Objectives

- To represent weighted edges using adjacency matrices and adjacency lists
- To model weighted graphs using the `WeightedGraph` class that extends the `AbstractGraph` class
- To design and implement the algorithm for finding a minimum spanning tree
 - To define the `MST` class that extends the `Tree` class
- To design and implement the algorithm for finding single-source shortest paths
 - To define the `ShortestPathTree` class that extends the `Tree` class
Weighted Graphs

- A graph is a *weighted graph* if each edge is assigned a weight.
- For example: assume that the edges represent the driving distances among the cities.
Representing Weighted Graphs

- Representing Weighted Edges
 - Edge Array
 - Weighted Adjacency Matrices
 - Adjacency Lists
Representing Weighted Edges: Edge Array

```java
int[][] edges = {{0, 1, 2}, {0, 3, 8},
                 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
                 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
                 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
                 {4, 2, 5}, {4, 3, 6}};
```
Weighted Adjacency Matrices

```
Integer[][] adjacencyMatrix = {
  {null, 2, null, 8, null },
  {2, null, 7, 3, null },
  {null, 7, null, 4, 5 },
  {8, 3, 4, null, 6 },
  {null, null, 5, 6, null}
};
```

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>null</td>
<td>2</td>
<td>null</td>
<td>8</td>
<td>null</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>null</td>
<td>7</td>
<td>3</td>
<td>null</td>
</tr>
<tr>
<td>2</td>
<td>null</td>
<td>7</td>
<td>null</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>null</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>null</td>
<td>null</td>
<td>5</td>
<td>6</td>
<td>null</td>
</tr>
</tbody>
</table>
```
Edge Adjacency Lists

```java
java.util.List<WeightedEdge>[] list =
    new java.util.List[5];

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WeightedEdge(0, 1, 2)</td>
<td>WeightedEdge(0, 3, 8)</td>
<td>WeightedEdge(1, 0, 2)</td>
<td>WeightedEdge(1, 3, 3)</td>
<td>WeightedEdge(1, 2, 7)</td>
</tr>
<tr>
<td>WeightedEdge(1, 0, 2)</td>
<td>WeightedEdge(2, 3, 4)</td>
<td>WeightedEdge(2, 4, 5)</td>
<td>WeightedEdge(2, 1, 7)</td>
<td></td>
</tr>
<tr>
<td>WeightedEdge(2, 3, 4)</td>
<td>WeightedEdge(3, 1, 3)</td>
<td>WeightedEdge(3, 2, 4)</td>
<td>WeightedEdge(3, 4, 6)</td>
<td>WeightedEdge(3, 0, 8)</td>
</tr>
<tr>
<td>WeightedEdge(3, 1, 3)</td>
<td>WeightedEdge(3, 2, 4)</td>
<td>WeightedEdge(3, 4, 6)</td>
<td>WeightedEdge(3, 0, 8)</td>
<td></td>
</tr>
<tr>
<td>WeightedEdge(4, 2, 5)</td>
<td>WeightedEdge(4, 3, 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Diagram of the graph with weighted edges.
Edge Adjacency Lists

For flexibility, we will use an ArrayList rather than a fixed-sized array to represent the list as follows:

\[
\text{List< List<WeightedEdge>> list = new java.util.ArrayList();}
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WeightedEdge(0, 1, 2)</td>
<td>WeightedEdge(0, 3, 8)</td>
<td>WeightedEdge(1, 0, 2)</td>
<td>WeightedEdge(1, 3, 3)</td>
<td>WeightedEdge(1, 2, 7)</td>
</tr>
<tr>
<td>WeightedEdge(2, 3, 4)</td>
<td>WeightedEdge(2, 4, 5)</td>
<td>WeightedEdge(1, 3, 3)</td>
<td>WeightedEdge(2, 1, 7)</td>
<td>WeightedEdge(2, 1, 7)</td>
</tr>
<tr>
<td>WeightedEdge(3, 1, 3)</td>
<td>WeightedEdge(3, 2, 4)</td>
<td>WeightedEdge(3, 4, 6)</td>
<td>WeightedEdge(3, 0, 8)</td>
<td>WeightedEdge(3, 2, 4)</td>
</tr>
<tr>
<td>WeightedEdge(4, 2, 5)</td>
<td>WeightedEdge(4, 3, 6)</td>
<td>WeightedEdge(3, 4, 6)</td>
<td>WeightedEdge(3, 0, 8)</td>
<td>WeightedEdge(3, 4, 6)</td>
</tr>
</tbody>
</table>
public class WeightedEdge extends AbstractGraph.Edge implements Comparable<WeightedEdge> {
 public double weight; // The weight on edge (u, v)

 /** Create a weighted edge on (u, v) */
 public WeightedEdge(int u, int v, double weight) {
 super(u, v);
 this.weight = weight;
 }

 /** Compare two edges on weights */
 public int compareTo(WeightedEdge edge) {
 if (weight > edge.weight) {
 return 1;
 } else if (weight == edge.weight) {
 return 0;
 } else {
 return -1;
 }
 }
}
Constructs an empty graph.

Constructs a weighted graph with the specified edges and the number of vertices in arrays.

Constructs a weighted graph with the specified edges and the number of vertices.

Constructs a weighted graph with the specified edges in an array and the number of vertices.

Constructs a weighted graph with the specified edges in a list and the number of vertices.

Displays all edges and weights.

Returns the weight on the edge from u to v. Throw an exception if the edge does not exist.

Adds a weighted edge to the graph and throws an IllegalArgumentException if u, v, or w is invalid. If (u, v) is already in the graph, the new weight is set.

Returns a minimum spanning tree starting from vertex 0.

Returns a minimum spanning tree starting from vertex v.

Returns all single-source shortest paths.
import java.util.*;
public class WeightedGraph<V> extends AbstractGraph<V> {
 /** Construct an empty */
 public WeightedGraph() {
 }

 /** Construct a WeightedGraph from vertices and edges in list */
 public WeightedGraph(int[][] edges, int numberOfVertices) {
 List<V> vertices = new ArrayList<>();
 for (int i = 0; i < numberOfVertices; i++)
 vertices.add((V)(new Integer(i)));
 createWeightedGraph(vertices, edges);
 }

 /** Construct a WeightedGraph from vertices and edged in arrays */
 public WeightedGraph(V[] vertices, int[][] edges) {
 createWeightedGraph(java.util.Arrays.asList(vertices), edges);
 }

 /** Construct a WeightedGraph for vertices 0, 1, 2 and edge list */
 public WeightedGraph(List<V> vertices, List<WeightedEdge> edges) {
 createWeightedGraph(vertices, edges);
 }
}
/** Create adjacency lists from edge arrays */
private void createWeightedGraph(List<V> vertices, int[][] edges) {
 this.vertices = vertices;
 for (int i = 0; i < vertices.size(); i++)
 // Create an edge list for each vertex
 neighbors.add(new ArrayList<Edge>());
 for (int i = 0; i < edges.length; i++)
 neighbors.get(edges[i][0]).add(
 new WeightedEdge(edges[i][0], edges[i][1], edges[i][2]));
}

/** Create adjacency lists from edge lists */
private void createWeightedGraph(List<V> vertices, List<WeightedEdge> edges) {
 this.vertices = vertices;
 for (int i = 0; i < vertices.size(); i++)
 neighbors.add(new ArrayList<Edge>()); // Create a list for vertices
 for (WeightedEdge edge: edges)
 neighbors.get(edge.u).add(edge); // Add an edge into the list
}

/** Construct a WeightedGraph from vertices 0, 1, and edge array */
public WeightedGraph(List<WeightedEdge> edges, int numberOfVertices) {
 List<V> vertices = new ArrayList<>();
 for (int i = 0; i < numberOfVertices; i++)
 vertices.add((V)(new Integer(i)));
 createWeightedGraph(vertices, edges);
}
/** Return the weight on the edge (u, v) */
public double getWeight(int u, int v) throws Exception {
 for (Edge edge : neighbors.get(u))
 if (edge.v == v)
 return ((WeightedEdge)edge).weight;
 throw new Exception("Edge does not exit");
}

/** Add edges to the weighted graph */
public boolean addEdge(int u, int v, double weight) {
 return addEdge(new WeightedEdge(u, v, weight));
}

/** Display edges with weights */
public void printWeightedEdges() {
 for (int i = 0; i < getSize(); i++) {
 System.out.print(getVertex(i) + " (" + i + "): ");
 for (Edge edge : neighbors.get(i))
 System.out.print("(", edge.u +
 ", " + edge.v + ", " + ((WeightedEdge)edge).weight + ")");
 System.out.println();
 }
}

// to continue later with minimum spanning tree and
// single-source shortest paths
public class TestWeightedGraph {
 public static void main(String[] args) {
 String[] vertices = {
 "Seattle", "San Francisco", "Los Angeles", "Denver",
 "Miami", "Dallas", "Houston"};

 int[][] edges = {
 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},
 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599}, {3, 5, 1003},
 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260}, {4, 8, 864}, {4, 10, 496},
 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533}, {5, 6, 983}, {5, 7, 787},
 {6, 5, 983}, {6, 7, 214},
 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
 {8, 4, 864}, {8, 7, 888}, {8, 9, 661}, {8, 10, 781}, {8, 11, 810},
 {9, 8, 661}, {9, 11, 1187},
 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
 };

 WeightedGraph<String> graph1 = new WeightedGraph<>(vertices, edges);

 System.out.println("The number of vertices in graph1: ", graph1.getSize());
 System.out.println("The vertex with index 1 is ", graph1.getVertex(1));
 System.out.println("The index for Miami is ", graph1.getIndex("Miami").

 graph1.printWeightedEdges();
edges = new int[][] {
 {0, 1, 2}, {0, 3, 8},
 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
 {4, 2, 5}, {4, 3, 6}
};
WeightedGraph<Integer> graph2 = new WeightedGraph<>(edges, 5);
System.out.println("\nThe edges for graph2:");
graph2.printWeightedEdges();

The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
The edges for graph1:
Vertex 0: (0, 1, 807) (0, 3, 1331) (0, 5, 2097)
Vertex 1: (1, 2, 381) (1, 0, 807) (1, 3, 1267)
Vertex 2: (2, 1, 381) (2, 3, 1015) (2, 4, 1663) (2, 10, 1435)
Vertex 3: (3, 4, 599) (3, 5, 1003) (3, 1, 1267)
 (3, 0, 1331) (3, 2, 1015)
Vertex 4: (4, 10, 496) (4, 8, 864) (4, 5, 533) (4, 2, 1663)
 (4, 7, 1260) (4, 3, 599)
Vertex 5: (5, 4, 533) (5, 7, 787) (5, 3, 1003)
 (5, 0, 2097) (5, 6, 983)
Vertex 6: (6, 7, 214) (6, 5, 983)
Vertex 7: (7, 6, 214) (7, 8, 888) (7, 5, 787) (7, 4, 1260)
Vertex 8: (8, 9, 661) (8, 10, 781) (8, 4, 864)
 (8, 7, 888) (8, 11, 810)
Vertex 9: (9, 8, 661) (9, 11, 1187)
Vertex 10: (10, 11, 239) (10, 4, 496) (10, 8, 781) (10, 2, 1435)
Vertex 11: (11, 10, 239) (11, 9, 1187) (11, 8, 810)

The edges for graph2:
Vertex 0: (0, 1, 2) (0, 3, 8)
Vertex 1: (1, 0, 2) (1, 2, 7) (1, 3, 3)
Vertex 2: (2, 3, 4) (2, 1, 7) (2, 4, 5)
Vertex 3: (3, 1, 3) (3, 4, 6) (3, 2, 4) (3, 0, 8)
Vertex 4: (4, 2, 5) (4, 3, 6)
Minimum Spanning Trees

• A graph may have many spanning trees
• A *minimum spanning tree* is a spanning tree (i.e., a subset of the edges of a connected undirected graph that connects all the vertices together without any cycles) with the minimum total weight
Minimum Spanning Trees

• Application example: a company wants to create wired Internet lines to connect all the customers together
• There are many ways (i.e., streets) to connect all customers together
• Different lines have different cost (e.g., length)
• The cheapest way is to find a spanning tree with the minimum total cost

Total w: 38
Minimum Spanning Trees

Total w: 38

Total w: 38

Total w: 42
Not a minimum spanning tree
Minimum Spanning Trees

- An algorithm was developed in 1930 by Czech mathematician Vojtěch Jarník and later rediscovered and republished by computer scientists Robert C. Prim in 1957 and Edsger W. Dijkstra in 1959.
Prim’s Minimum Spanning Tree Algorithm

Input: \(G = (V, E) \)
Output: a MST

\[
\text{minimumSpanningTree()} \{
 \text{Let } V \text{ denote the set of vertices in the graph;}
 \text{Let } T \text{ be a set for the vertices in the spanning tree;}
 \text{Initially, add the starting vertex to } T;
 \text{while (size of } T < n) \{
 \text{find } u \text{ in } T \text{ and } v \text{ in } V - T \text{ with the smallest weight on the edge } (u, v), \text{ as shown in the figure;}
 \text{add } v \text{ to } T;
 \}
\}
\]
Minimum Spanning Tree Algorithm Example
Refined Version of Prim’s Minimum Spanning Tree Algorithm

To make it easy to identify the next vertex to add into the tree, we use $\text{cost}[v]$ to store the cost of adding a vertex v to the spanning tree T

- Initially $\text{cost}[s]$ is 0 for a starting vertex and assign infinity to $\text{cost}[v]$ for all other vertices

- The algorithm repeatedly finds a vertex u in $V - T$ with the smallest $\text{cost}[u]$ and moves u to T
 - For all edges (u, v) where v in $V - T$ update the $\text{cost}[v]$ with \min between the old cost and the weight of (u, v)
Refined Version of Prim’s Minimum Spanning Tree Algorithm

Input: a graph G = (V, E)
Output: a minimum spanning tree with the starting vertex s as the root

MST getMinimumSpanningTree(s) {
 Let T be a set that contains the vertices in the spanning tree;
 Initially T is empty;
 Set \(\text{cost}[s] = 0 \); and
 \(\text{cost}[v] = \text{infinity} \) for all other vertices in V;
 while (size of T < n) {
 Find u not in T with the smallest \(\text{cost}[u] \);
 Add u to T;
 for (each (u, v) in E)
 if (v not in T && \(\text{cost}[v] > w(u, v) \)) {
 \(\text{cost}[v] = w(u, v) \);
 \(\text{parent}[v] = u \);
 }
 }
}

- Testing whether a vertex \(v \) is in \(T \) by invoking \(T.\text{contains}(v) \) takes \(O(|V|) \) time since \(T \) is a list
- Therefore, the overall time complexity for this implementation is \(O(|V|^2|E|) \), but it can be reduced to with binary heaps and hashing.
Implementing MST Algorithm

AbstractGraph.Tree

WeightedGraph.MST

- `totalWeight: int`

+ `MST(root: int, parent: int[], searchOrder: List<Integer> totalWeight: int)`
+ `getTotalWeight(): int`

Total weight of the tree.

Constructs an MST with the specified root, parent array, `searchOrder`, and total weight for the tree. Returns the `totalWeight` of the tree.
/** MST is an inner class in WeightedGraph */
class MST extends Tree {
 private double totalWeight; // Total weight of all edges in the tree
 public MST(int root, int[] parent, List<Integer> searchOrder,
 double totalWeight) {
 super(root, parent, searchOrder);
 this.totalWeight = totalWeight;
 }
 public double getTotalWeight() {
 return totalWeight;
 }
}

/** Get a minimum spanning tree rooted at vertex 0 */
public MST getMinimumSpanningTree() {
 return getMinimumSpanningTree(0);
}

/** Get a minimum spanning tree rooted at a specified vertex */
public MST getMinimumSpanningTree(int startingVertex) {
 // cost[v] stores the cost by adding v to the tree
 double[] cost = new double[getSize()];
 for (int i = 0; i < cost.length; i++)
 cost[i] = Double.POSITIVE_INFINITY; // Initial cost
 cost[startingVertex] = 0; // Cost of source is 0
 int[] parent = new int[getSize()]; // Parent of a vertex
 parent[startingVertex] = -1; // startingVertex is the root
 double totalWeight = 0; // Total weight of the tree thus far
 List<Integer> T = new ArrayList<>();
// Expand T
while (T.size() < getSize()) {
 // Find smallest cost v in V - T
 int u = -1; // Vertex to be determined
 double currentMinCost = Double.POSITIVE_INFINITY;

 for (int i = 0; i < getSize(); i++)
 if (!T.contains(i) && cost[i] < currentMinCost) {
 currentMinCost = cost[i];
 u = i;
 }
 T.add(u); // Add a new vertex to T
 totalWeight += cost[u]; // Add cost[u] to the tree

 // Adjust cost[v] for v that is adjacent to u and v in V - T
 for (Edge e : neighbors.get(u))
 if (!T.contains(e.v) && cost[e.v] > ((WeightedEdge)e).weight) {
 cost[e.v] = ((WeightedEdge)e).weight;
 parent[e.v] = u;
 }
} // End of while

return new MST(startingVertex, parent, T, totalWeight);
public class TestMinimumSpanningTree {
 public static void main(String[] args) {
 String[] vertices = {
 "Seattle", "San Francisco", "Los Angeles",
 "Atlanta", "Miami", "Dallas", "Houston"};

 int[][] edges = {
 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},
 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599}, {3, 5, 1003},
 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260}, {4, 8, 864}, {4, 10, 496},
 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533}, {5, 6, 983}, {5, 7, 787},
 {6, 5, 983}, {6, 7, 214},
 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
 {8, 4, 864}, {8, 7, 888}, {8, 9, 661}, {8, 10, 781}, {8, 11, 810},
 {9, 8, 661}, {9, 11, 1187},
 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
 };

 WeightedGraph<String> graph1 = new WeightedGraph<>(vertices, edges);

 WeightedGraph<String>.MST tree1 = graph1.getMinimumSpanningTree();

 System.out.println("Total weight is " + tree1.getTotalWeight());
 tree1.printTree();
 }
}
edges = new int[][]{
 {0, 1, 2}, {0, 3, 8},
 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
 {4, 2, 5}, {4, 3, 6}
};

WeightedGraph<Integer> graph2 = new WeightedGraph<>(edges, 5);

WeightedGraph<Integer>.MST tree2 = graph2.getMinimumSpanningTree(1);

System.out.println("\nTotal weight is " + tree2.getTotalWeight());
tree2.printTree();
}
Total weight is 6513.0
Root is: Seattle
Edges: (Seattle, San Francisco) (San Francisco, Los Angeles)
(Los Angeles, Denver) (Denver, Kansas City) (Kansas City, Chicago)
(New York, Boston) (Chicago, New York) (Dallas, Atlanta)
(Atlanta, Miami) (Kansas City, Dallas) (Dallas, Houston)

Total weight is 14.0
Root is: 1
Edges: (1, 0) (3, 2) (1, 3) (2, 4)
Shortest Path

- Find a shortest path between two vertices in the graph
- The *shortest path* between two vertices is a path with the minimum total weight
- A well-known algorithm for finding a shortest path between two vertices was discovered by Edsger Dijkstra, a Dutch computer scientist
- In order to find a shortest path from vertex s to vertex v, Dijkstra’s algorithm finds the shortest path from s to all vertices

Edsger W. Dijkstra
Single Source Shortest Path Algorithm

Input: a graph $G = (V, E)$ with non-negative weights
Output: a shortest path tree with the source vertex s as the root

ShortestPathTree getShortestPath(s) {
 Let T be a set that contains the vertices whose
 paths to s are known; Initially T is empty;
 Set cost[s] = 0; and cost[v] = infinity for all other vertices in V;
 while (size of T < n) {
 Find u not in T with the smallest cost[u];
 Add u to T;
 for (each (u, v) in E)
 if (v not in T and cost[v] > cost[u] + w(u, v)) {
 cost[v] = w(u, v) + cost[u];
 parent[v] = u;
 }
 }
}

This algorithm is very similar to Prim’s for finding a minimum spanning tree:
 Both algorithms divide the vertices into two sets: T and $V – T$
 In the case of Prim’s algorithm, set T contains the vertices that are already added to the tree
 In the case of Dijkstra’s, set T contains the vertices whose shortest paths to the source have been found
 Both algorithms repeatedly find a vertex from $V – T$ and add it to T
 In the case of Prim’s algorithm, the vertex is adjacent to some vertex in the set with the minimum weight on the edge
 In Dijkstra’s algorithm, the vertex is adjacent to some vertex in the set with the minimum total cost to the source
Minimum Spanning Tree vs. Shortest Path Algorithm

Minimum Spanning Tree

\[\text{cost}[v] = w(u, v) \]

Shortest Path from node A

\[\text{cost}[v] = w(u, v) + \text{cost}[u] \]
T contains vertices whose shortest path to s have been found

V - T contains vertices whose shortest path to s have not been found

Adjust the cost for neighbors of u
SP Algorithm Example (Step 0)

(a)

(b)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>parent</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
SP Algorithm Example (Step 1)
SP Algorithm Example (Step 2)

(a) A diagram of a network with labeled edges. The graph is connected, and the edge weights are indicated by the numbers on the edges.

(b) Tables showing the cost and parent information for the shortest path algorithm. The cost table indicates the cost of reaching each vertex from the source, and the parent table shows the vertex that is the parent in the shortest path tree.

(c) Paul Fodor & Pearson Inc.
SP Algorithm Example (Step 3)

(a) Graph with labeled edges and nodes.

(b) Cost and parent matrices.

Cost matrix:

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>∞</th>
<th>10</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Parent matrix:

<table>
<thead>
<tr>
<th>2</th>
<th>-1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
SP Algorithm Example (Step 4)

(a) The graph with edges and costs.

(b) The cost and parent matrices for the algorithm.

(c) Paul Fodor & Pearson Inc.
SP Algorithm Example (Step 5)

(a) Graph with edges and weights.

(b) Cost and parent matrices:

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>18</th>
<th>10</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>-1</th>
<th>1</th>
<th>1</th>
<th>3</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
SP Algorithm Example (Step 6)

(a) A network graph with nodes labeled 0 to 5 and edges labeled with costs.

(b) Table showing costs and parent indices:

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>10</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>-1</th>
<th>1</th>
<th>1</th>
<th>5</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
SP Algorithm Example (Step 7)

(a) Graph with edges and weights.

(b) Cost and parent matrices.
AbstractGraph.Tree

WeightedGraph.ShortestPathTree

- cost: int[]

+ ShortestPathTree(source: int, parent: int[], searchOrder: List<Integer>, cost: int[])
+ getCOST(v: int): int
+ printAllPaths(): void

\textbf{cost}[v] \textit{stores the cost for the path from the source to} v\textbf{.}

\textbf{Constructs a shortest path tree with the specified source, parent array, searchOrder, and cost array.}

\textbf{Returns the cost for the path from the source to vertex} v\textbf{.}

\textbf{Displays all paths from the source.}
/** Find single source shortest paths */
public ShortestPathTree getShortestPath(int sourceVertex) {
 // cost[v] stores the cost of the path from v to the source
 double[] cost = new double[getSize()];
 for (int i = 0; i < cost.length; i++)
 cost[i] = Double.POSITIVE_INFINITY; // Initial cost set to infinity
 cost[sourceVertex] = 0; // Cost of source is 0
 // parent[v] stores the previous vertex of v in the path
 int[] parent = new int[getSize()];
 parent[sourceVertex] = -1; // The parent of source is set to -1
 // T stores the vertices whose path found so far
 List<Integer> T = new ArrayList<>();
 // Expand T
 while (T.size() < getSize()) {
 // Find smallest cost v in V - T
 int u = -1; // Vertex to be determined
 double currentMinCost = Double.POSITIVE_INFINITY;
 for (int i = 0; i < getSize(); i++)
 if (!T.contains(i) && cost[i] < currentMinCost) {
 currentMinCost = cost[i];
 u = i;
 }
 T.add(u); // Add a new vertex to T
 // Adjust cost[v] for v that is adjacent to u and v in V - T
 for (Edge e : neighbors.get(u)) {
 if (!T.contains(e.v)
 && cost[e.v] > cost[u] + ((WeightedEdge)e).weight) {
 cost[e.v] = cost[u] + ((WeightedEdge)e).weight;
 parent[e.v] = u;
 }
 }
 } // End of while
 // Create a ShortestPathTree
 return new ShortestPathTree(sourceVertex, parent, T, cost);
}
/** ShortestPathTree is an inner class in WeightedGraph */
public class ShortestPathTree extends Tree {
 private double[] cost; // cost[v] is the cost from v to source

 /** Construct a path */
 public ShortestPathTree(int source, int[] parent, List<Integer> searchOrder, double[] cost) {
 super(source, parent, searchOrder);
 this.cost = cost;
 }

 /** Return the cost for a path from the root to vertex v */
 public double getCost(int v) {
 return cost[v];
 }

 /** Print paths from all vertices to the source */
 public void printAllPaths() {
 System.out.println("All shortest paths from " + vertices.get(getRoot()) + " are:");
 for (int i = 0; i < cost.length; i++) {
 printPath(i); // Print a path from i to the source
 System.out.println("(cost: " + cost[i] + ")"); // Path cost
 }
 }
}

(c) Paul Fodor & Pearson Inc.
public class TestShortestPath {
 public static void main(String[] args) {
 String[] vertices = {

 int[][] edges = {
 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},
 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599}, {3, 5, 1003},
 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260}, {4, 8, 864}, {4, 10, 496},
 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533}, {5, 6, 983}, {5, 7, 787},
 {6, 5, 983}, {6, 7, 214},
 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
 {8, 4, 864}, {8, 7, 888}, {8, 9, 661}, {8, 10, 781}, {8, 11, 810},
 {9, 8, 661}, {9, 11, 1187},
 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
 };

 WeightedGraph<String> graph1 = new WeightedGraph<>(vertices, edges);

 WeightedGraph<String>.ShortestPathTree treel =
 graph1.getShortestPath(graph1.getIndex("Chicago"));

 treel.printAllPaths();
 }
}
// Display shortest paths from Houston to Chicago
System.out.print("Shortest path from Houston to Chicago: ");
java.util.List<String> path = tree1.getPath(graph1.getIndex("Houston"));
for (String s: path) {
 System.out.print(s + " ");
}

edges = new int[][] {
 {0, 1, 2}, {0, 3, 8},
 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
 {4, 2, 5}, {4, 3, 6}
};
WeightedGraph<Integer> graph2 = new WeightedGraph<>(edges, 5);

WeightedGraph<Integer>.ShortestPathTree tree2 = graph2.getShortestPath(3);

System.out.println("\n");
tree2.printAllPaths();
}
All shortest paths from Chicago are:
A path from Chicago to Seattle: Chicago Seattle (cost: 2097.0)
A path from Chicago to San Francisco:
 Chicago Denver San Francisco (cost: 2270.0)
A path from Chicago to Los Angeles:
 Chicago Denver Los Angeles (cost: 2018.0)
A path from Chicago to Denver: Chicago Denver (cost: 1003.0)
A path from Chicago to Kansas City: Chicago Kansas City (cost: 533.0)
A path from Chicago to Chicago: Chicago (cost: 0.0)
A path from Chicago to Boston: Chicago Boston (cost: 983.0)
A path from Chicago to New York: Chicago New York (cost: 787.0)
A path from Chicago to Atlanta:
 Chicago Kansas City Atlanta (cost: 1397.0)
A path from Chicago to Miami:
 Chicago Kansas City Atlanta Miami (cost: 2058.0)
A path from Chicago to Dallas: Chicago Kansas City Dallas (cost: 1029.0)
A path from Chicago to Houston:
 Chicago Kansas City Dallas Houston (cost: 1268.0)
Shortest path from Houston to Chicago:
 Houston Dallas Kansas City Chicago

All shortest paths from 3 are:
A path from 3 to 0: 3 1 0 (cost: 5.0)
A path from 3 to 1: 3 1 (cost: 3.0)
A path from 3 to 2: 3 2 (cost: 4.0)
A path from 3 to 3: 3 (cost: 0.0)
A path from 3 to 4: 3 4 (cost: 6.0)