Functional Programming

- *Function evaluation* is the basic concept for a programming paradigm that has been implemented in *functional programming languages*

- The language ML (“Meta Language”) was originally introduced in 1977 as part of a theorem proving system, and was intended for describing and implementing proof strategies in the Logic for Computable Functions (LCF) theorem prover (whose language, pplambda, a combination of the first-order predicate calculus and the simply typed polymorphic lambda calculus, had ML as its metalanguage)

- Standard ML of New Jersey (SML) is an implementation of ML

 - The basic mode of computation in SML is the use of the definition and application of functions
Install Standard ML

• Download from:
 • http://www.smlnj.org

• Start Standard ML:
 • Type `sml` from the shell (run command line in Windows)

• Exit Standard ML:
 • `Ctrl-Z` under Windows
 • `Ctrl-D` under Unix/Mac
Standard ML

- The basic cycle of SML activity has three parts:
 - read input from the user
 - evaluate it
 - print the computed value (or an error message)
First SML example

- SML prompt:
-
- Simple example:
- 3;

val it = 3 : int

- The first line contains the SML prompt, followed by an expression typed in by the user and ended by a semicolon

- The second line is SML’s response, indicating the value of the input expression and its type
Interacting with SML

- SML has a number of built-in operators and data types.
 - it provides the standard arithmetic operators
 - 3+2;
 - val it = 5 : int

- The boolean values \texttt{true} and \texttt{false} are available, as are logical operators such as: \texttt{not} (negation), \texttt{andalso} (conjunction), and \texttt{orelse} (disjunction)
 - not(true);
 - val it = false : bool
 - true andalso false;
 - val it = false : bool
Types in SML

- As part of the evaluation process, SML determines the type of the output value using methods of *type inference*.
- Simple types include `int`, `real`, `bool`, and `string`.
- One can also associate identifiers with values
 - `val five = 3+2;
 val five = 5 : int`
 and thereby establish a new value binding
 - `five;
 val it = 5 : int`
Function Definitions in SML

- The general form of a function definition in SML is:
  ```sml
  fun <identifier> (<parameters>) = <expression>;
  ```

- For example,
  ```sml
  fun double(x) = 2*x;
  val double = fn : int -> int
  ```
 declares `double` as a function from integers to integers, i.e., of type `int → int`

- Apply a function to an argument of the wrong type results in an error message:
  ```sml
  double(2.0);
  Error: operator and operand don’t agree ...
  ```
The user may also explicitly indicate types:

- fun max(x:int,y:int,z:int):int = if ((x>y) andalso (x>z)) then x else (if (y>z) then y else z);

val max = fn : int * int * int -> int

- max(3,2,2);

val it = 3 : int
Recursive Definitions

- The use of recursive definitions is a main characteristic of functional programming languages, and these languages encourage the use of recursion over iterative constructs such as while loops:

 - fun factorial(x) = if x=0 then 1
 else x*factorial(x-1);

 val factorial = fn : int -> int

- The definition is used by SML to evaluate applications of the function to specific arguments:

 - factorial(5);
 val it = 120 : int

 - factorial(10);
 val it = 3628800 : int
Example: Greatest Common Divisor

- The greatest common divisor (gcd) of two positive integers can be defined recursively based on the following observations:

\[
gcd(n, n) = n, \\
gcd(m, n) = gcd(n, m), \text{ if } m < n, \text{ and} \\
gcd(m, n) = gcd(m - n, n), \text{ if } m > n.
\]

- These identities suggest the following recursive definition:

```plaintext
- fun gcd(m,n):int = if m=n then n else if m>n then gcd(m-n,n) else gcd(m,n-m);

val gcd = fn : int * int -> int
- gcd(12,30);  - gcd(1,20);  - gcd(125,56345);

val it = 6 : int  val it = 1 : int  val it = 5 : int
```
Basic operators on the integers

<table>
<thead>
<tr>
<th>op</th>
<th>type</th>
<th>form</th>
<th>precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>int × int → int</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>−</td>
<td>int × int → int</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>*</td>
<td>int × int → int</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>div</td>
<td>int × int → int</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>mod</td>
<td>int × int → int</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>=</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><></td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><=</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>></td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>>=</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>~</td>
<td>int → int</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>abs</td>
<td>int → int</td>
<td>prefix</td>
<td></td>
</tr>
</tbody>
</table>

- The infix operators associate to the left
- The operands are always all evaluated
Basic operators on the reals

<table>
<thead>
<tr>
<th>op</th>
<th>type</th>
<th>form</th>
<th>precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>real (\times) real (\rightarrow) real</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>−</td>
<td>real (\times) real (\rightarrow) real</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>*</td>
<td>real (\times) real (\rightarrow) real</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>/</td>
<td>real (\times) real (\rightarrow) real</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>=</td>
<td>real (\times) real (\rightarrow) bool (\ast)</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><></td>
<td>real (\times) real (\rightarrow) bool (\ast)</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><</td>
<td>real (\times) real (\rightarrow) bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><=</td>
<td>real (\times) real (\rightarrow) bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>></td>
<td>real (\times) real (\rightarrow) bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>>=</td>
<td>real (\times) real (\rightarrow) bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>~</td>
<td>real (\rightarrow) real</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>abs</td>
<td>real (\rightarrow) real</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>Math.sqrt</td>
<td>real (\rightarrow) real</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>Math.In</td>
<td>real (\rightarrow) real</td>
<td>prefix</td>
<td></td>
</tr>
</tbody>
</table>

Unary operator − is represented by ~
Type conversions

<table>
<thead>
<tr>
<th>(op)</th>
<th>(type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>real</td>
<td>(\text{int} \rightarrow \text{real})</td>
</tr>
<tr>
<td>ceil</td>
<td>(\text{real} \rightarrow \text{int})</td>
</tr>
<tr>
<td>floor</td>
<td>(\text{real} \rightarrow \text{int})</td>
</tr>
<tr>
<td>round</td>
<td>(\text{real} \rightarrow \text{int})</td>
</tr>
<tr>
<td>trunc</td>
<td>(\text{real} \rightarrow \text{int})</td>
</tr>
</tbody>
</table>

- \(\text{real}(2) + 3.5 \);
 val it = 5.5 : real
- \(\text{ceil}(23.65) \);
 val it = 24 : int
- \(\text{ceil}(\sim23.65) \);
 val it = \(\sim\!\!23\) : int
- \(\text{floor}(23.65) \);
 val it = 23 : int
More recursive functions

- fun exp(b,n) = if n=0 then 1.0 else b * exp(b,n-1);
 val exp = fn : real * int -> real

- exp(2.0,10);
 val it = 1024.0 : real
Tuples in SML

- In SML tuples are finite sequences of arbitrary but fixed length, where different components need not be of the same type
 - (1, "two");
 \[
 \text{val it = (1,"two") : int * string}
 \]
 - val t1 = (1,2,3);
 \[
 \text{val t1 = (1,2,3) : int * int * int}
 \]
 - val t2 = (4,(5.0,6));
 \[
 \text{val t2 = (4,(5.0,6)) : int * (real * int)}
 \]

- The components of a tuple can be accessed by applying the built-in functions \#i, where i is a positive number
 - \#1(t1);
 \[
 \text{val it = 1 : int}
 \]
 - \#2(t2);
 \[
 \text{val it = (5.0,6) : real * int}
 \]

If a function \#i is applied to a tuple with fewer than i components, an error results.
Tuples in SML

- Functions using tuples should completely define the type of tuples, otherwise SML cannot detect the type, e.g., nth argument

- fun firstThird(Tuple:'a * 'b * 'c):'a * 'c =
 (#1(Tuple), #3(Tuple));
val firstThird = fn : 'a * 'b * 'c => 'a * 'c

- firstThird((1,"two",3));
val it = (1,3) : int * int

- Without types, we would get an error:

- fun firstThird(Tuple) = (#1(Tuple), #3(Tuple));
stdIn: Error: unresolved flex record (need to know the names of ALL the fields in this context)
Polymorphic functions

- fun id x = x;
val id = fn : 'a -> 'a
- (id 1, id "two");
val it = (1,"two") : int * string
- fun fst(x,y) = x;
val fst = fn : 'a * 'b -> 'a
- fun snd(x,y) = y;
val snd = fn : 'a * 'b -> 'b
- fun switch(x,y) = (y,x);
val switch = fn : 'a * 'b -> 'b * 'a
Polymorphic functions

- 'a means "any type", while ' 'a means "any type that can be compared for equality" (see the concat function later which compares a polymorphic variable list with []
- There will be a "Warning: calling polyEqual" that means that you're comparing two values with polymorphic type for equality
 - Why does this produce a warning? Because it's less efficient than comparing two values of known types for equality
 - How do you get rid of the warning? By changing your function to only work with a specific type instead of any type
 - Should you do that or care about the warning? Probably not. In most cases having a function that can work for any type is more important than having the most efficient code possible, so you should just ignore the warning.
Lists in SML

- A list in SML is a finite sequence of objects, all of the same type:
 - \([1,2,3]\);
  ```ml
  val it = [1,2,3] : int list
  ```
 - \([true,false,true]\);
  ```ml
  val it = [true,false,true] : bool list
  ```
 - \([[1,2,3],[4,5],[6]]\);
  ```ml
  val it = [[1,2,3],[4,5],[6]] : int list list
  ```

- The last example is a list of lists of integers.
Lists in SML

- All objects in a list must be of the same type:
 - `[1,[2]]`;

 Error: operator and operand don’t agree

- An empty list is denoted by one of the following expressions:
 - `[]`
 - `val it = [] : 'a list`
 - `nil`
 - `val it = [] : 'a list`

- Note that the type is described in terms of a type variable `'a`. Instantiating the type variable, by types such as `int`, results in (different) empty lists of corresponding types
Operations on Lists

- SML provides various functions for manipulating lists
 - The function `hd` returns the first element of its argument list
 - `hd[1,2,3];`
    ```sml
    val it = 1 : int
    ```
 - `hd[[1,2],[3]];`
    ```sml
    val it = [1,2] : int list
    ```
 Applying this function to the empty list will result in an error.
 - The function `tl` removes the first element of its argument lists, and returns the remaining list
 - `tl[1,2,3];`
    ```sml
    val it = [2,3] : int list
    ```
 - `tl[[1,2],[3]];`
    ```sml
    val it = [[3]] : int list list
    ```
 - The application of this function to the empty list will also result in an error
Operations on Lists

- Lists can be constructed by the (binary) function :: (read cons) that adds its first argument to the front of the second argument.

 - `5::[]`;

  ```
  val it = [5] : int list
  ```

 - `1::[2,3]`;

  ```
  val it = [1,2,3] : int list
  ```

 - `[1,2]::[[3],[4,5,6,7]]`;

  ```
  val it = [[1,2],[3],[4,5,6,7]] : int list list
  ```

- IMPORTANT: The arguments must be of the right type (such that the result is a list of elements of the same type):

 - `[1]::[2,3]`;

  ```
  Error: operator and operand don’t agree
  ```
Lists can also be compared for equality:

- \([1,2,3] = [1,2,3]\);
  ```
  val it = true : bool
  ```

- \([1,2] = [2,1]\);
  ```
  val it = false : bool
  ```

- \(\text{tl}[1] = []\);
  ```
  val it = true : bool
  ```
Defining List Functions

- **Recursion** is particularly useful for defining functions that process lists.
 - For example, consider the problem of defining an SML function that takes as arguments two lists of the same type and returns the concatenated list.
 - In defining such list functions, it is helpful to keep in mind that a list is either
 - an empty list `[]` or
 - of the form `x: y`
In designing a function for concatenating two lists x and y we thus distinguish two cases, depending on the form of x:

- If x is an empty list $[]$, then concatenating x with y yields just y.
- If x is of the form $x_1 :: x_2$, then concatenating x with y is a list of the form $x_1 :: z$, where z is the result of concatenating x_2 with y.

We can be more specific by observing that $x = x_1 :: x_2 = \text{hd}(x) :: \text{tl}(x)$.
Concatenation

- fun concat(x,y) = if x=[] then y
 else hd(x)::concat(tl(x),y);
val concat = fn : `'a list * `'a list -> `'a list

- Applying the function yields the expected results:
 - concat([1,2],[3,4,5]);
 val it = [1,2,3,4,5] : int list
 - concat([], [1,2]);
 val it = [1,2] : int list
 - concat([1,2], []);
 val it = [1,2] : int list
The following function computes the length of its argument list:

```
fun length(L) = if (L=nil) then 0 else 1+length(tl(L));
```

val length = fn : ''a list -> int

- `length[1,2,3];`
val it = 3 : int
- `length[[5],[4],[3],[2,1]];`
val it = 4 : int
- `length[];`
val it = 0 : int
doubleall

- The following function doubles all the elements in its argument list (of integers):

 - fun doubleall(L) =

 if L=[] then []
 else (2*hd(L))::doubleall(tl(L));

 val doubleall = fn : int list -> int list

- doubleall([1,3,5,7]);
 val it = [2,6,10,14] : int list
Reversing a List

- fun reverse(L) =
 if L = nil then nil
 else concat(reverse(tl(L)), [hd(L)]);

val reverse = fn : ''a list -> ''''a list

- reverse [1,2,3];
calls
- concat(reverse([2,3]), [1])
- concat([3,2], [1]);
val it = [3,2,1] : int list
Reversing a List

- Concatenation of lists, for which we gave a recursive definition, is actually a built-in operator in SML, denoted by the symbol @

- We can use this operator in reversing:

```ml
fun reverse(L) = if L = nil then nil
                 else reverse(tl(L)) @ [hd(L)];

val reverse = fn : ''a list -> ''a list

reverse [1,2,3];
val it = [3,2,1] : int list
```
Reversing a List

- fun reverse(L) =

 if L = nil then nil

 else concat(reverse(tl(L)), [hd(L)]);

This method is not efficient: $O(n^2)$

$T(N) = T(N-1) + (N-1) =$

$= T(N-2) + (N-2) + (N-1) =$

$= 1 + 2 + 3 + \ldots + N-1 = N \times (N-1)/2$
Reversing a List

- This way (using an accumulator) is better: $O(n)$

- fun reverse_helper(L, L2) =
 if L = nil then L2
 else reverse_helper(tl(L), hd(L) :: L2);
- fun reverse(L) = reverse_helper(L, []);
- reverse [1,2,3];
- reverse_helper([1,2,3], []);
- reverse_helper([2,3], [1]);
- reverse_helper([3], [2,1]);
- reverse_helper([], [3,2,1]);
- [3,2,1]
Removing List Elements

- The following function removes all occurrences of its first argument from its second argument list.

```ml
fun remove (x, L) = if (L = []) then []
    else if x = hd(L) then remove (x, tl(L))
    else hd(L) :: remove (x, tl(L))
```

val remove = fn : `'a * `'a list -> `'a list`

- remove(1,[5,3,1]);
 val it = [5,3] : int list

- remove(2,[4,2,4,2,4,2,2,2]);
 val it = [4,4,4] : int list
Removing Duplicates

- The remove function can be used in the definition of another function that removes all duplicate occurrences of elements from its argument list:

 - fun removedupl(L) =
 if (L=[]) then []
 else hd(L) :: removedupl(remove(hd(L), tl(L)));

 val removedupl = fn : ''a list -> ''a list

 - removedupl([3,2,4,6,4,3,2,3,4,3,2,1]);
 val it = [3,2,4,6,1] : int list
Definition by Patterns

• In SML functions can also be defined via patterns.
 • The general form of such definitions is:

\[
\text{fun } \langle \text{identifier} \rangle (\langle \text{pattern1} \rangle) = \langle \text{expression1} \rangle \\
| \langle \text{identifier} \rangle (\langle \text{pattern2} \rangle) = \langle \text{expression2} \rangle \\
| \ldots \\
| \langle \text{identifier} \rangle (\langle \text{patternK} \rangle) = \langle \text{expressionK} \rangle; \\
\]

where the identifiers, which name the function, are all the same, all patterns are of the same type, and all expressions are of the same type.

• Example:

- fun reverse(nil) = nil \\
 | reverse(x::xs) = reverse(xs) @ [x]; \\
val reverse = fn : 'a list -> 'a list

The patterns are inspected in order and the first match determines the value of the function.
Sets with lists in SML

fun member(X,L) =
 if L=[] then false
 else if X=hd(L) then true
 else member(X,tl(L));

 OR with patterns:

fun member(X,[]) = false
 | member(X,Y::Ys) =
 if (X=Y) then true
 else member(X,Ys);

member(1,[1,2]); (* true *)
member(1,[2,1]); (* true *)
member(1,[2,3]); (* false *)
fun union(L1, L2) =
 if L1=[] then L2
 else if member(hd(L1), L2)
 then union(tl(L1), L2)
 else hd(L1)::union(tl(L1), L2);

or

fun union([], L2) = L2
 | union(X::Xs, L2) =
 if member(X, L2) then union(Xs, L2)
 else X::union(Xs, L2);

union([1,5,7,9], [2,3,5,10]);
 (* [1,7,9,2,3,5,10] *)
union([], [1,2]); (* [1,2] *)
union([1,2], []); (* [1,2] *)
fun intersection(L1,L2) =
 if L1=[] then []
 else if member(hd(L1),L2) then hd(L1)::intersection(tl(L1),L2)
 else intersection(tl(L1),L2);

intersection([1,5,7,9],[2,3,5,10]); (* [5] *)
Sets \(\cap \) with patterns

fun intersection([],L2) = []

| intersection(L1,[]) = []
| intersection(X::Xs,L2) =
 if member(X,L2)
 then X::intersection(Xs,L2)
 else intersection(Xs,L2);
fun subset(L1,L2) = if L1=[] then true
 else if L2=[] then false
 else if member(hd(L1),L2)
 then subset(tl(L1),L2)
 else false;

subset([1,5,7,9],[2,3,5,10]);(* false *)
subset([5],[2,3,5,10]); (* true *)
Sets subset patterns

fun subset([],L2) = true
 | subset(L1,[]) = false
 | subset(X::Xs,L2) =
 if member(X,L2)
 then subset(Xs,L2)
 else false;
fun setEqual(L1,L2) =
 subset(L1,L2) andalso subset(L2,L1);

setEqual([1,5,7],[7,5,1,2]); (* false *)
setEqual([1,5,7],[7,5,1]); (* true *)
fun minus(L1,L2) = if L1=[] then []
 else if member(hd(L1),L2)
 then minus(tl(L1),L2)
 else hd(L1)::minus(tl(L1),L2);

minus([1,5,7,9],[2,3,5,10]);
(* [1,7,9] *)
fun minus([],L2) = []
 | minus(X::Xs,L2) =
 if member(X,L2)
 then minus(Xs,L2)
 else X::minus(Xs,L2);

minus([1,5,7,9],[2,3,5,10]);
(* [1,7,9] *)
Sets Cartesian product

fun product_one(X,L) = if L=[] then []
 else (X,hd(L))::product_one(X,tl(L));

product_one(1,[2,3]);
 (* [(1,2),(1,3)] *)

fun product(L1,L2) = if L1=[] then L2
 else union(product_one(hd(L1),L2),
 product(tl(L1),L2));

product([[1,5,7,9],[2,3,5,10]]);
 (* [(1,2),(1,3),(1,5),(1,10),(5,2),
 (5,3),(5,5),(5,10),(7,2),(7,3),...] *)
fun product_one(X,[]) = []
 | product_one(X,Y::Ys) =
 (X,Y)::product_one(X,Ys);

product_one(1,[2,3]);
(* [(1,2),(1,3)] *)

fun product([],L2) = []
| product(L1,[]) = []
| product(X::Xs,L2) =
 union(product_one(X,L2),
 product(Xs,L2));

product([1,5,7,9],[2,3,5,10]);
(* [(1,2),(1,3),(1,5),(1,10),(5,2),
 (5,3),(5,5),(5,10),(7,2),(7,3),...] *)
fun insert_all(E,L) =
 if L=[] then []
 else (E::hd(L)) :: insert_all(E,tl(L));
insert_all(1,[[],[2],[3],[2,3]]);
(* [[1], [1,2], [1,3], [1,2,3]] *)
fun powerSet(L) =
 if L=[] then [[]]
 else powerSet(tl(L)) @
 insert_all(hd(L),powerSet(tl(L)));
powerSet([]);
powerSet([1,2,3]);
powerSet([2,3]);

Sets Powerset
fun insert_all(E,[]) = []
 | insert_all(E,Y::Ys) = (E::Y)::insert_all(E,Ys);
insert_all(1,[[],[2],[3],[2,3]]);
(* [[1], [1,2], [1,3], [1,2,3]] *)
fun powerSet([]) = [[]]
 | powerset(H::T) = powerSet(T) @
 insert_all_all(H,powerSet(T));

powerSet([]);
powerSet([1,2,3]);
powerSet([2,3]);
In functional programming languages functions (called *first-class functions*) can be used as parameters or return value in definitions of other (called *higher-order*) functions.

The following function, `map`, applies its first argument (a function) to all elements in its second argument (a list of suitable type):

- fun map(f,[]) = []
 | map(f,H::T) = f(H)::map(f,T); OR
- fun map(f,L) = if (L=[]) then []
 else f(hd(L))::(map(f,tl(L)));

val map = fn : (''a -> 'b) * ''a list -> 'b list

We may apply `map` with any function as argument:

- fun square(X) = (X:int)*X;
 val square = fn : int -> int
 - map(square,[2,3,4]);
 val it = [4,9,16] : int list
Anonymous functions:

- `map(fn X=>X+1, [1,2,3,4,5]);`

 `val it = [2,3,4,5,6] : int list`

- `fun incr(list) = map (fn X=>X+1, list);`

 `val incr = fn : int list -> int list`

- `incr[1,2,3,4,5];`

 `val it = [2,3,4,5,6] : int list`
McCarthey's 91 function

- McCarthy's 91 function:
 - fun mc91(N) = if N>100 then N-10 else mc91(mc91(N+11));
 val mc91 = fn : int -> int

- map mc91 [101, 100, 99, 98, 97, 96];
 val it = [91,91,91,91,91,91,91] : int list
Filter

- Filter: keep in a list only the values that satisfy some logical condition/boolean function:

```ml
- fun filter(f,L) = 
  if L=[] then []
  else if f(hd L)
  then (hd L)::(filter (f, tl L))
  else filter(f, tl L);

val filter = fn : ('a -> bool) * 'a list -> 'a list

- filter((fn X => X>0), [~1,0,1,2,3,~2,4]);
val it = [1,2,3,4] : int list
```
Permutations

- fun myInterleave(X,[]) = [[X]]
 | myInterleave(X,H::T) =
 | (X::H::T)::(
 | map((fn L => H::L), myInterleave(X,T));

- myInterleave(1,[]);
val it = [[[1]]] : int list list

- myInterleave(1,[3]);
val it = [[[1,3],[3,1]]] : int list list

- myInterleave(1,[2,3]);
val it = [[[1,2,3],[2,1,3],[2,3,1]]] : int list list
Permutations

- fun appendAll(nil) = nil
 | appendAll(H::T) = H @ (appendAll(T));
 flattens the list

- appendAll([[1,2],[2,1]]);
val it = [[1,2],[2,1]] : int list list

- fun permute(nil) = [[]]
 | permute(H::T) = appendAll(
 map((fn L => myInterleave(H,L)), permute(T)));

- permute([1,2,3]);
val it = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]] : int list list
Currying = partial application

- fun f A B C = A+B+C;

 OR

- fun f(A)(B)(C) = A+B+C;

val f = fn : int -> int -> int -> int

val f = fn : int -> (int -> (int -> int))

- val incl1 = f(1);

val incl1 = fn : int -> int -> int
val incl1 = fn : int -> (int -> int)

- val incl12 = incl1(2);

val incl12 = fn : int -> int

- incl12(3);

val it = 6 : int
Currying and *Lazy evaluation*

- fun mult X Y = if X = 0 then 0 else X * Y;

Eager evaluation: reduce as much as possible before applying the function

```
mult (1-1) (3 div 0)
```

\[-\rightarrow (fn x => (fn y => if x = 0 then 0 else x * y)) (1-1) (3 div 0)\]

\[-\rightarrow (fn x => (fn y => if x = 0 then 0 else x * y)) 0 (3 div 0)\]

\[-\rightarrow (fn y => if 0 = 0 then 0 else 0 * y) (3 div 0)\]

\[-\rightarrow (fn y => if 0 = 0 then 0 else 0 * y) error\]

\[-\rightarrow error\]

Lazy evaluation:

```
mult (1-1) (3 div 0)
```

\[-\rightarrow (fn x => (fn y => if x = 0 then 0 else x * y)) (1-1) (3 div 0)\]

\[-\rightarrow (fn y => if (1-1) = 0 then 0 else (1-1) * y) (3 div 0)\]

\[-\rightarrow if (1-1) = 0 then 0 else (1-1) * (3 div 0)\]

\[-\rightarrow if 0 = 0 then 0 else (1-1) * (3 div 0)\]

\[-\rightarrow 0\]
Currying and **Lazy evaluation**

- Argument evaluation as late as possible (possibly never)
 - Evaluation only when indispensable for a reduction
- Lazy evaluation in Standard ML for the primitives: `if then else, andalso, orelse`, and pattern matching
- Property: If the eager evaluation of expression `e` gives `n1` and the lazy evaluation of `e` gives `n2` then `n1 = n2`
 - But, lazy evaluation gives a result **more often**
Sum sequence

- fun sum f N =
 if N = 0 then 0
 else f(N) + sum f (N-1);
val sum = fn : (int → int) → int → int

- sum (fn X => X * X) 3 ;
val it = 14 : int

because

\[f(3) + f(2) + f(1) + f(0) = 9 + 4 + 1 + 0 = 14 \]
Composition

- Composition is another example of a higher-order function:

```plaintext
fun comp(f,g)(X) = f(g(X));
val comp = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b
val f = comp(Math.sin, Math.cos);
val f = fn : real -> real
val g = fn : real -> real
  - f(0.25);
val it = 0.824270418114 : real

SAME WITH:
val g = Math.sin o Math.cos;
  (* Composition "o" is predefined symbol *)
val g = fn : real -> real
  - g(0.25);
val it = 0.824270418114 : real
```
Find

- Pick only the first element of a list that satisfies a given predicate:

  ```
  fun myFind pred nil = raise Fail "No such element"
  | myFind pred (H::T) = 
    if pred H then H
    else myFind pred T;
  val myFind = fn : ('a -> bool) -> 'a list -> 'a
  
  - myFind (fn X => X > 0.0) [~1.2, ~3.4, 5.6, 7.8];
  val it = 5.6 : real
  ```
Reduce (aka. foldr)

- We can generalize the notion of recursion over lists as follows: all recursions have a **base case**, an **iterative case**, and a way of combining results:

 - fun reduce f B nil = B
 | reduce f B (H::T) = f(H, reduce f B T);

 - fun sumList aList = reduce (op +) 0 aList;
 val sumList = fn : int list -> int

 - sumList [1, 2, 3];
 val it = 6 : int

Note: This is called fold right (foldr)
fun foldl(f: ''a*'b->'b, Acc: 'b, L: ''a list):'b =
 if L=[] then Acc
 else foldl(f, f(hd(L),Acc), tl(L));

- fun sum(L:int list):int =
 foldl((fn (X,Acc) => Acc+X), 0, L);

- sum[1, 2, 3];
val it = 6 : int

• it walks the list from left to right
Numerical integration

- Computation of $\int_a^b f(x) \, dx$ by the trapezoidal rule:

$$h = \frac{b - a}{n}$$

$$\approx h \left(f(a) + f(a+h) \right) / 2$$

n intervals
Numerical integration

- fun integrate (f,a,b,n) =
 if n <= 0 orelse b <= a then 0.0
 else (((b−a) / real n)
 * (f(a) + f(a+(b−a) / real n))) / 2.0 +
 integrate (f,a+((b−a) / real n),b,n−1);
val integrate = fn : (real → real) * real * real * int
 → real

- fun cube x:real = x * x * x ;
val cube = fn : real -> real

- integrate (cube , 0.0 , 2.0 , 10) ;
val it = 4.04 : real
Collect like in Java streams

- fun collect(B, combine, accept, nil) = accept(B)
 | collect(B, combine, accept, H::T) =
 collect(combine(B,H), combine, accept, T);

- fun average(aList) = collect((0,0),
 (fn ((total,count),X) => (total+X,count+1)),
 (fn (total,count) => real(total)/real(count)),
 aList);

- average [1, 2, 4];
val it = 2.3333333333333333 : real
Mutually recursive function definitions

- fun odd(n) = if n=0 then false
 else even(n-1)

 and

 even(n) = if n=0 then true
 else odd(n-1);

val odd = fn : int -> bool
val even = fn : int -> bool

- even(1);
val it = false : bool
- odd(1);
val it = true : bool
Sorting

- **Merge-Sort:**
 - To sort a list L:
 - first split L into two disjoint sublists (of about equal size),
 - then (recursively) sort the sublists, and
 - finally merge the (now sorted) sublists
 - It requires suitable functions for
 - splitting a list into two sublists AND
 - merging two sorted lists into one sorted list
We split a list by applying two functions, \texttt{take} and \texttt{skip}, which extract alternate elements; respectively, the elements at odd-numbered positions and the elements at even-numbered positions.

The definitions of the two functions mutually depend on each other, and hence provide an example of mutual recursion, as indicated by the SML-keyword \texttt{and}:

\begin{verbatim}
 fun take(L) =
 if L = nil then nil
 else hd(L)::skip(tl(L))

 and

 skip(L) =
 if L=nil then nil
 else take(tl(L));

 val take = fn : ''a list -> ''a list
 val skip = fn : ''a list -> ''a list

 take[1,2,3,4,5,6,7];
 val it = [1,3,5,7] : int list

 skip[1,2,3,4,5,6,7];
 val it = [2,4,6] : int list
\end{verbatim}
Merging

- Merge pattern definition:

  ```
  fun merge([], R) = R
  | merge(L, []) = L
  | merge(x::xl, y::yl) = 
      if (x:int) < y then x::merge(xl, y::yl)
      else y::merge(x::xl, yl);
  val merge = fn : int list * int list -> int list
  ```

- `merge([1,5,7,9],[2,3,6,8,10])`;
 val it = [1,2,3,5,6,7,8,9,10] : int list

- `merge([], [1,2])`;
 val it = [1,2] : int list

- `merge([1,2], [])`;
 val it = [1,2] : int list
Merge Sort

- fun sort(L) =
 if L=[] orelse tl(L)=[], then L
 else merge(sort(take(L)),sort(skip(L)));

val sort = fn : int list -> int list

- sort[5,3,6,2,1,9];
val it = [1,2,3,5,6,9] : int list
Local declarations

- fun gcd(N,M) = if N=M then N
 else if N>M then gcd(M,N-M)
 else gcd(N,M-N);

- fun fraction (n,d) =
 let val k = gcd (n,d)
 in
 (n div k , d div k)
 end;

- The identifier k is local to the expression after in
- Its binding exists only during the evaluation of this expression
- All other declarations of k are hidden during the evaluation of this expression

- fraction(10,25);
 val it = (2,5) : int * int
Sorting with comparison

- How to sort a list of elements of type α?
 - We need the comparison function/operator for elements of type α!

```plaintext
fun sort order [] = []
| sort order [x] = [x]
| sort order xs =
  let fun merge [] M = M
  | merge L [] = L
  | merge (L as x::xs) (M as y::ys) =
    if order(x,y) then x::merge xs M
    else y::merge L ys
  in merge (sort order ys) (sort order zs) end;

sort (op >) [5.1, 3.4, 7.4, 0.3, 4.0] ;
val it = [7.4,5.1,4.0,3.4,0.3] : real list
```
fun split_helper(L: 'a list, Acc:'a list * 'a list * 'a list) :
 'a list * 'a list =
 if L=[] then Acc
 else split_helper(tl(L), (#2(Acc), (hd(L)) :: #1(Acc)))

fun split(L) = split_helper(L, ([], []));

split([1,2,3,4,5,6]);
split([1,2,3,4,5,6])
split_helper([1,2,3,4,5,6], ([],[]))
split_helper([2,3,4,5,6], ([],[1]))
split_helper([3,4,5,6], ([1],[2]))
split_helper([4,5,6], ([2],[3,1]))
split_helper([5,6], ([3,1],[4,2]))
split_helper([6], ([4,2],[5,3,1]))
split_helper([], ([5,3,1],[6,4,2]))
([5,3,1],[6,4,2])
fun split(L) = if L=[] orelse tl(L)=[] then (L,[])
else let val (L1,L2) = split(tl(tl(L)))
in (hd(L)::L1, hd(tl(L))::L2) end;

split([1,2,3,4,5,6])
([5,3,1],[6,4,2])
Quicksort

- C.A.R. Hoare, in 1962: Average-case running time: $\Theta(n \log n)$

```ml
  fun sort [ ] = [ ]
  | sort (x::xs) =
    let val (S,B) = partition (x,xs)
    in (sort S) @ (x :: (sort B))
    end;
```

Double recursion and no tail-recursion

```ml
  fun partition (p,[ ]) = ([ ],[ ])
  | partition (p,x::xs) =
    let val (S,B) = partition (p,xs)
    in if x < p then (x::S,B) else (S,x::B)
    end
```
Nested recursion

For \(m, n \geq 0 \):
\[
\text{acker}(0,m) = m+1
\]
\[
\text{acker}(n,0) = \text{acker}(n-1, 1) \text{ for } n > 0
\]
\[
\text{acker}(n,m) = \text{acker}(n-1, \text{acker}(n,m-1)) \text{ for } n,m > 0
\]

- fun acker 0 m = m+1
 | acker n 0 = acker (n-1) 1
 | acker n m = acker (n-1) (acker n (m-1));

It is guaranteed to end because of lexicographic order:
\((n',m') < (n,m) \text{ iff } n' < n \text{ or } (n' = n \text{ and } m' < m)\)
Nested recursion

- **Knuth's up-arrow operator** \uparrow^n (invented by Donald Knuth):

 \[
 a \uparrow^1 b = a^b \\
 a \uparrow^n b = a \uparrow^{n-1} (b \uparrow^{n-1} b) \text{ for } n > 1
 \]

 - fun opKnuth 1 a b = Math.pow (a,b)
 | opKnuth n a b = opKnuth (n-1) a
 | (opKnuth (n-1) b b);

 - opKnuth 2 3.0 3.0 ;
 val it = 7.62559748499E12 : real
 - opKnuth 3 3.0 3.0 ;
 ! Uncaught exception: Overflow;

- **Graham’s number** (also called the “largest” number):

 - opKnuth 63 3.0 3.0,
Recursion on a generalized problem

- It is impossible to determine whether n is prime via the reply to the question “is $n - 1$ prime”?
- It seems impossible to directly construct a recursive program
- We thus need to find another function that is more general than prime, in the sense that prime is a particular case of this function
 - for which a recursive program can be constructed

```plaintext
- fun ndivisors n low up = low > up orelse 
  (n mod low)<>0 andalso ndivisors n (low+1) up;
- fun prime n = if n <= 0 
  then error "prime: non-positive argument"
  else if n = 1 then false 
  else ndivisors n 2 floor(Math.sqrt(real n));
```
- The discovery of divisors requires imagination and creativity
Tail recursion

- fun length [] = 0
| length (x::xs) = 1 + length xs;

- The recursive call of length is nested in an expression: during the evaluation, all the terms of the sum are stored, hence the memory consumption for expressions & bindings is proportional to the length of the list!

length [5,8,4,3]
- > 1 + length [8,4,3]
- > 1 + (1 + length [4,3])
- > 1 + (1 + (1 + length [3]))
- > 1 + (1 + (1 + (1 + length []))))
- > 1 + (1 + (1 + (1 + 0)))
- > 1 + (1 + (1 + 1))
- > 1 + (1 + 2)
- > 1 + 3
- > 4
Tail recursion

- fun lengthAux [] acc = acc
 | lengthAux (x::xs) acc = lengthAux xs (acc+1);
- fun length L = lengthAux L 0;
- length [5,8,4,3];
 -> lengthAux [5,8,4,3] 0
 -> lengthAux [8,4,3] (0+1)
 -> lengthAux [8,4,3] 1
 -> lengthAux [4,3] (1+1)
 -> lengthAux [4,3] 2
 -> lengthAux [3] (2+1)
 -> lengthAux [3] 3
 -> lengthAux [] (3+1)
 -> lengthAux [] 4
 -> 4

• Tail recursion: recursion is the outermost operation
 • Space complexity: constant memory consumption for expressions & bindings
 (SML can use the same stack frame/activation record)
 • Time complexity: (still) one traversal of the list
Tail recursion

- `fun factAux 0 acc = acc |
 factAux n acc = factAux (n-1) (n*acc);`
- `fun fact n =
 if n < 0 then error "fact: negative argument"
 else factAux n 1;`

- `fact(3);`
 `-> factAux(3,1)`
 `-> factAux(2,3)`
 `-> factAux(1,6)`
 `-> factAux(0,6)`
 `6`
Records

- Records are structured data types of heterogeneous elements that are labeled

 - `{x=2, y=3};
 - The order does not matter:

 - `{make="Toyota", model="Corolla", year=2017, color="silver"}

 = `{model="Corolla", make="Toyota", color="silver", year=2017};

val it = true : bool

- fun full_name{first:string, last:string, age:int, balance:real}:string =
 first ^ " " ^ last;

 (* ^ is the string concatenation operator *)

val full_name=fn:{age:int, balance:real, first:string, last:string} -> string
string and char

- "a";
val it = "a" : string
- #"a";
val it = #"a" : char
- explode("ab");
val it = [#{"a"},#{"b"}] : char list
- implode([#{"a"},#{"b"}]);//
val it = "ab" : string
- "abc" ^ "def" = "abcdef";
val it = true : bool
- size ("abcd");
val it = 4 : int
string and char

- String.sub("abcde",2);
val it = "c" : char
- substring("abcdefghij",3,4);
val it = "defg" : string
- concat ["AB"," ","CD"];
val it = "AB CD" : string
- str(#"x");
val it = "x" : string
Functional programming in SML

- Covered fundamental elements:
 - Evaluation by reduction of expressions
 - Recursion
 - Polymorphism via type variables
 - Strong typing
 - Type inference
 - Pattern matching
 - Higher-order functions
 - Tail recursion
Beyond functional programming

- **Relational programming** (aka logic programming)
 - For which triples does the `append` relation hold?
    ```prolog
    append([],L,L).
    append([H|T],L,[H|T2]) :-
        append(T,L,T2).
    ?- append ([1,2], [3], X).
    Yes
    X = [1,2,3]
    ?- append ([1,2], X, [1,2,3]).
    X = [3]
    ?- append (X, Y, [1,2,3]).
    X = [], Y = [1,2,3];
    X = [1], Y = [2,3];
    ...
    X = [1,2,3], Y = [];
    - No differentiation between arguments and results!
Beyond functional programming

- **Backtracking** mechanism to enumerate all the possibilities
- **Unification** mechanism, as a generalization of pattern matching
- Power of the logic paradigm / relational framework
Beyond functional programming

• **Constraint Processing:**
  - Constraint Satisfaction Problems (CSPs)
    - Variables: X1, X2, \ldots, Xn
    - Domains of the variables: D1, D2, \ldots, Dn
    - Constraints on the variables: examples: 3 \cdot X1 + 4 \cdot X2 \leq X4
  - What is a solution?
    - An assignment to each variable of a value from its domain, such that all the constraints are **satisfied**

• **Objectives:**
  - Find a solution
  - Find all the solutions
  - Find an optimal solution, according to some cost expression on the variables
Beyond functional programming

- The n-Queens Problem:
  - How to place n queens on an \( n \times n \) chessboard such that no queen is threatened?
  - Variables: \( X_1, X_2, \ldots, X_n \) (one variable for each column)
  - Domains of the variables: \( D_i = \{1, 2, \ldots, n\} \) (the rows)
  - Constraints on the variables:
    - No two queens are in the same column: this is impossible by the choice of the variables!
    - No two queens are in the same row: \( X_i \neq X_j, \) for each \( i \neq j \)
    - No two queens are in the same diagonal: \( |X_i - X_j| \neq |i - j|, \) for each \( i \neq j \)
    - Number of candidate solutions: \( n^n \)

- Exhaustive Enumeration
  - *Generation* of possible values of the variables.
  - *Test* of the constraints.

- Optimization:
  - Where to place a queen in column \( k \) such that it is compatible with \( r_{k+1}, \ldots, r_n \)?
  - Eliminate possible locations as we place queens
Beyond functional programming

- Applications:
  - Scheduling
  - Planning
  - Transport
  - Logistics
  - Games
  - Puzzles

- Complexity
  - Generally these problems are NP-complete with exponential complexity