = collect((0,0), 

(fn ((total,count),X) => (total+X,count+1)), 

(fn (total,count) => real(total)/real(count)), 

aList);

- average [1, 2, 4];

val it = 2.33333333333 : real

 it is like foldl, but it also applies an accept

function at the end
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Numerical integration
 Computation of ׬𝑎

𝑏
𝑓 𝑥 𝑑𝑥 by the trapezoidal rule:

n intervals

h = (b - a) / n
66
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Numerical integration
- fun integrate (f,a,b,n) =

if n <= 0 orelse b <= a then 0.0

else (((b−a) / real n)

* ( f(a) + f(a+(b−a) / real n)) ) / 2.0 + 

integrate (f,a+((b−a) / real n),b,n−1);

val integrate = fn : (real → real) ∗ real ∗ real ∗ int 

→ real

- fun cube x:real = x * x * x ;

val cube = fn : real -> real

- integrate ( cube , 0.0 , 2.0 , 10 ) ;

val it = 4.04 : real
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Sum square sequence
- fun sum f N =

if N = 0 then 0

else f(N) + sum f (N-1);

val sum = fn : (int → int) → int → int 

- sum (fn X => X ∗ X) 3 ;

val it = 14 : int

because

f(3) + f(2) + f(1) + 0 = 9 + 4 + 1 + 0 = 14
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Composition
 Composition is another example of a higher-order function:

- fun comp(f,g)(X) = f(g(X));

val comp = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b 

- val h = comp(Math.sin, Math.cos);

val h = fn : real -> real 

- h(0.25);

val it = 0.824270418114 : real 

- Math.sin(Math.cos(0.25));

val it = 0.824270418114 : real 

SAME WITH:

- val i = Math.sin o Math.cos; 

(*  Composition "o" is predefined symbol  *)

- i(0.25);

val it = 0.824270418114 : real
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Permutations
 We want a function to return all permutations of a list:

- permutations([1,2,3]);

val it = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],  

[3,2,1]] : int list list

- permutations([2,3]);

val it = [[2,3],[3,2]] : int list list

 The recursive relation is to insert the head in every possible 

position in each permutation of the tail

 inserting 1 in [2,3] generates: 

[1,2,3],[2,1,3],[2,3,1]

 inserting 1 in [3,2] generates: 

[1,3,2],[3,1,2],[3,2,1]
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Permutations
- fun interleave(X,[]) = [[X]]

| interleave(X,H::T) =

(X::H::T)::(

map((fn L => H::L), interleave(X,T)));

- interleave(1,[]);

val it = [[1]] : int list list

- interleave(1,[3]);

val it = [[1,3],[3,1]] : int list list

- interleave(1,[2,3]);

val it = [[1,2,3],[2,1,3],[2,3,1]] : int list list
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Permutations
- fun appendAll(nil) = nil

| appendAll(H::T) = H @ (appendAll(T));

flattens one level of the list

- appendAll([[[1,2]],[[2,1]]]);

val it = [[1,2],[2,1]] : int list list

- fun permutations(nil) = [[]]

| permutations(H::T) = appendAll(

map((fn L => interleave(H,L)), permutations(T)));

- permutations([1,2,3]);

val it = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],  

[3,2,1]] : int list list
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Permutations
Without higher-order functions:

fun insertAllAux(E,L,Prefix,Result) = if L=[] then Result@([Prefix @ [E]])

else insertAllAux(E,tl(L),Prefix@[hd(L)],Result@([Prefix@[E]@L]));

fun insertAll(E,L) = insertAllAux(E,L,[],[]);

insertAll(1,[2,3]);

[[1,2,3],[2,1,3],[2,3,1]]

fun insertOneThenAll(E,P) = if P=[] then []

else insertAll(E,hd(P)) @ insertOneThenAll(E,tl(P));

fun permutations(L) = if L=[] then [[]]

else insertOneThenAll(hd(L),permutations(tl(L)));

permutations([1,2]);

[[1,2],[2,1]]

permutations([1,2,3]);

[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
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Currying = partial application
- fun sum A B = A + B;

val f = fn : int -> int -> int

val f = fn : int -> (int -> int)

- val inc1 = sum(1);

val inc1 = fn : int -> int

- inc1(3);

val it = 4 : int

- sum(1) (3);

val it = 4 : int
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Currying = partial application
- fun f A B C = A+B+C;

val f = fn : int -> int -> int -> int

val f = fn : int -> (int -> (int -> int))

- val inc1 = f(1);

val inc1 = fn : int -> int -> int

val inc1 = fn : int -> (int -> int)

- val inc12 = inc1(2);

val inc12 = fn : int -> int

- inc12(3);

val it = 6 : int
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Currying and Lazy evaluation
- fun mult X Y = if X = 0 then 0 else X * Y;

Eager evaluation (SML): reduce as much as possible before applying the 

function

mult (1−1) (3 div 0);

-> (fn x => (fn y => if x = 0 then 0 else x ∗ y)) (1−1) (3 div 0)

-> (fn x => (fn y => if x = 0 then 0 else x ∗ y)) 0 (3 div 0)

-> (fn y => if 0 = 0 then 0 else 0 ∗ y) (3 div 0)

-> (fn y => if 0 = 0 then 0 else 0 ∗ y) error

-> error

Lazy evaluation (Haskell): delay evaluation until it is necessary. 

mult (1−1) (3 div 0);

-> (fn x => (fn y => if x = 0 then 0 else x ∗ y)) (1−1) (3 div 0)

-> (fn y => if (1−1) = 0 then 0 else (1−1) ∗ y) (3 div 0)

-> if (1−1) = 0 then 0 else (1−1) ∗ (3 div 0)

-> if 0 = 0 then 0 else (1−1) ∗ (3 div 0)

-> 076
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Currying and Lazy evaluation
 Argument evaluation as late as possible (possibly never) 

 Evaluation only when indispensable for a reduction 

 Property: If the eager evaluation of expression e gives n1

and the lazy evaluation of e gives n2 then n1 = n2

 But, lazy evaluation gives a result more often than eager evaluation

 SML uses eager evaluation (like C and Java)

 Some languages, most notably Haskell, use only lazy 

evaluation
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- fun odd(n) = if n=0 then false 

else even(n-1)

and

even(n) = if n=0 then true 

else odd(n-1);

val odd = fn : int -> bool

val even = fn : int -> bool 

- even(1);

val it = false : bool

- odd(0);

val it = false : bool

- odd(1);

val it = true : bool
78

Mutually recursive function 

definitions
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Sorting
Merge-Sort:

To sort a list L:

 first split L into two disjoint sublists (of about equal size),

 then (recursively) sort the sublists, and

 finally merge the (now sorted) sublists

 It requires suitable functions for

 splitting a list into two sublists AND

 merging two sorted lists into one sorted list
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Splitting
 We split a list by applying two functions, take and skip, which extract alternate 

elements; respectively, the elements at odd-numbered positions and the elements at even-

numbered positions 

 The definitions of the two functions mutually depend on each other, and hence provide an 

example of mutual recursion, as indicated by the SML-keyword and:

- fun take(L) =

if L = nil then nil

else hd(L)::skip(tl(L))

and

skip(L) =

if L=nil then nil

else take(tl(L));

val take = fn : ’’a list -> ’’a list

val skip = fn : ’’a list -> ’’a list

- take[1,2,3,4,5,6,7];

val it = [1,3,5,7] : int list

- skip[1,2,3,4,5,6,7];  

val it = [2,4,6] : int list
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Merging
 Merge pattern definition: 

- fun merge([],R) = R

| merge(L,[]) = L

| merge(H::T,H2::T2) =

if (H:int)<H2 then H::merge(T,H2::T2)

else H2::merge(H::T,T2);

val merge = fn : int list * int list -> int list

- merge([1,5,7,9],[2,3,6,8,10]);

val it = [1,2,3,5,6,7,8,9,10] : int list

- merge([],[1,2]);

val it = [1,2] : int list

- merge([1,2],[]);

val it = [1,2] : int list
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Merge Sort
- fun sort(L) =

if L=[] orelse tl(L)=[] then L

else merge(sort(take(L)),sort(skip(L)));

val sort = fn : int list -> int list

- sort[5,3,6,2,1,9];

val it = [1,2,3,5,6,9] : int list
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Local declarations
- fun gcd(N,M) = if N=M then N

else if N>M then gcd(M,N-M)

else gcd(N,M-N);

- fun fraction (n,d) =

let val k = gcd (n,d)
in

( n div k , d div k )

end;

 The identifier k is local to the expression after in
 Its binding exists only during the evaluation of this 

expression 

 All other declarations of k are hidden during the evaluation 

of this expression 
- fraction(10,25);

val it = (2,5) : int * int
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Sorting with comparison
 How to sort a list of elements of type α? 

 We need the comparison function/operator for elements of type α!
- fun sort order [ ] = [ ]

| sort order [x] = [x]

| sort order T =

let fun merge [ ] M = M

| merge L [ ] = L

| merge (L as H::T) (M as H2::T2) =

if order(H,H2) then H::merge T M 

else H2::merge L T2

val (T2,zs) = split T

in merge (sort order T2) (sort order zs) end;

- sort (op >) [5.1, 3.4, 7.4, 0.3, 4.0] ;

val it = [7.4,5.1,4.0,3.4,0.3] : real list
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Sorting with comparison
- fun split_helper(L: ''a list, Acc:''a list * ''a list)

:''a list * ''a list = 

if L=[] then Acc

else split_helper(tl(L), (#2(Acc), (hd(L)) :: #1(Acc)));

- fun split(L) = split_helper(L, ([], []));

- split([1,2,3,4,5,6]);

split([1,2,3,4,5,6])

split_helper([1,2,3,4,5,6], ([],[]))

split_helper([2,3,4,5,6], ([],[1]))

split_helper([3,4,5,6], ([1],[2]))

split_helper([4,5,6], ([2],[3,1]))

split_helper([5,6], ([3,1],[4,2]))

split_helper([6], ([4,2],[5,3,1]))

split_helper([], ([5,3,1],[6,4,2]))

([5,3,1],[6,4,2])
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Sorting with comparison
- fun split(L) = if L=[] orelse tl(L)=[] then (L,[])

else let val (L1,L2) = split(tl(tl(L)))

in (hd(L)::L1, hd(tl(L))::L2) end;

split([1,2,3,4,5,6])

([5,3,1],[6,4,2])
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Quicksort 
 C.A.R. Hoare, in 1962: Average-case running time: Θ(n log n)

- fun sort [ ] = [ ]

| sort (H::T) =

let val (S,B) = partition (H,T)

in (sort S) @ (H :: (sort B))

end;

Double recursion and no tail-recursion

- fun partition (p,[ ]) = ([ ],[ ])

| partition (p,H::T) =

let val (S,B) = partition (p,T)

in if H < p then (H::S,B) else (S,H::B)

end
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Nested recursion
For m, n ≥ 0:

acker(0,m) = m+1

acker(n,0) = acker(n−1, 1) for n > 0

acker(n,m) = acker(n−1, acker(n,m−1)) for n,m>0

- fun acker 0 m = m+1

| acker n 0 = acker (n−1) 1

| acker n m = acker (n−1) (acker n (m−1));

It is guaranteed to end because of lexicographic order:

(n',m') < (n,m) iff n' < n or (n'=n and m'< m)
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Nested recursion
 Knuth's up-arrow operator ↑n (invented by Donald Knuth): 

a ↑1 b = ab

a ↑n b = a ↑n−1 (b ↑n−1 b) for n > 1

- fun opKnuth 1 a b = Math.pow (a,b)

| opKnuth n a b = opKnuth (n−1) a 

(opKnuth (n−1) b b);

- opKnuth 2 3.0 3.0 ;

val it = 7.62559748499E12 : real

- opKnuth 3 3.0 3.0 ;

! Uncaught exception: Overflow;

 Graham’s number (also called the “largest” number):

- opKnuth 63 3.0 3.0 ;
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Tail recursion
- fun length [ ] = 0

| length (H::T) = 1 + length T;

 The recursive call of length is nested in an expression: during the 

evaluation, all the terms of the sum are stored, hence the memory 

consumption for expressions & bindings is proportional to the length 

of the list!
length [5,8,4,3]

-> 1 + length [8,4,3]

-> 1 + (1 + length [4,3])

-> 1 + (1 + (1 + length [3]))

-> 1 + (1 + (1 + (1 + length [ ])))

-> 1 + (1 + (1 + (1 + 0)))

-> 1 + (1 + (1 + 1))

-> 1 + (1 + 2)

-> 1 + 3

-> 4
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Tail recursion
- fun lengthAux [ ] acc = acc 

| lengthAux (H::T) acc = lengthAux T (acc+1);

- fun length L = lengthAux L 0;

- length [5,8,4,3];

-> lengthAux [5,8,4,3] 0

-> lengthAux [8,4,3] (0+1)

-> lengthAux [8,4,3] 1

-> lengthAux [4,3] (1+1)

-> lengthAux [4,3] 2

-> lengthAux [3] (2+1)

-> lengthAux [3] 3

-> lengthAux [ ] (3+1)

-> lengthAux [ ] 4

-> 4

 Tail recursion: recursion is the outermost operation 
 Space complexity: constant memory consumption for expressions & bindings 

(SML can use the same stack frame/activation record)

 Time complexity: (still) one traversal of the list 
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Optional: SML Extras: Records

92

 Records

 Strings and char
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Records
 Records are structured data types of heterogeneous elements that are labeled

- {x=2, y=3};

 The order does not matter:

- {make="Toyota", model="Corolla", year=2017, 

color="silver"} 

= {model="Corolla", make="Toyota", color="silver", 

year=2017};

val it = true : bool

- fun full_name{first:string,last:string, 

age:int,balance:real}:string =

first ^ " " ^ last; 

(* ^ is the string concatenation operator *)

val full_name=fn:{age:int, balance:real, first:string, 

last:string} -> string
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string and char
- "a";

val it = "a" : string

- #"a";

val it = #"a" : char

- explode("ab");

val it = [#"a",#"b"] : char list

- implode([#"a",#"b"]);

val it = "ab" : string

- "abc" ^ "def" = "abcdef";

val it = true : bool

- size ("abcd");

val it = 4 : int
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string and char
- String.sub("abcde",2);

val it = #"c" : char

- substring("abcdefghij",3,4);

val it = "defg" : string

- concat ["AB"," ","CD"];

val it = "AB CD" : string

- str(#"x");

val it = "x" : string
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Functional programming in SML

Covered fundamental elements:
Evaluation by reduction of expressions

Recursion

Polymorphism via type variables

Strong typing

Type inference

Pattern matching

Higher-order functions

Tail recursion
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Beyond functional programming
 Relational programming (aka logic programming) 

 For which triples does the append relation hold?
append([],L,L).

append([H|T],L,[H|T2]) :-

append(T,L,T2).

?- append ([1,2], [3], X).

Yes

X = [1,2,3]

?- append ([1,2], X, [1,2,3]).

X = [3]

?- append (X, Y, [1,2,3]).

X = [], Y = [1,2,3];

X = [1], Y = [2,3];

...

X = [1,2,3], Y = [];

 No differentiation between arguments and results!
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Logic programming
 Backtracking mechanism to enumerate all the possibilities 

 Unification mechanism, as a generalization of pattern 

matching
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Beyond functional programming
 Constraint Processing:

 Constraint Satisfaction Problems (CSPs)
 Variables: X1, X2, . . . , Xn

 Domains of the variables: D1, D2, . . . , Dn

 Constraints on the variables: examples: 3 · X1 + 4 · X2 ≤ X4

 What is a solution?

 An assignment to each variable of a value from its domain, such 

that all the constraints are satisfied

 Objectives:

 Find a solution

 Find all the solutions

 Find an optimal solution, according to some cost expression on the 

variables
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Beyond functional programming
 Example: The n-Queens Problem:

 How to place n queens on an n × n chessboard such that no queen is threatened?

 Variables: X1, X2, . . . , Xn (one variable for each column)

 Domains of the variables: Di = {1, 2, . . . , n} (the rows)

 Constraints on the variables:

 No two queens are in the same column: this is impossible by the choice of the 

variables!

 No two queens are in the same row: Xi != Xj, for each i != j

 No two queens are in the same diagonal:| Xi − Xj| != | i − j |, for each i != j

 Number of candidate solutions: nn

 Exhaustive Enumeration 
 Generation of possible values of the variables. 

 Test of the constraints. 

 Optimization:
 Where to place a queen in column k such that it is compatible with rk+1, . . . , rn?

 Eliminate possible locations as we place queens
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Beyond functional programming
 Applications: 

 Scheduling 

 Planning 

 Transport 

 Logistics 

 Games 

 Puzzles

 Complexity 
 Generally these problems are NP-complete with exponential 

complexity  
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Conclusion
 Conclusion for this course

 That is all!

 I hope that this course has sparked a lot of ideas and 

encourages you to exercise programming

 Thank you!
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