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Objectives
 To model real-world problems using graphs 

 Explain the Seven Bridges of Königsberg problem
 To describe the graph terminologies: vertices, edges, directed/ 

undirected, weighted/unweighted, connected graphs,  loops, parallel 

edges, simple graphs, cycles, subgraphs and spanning tree 

 To represent vertices and edges using edge arrays, edge objects, 

adjacency matrices, adjacency vertices list and adjacency edge lists

 To model graphs using the Graph interface, the AbstractGraph

class, and the UnweightedGraph class

 To represent the traversal of a graph using the 

AbstractGraph.Tree

 To design and implement depth-first search
 To solve the connected-component problem using depth-first search

 To design and implement breadth-first search
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Modeling real-world problems using graphs
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 Graphs are useful in modeling and solving real-world problems

 For example, the problem to find the least number of flights between 

two cities is to find a shortest path between two vertices in a graph
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Modeling Problems Using Graphs
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 Many practical problems can be represented by graphs because graphs 

are used to represent:

 travel routes (airline scheduling), optimal mail/package delivery, 

supply chain implementation 

 networks of communication

 routing is the selection of paths for traffic in a network

 social media analysis: marketing (community detection), centrality 

measurement, information flow, maximizing influence, etc.

 computer chip design (placement of electronic components into an 

electrical network on a monolithic semiconductor)

 Search Engine Algorithms (e.g., PageRank algorithm)

 The development of algorithms to handle graphs is therefore of major 

interest in computer science. 
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How it all started?

 

Island 1 
Island 2 

B 

A 

C 
D 

 
A 

C 

B 

D 

5

 The study of graph problems is known as graph theory.

 It was founded by Leonhard Euler in 1736, when he introduced graph 

terminology to solve the famous Seven Bridges of Königsberg problem"

 The city of Königsberg, Prussia (now Kaliningrad, Russia), was divided 

by the Pregel River. 

 There were two islands on the river. 

 The city and islands were connected by seven bridges. 

 Euler replaced each land mass with a vertex (or a node), and each bridge with an edge: 

Leonhard Euler
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Seven Bridges of Königsberg
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 Euler's question: can one take a walk, 

cross each bridge exactly once, and 

return to the starting point?

 That is: Is there a path starting from any 

vertex, traversing all edges exactly once, 

and returning to the starting vertex?

 Euler proved that for such a path to exist, each 

vertex must have an even number of edges

 Therefore, the Seven Bridges of Königsberg

problem has no solution!

(15 April 1707 – 18 September 1783)

Swiss mathematician 

Leonhard Euler
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Basic Graph Terminology 
 A graph G = (V, E), where V represents a set of vertices (or 

nodes) and E represents a set of edges (or links).

 A graph may be undirected (i.e., if (x,y) is in E, then (y,x) is also in E)

or directed

Peter likes Mark

Mark does not like Peter  
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Adjacent Vertices
• Two vertices in a graph are said to be adjacent (or 

neighbors) if they are connected by an edge

• An edge in a graph that joins two vertices is said to be 

incident to both vertices

• For example, A and B are adjacent

8

A

B



(c) Paul Fodor & Pearson Inc.

Degree

2
1

2 32

The degree of a vertex is the number of edges 

incident to it:
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Complete

graph

Incomplete

graph
every two pairs of vertices are connected
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If two vertices are connected by two or more 

edges, these edges are called parallel edges

A loop is an edge that links a vertex to itself

A simple graph is one that has doesn’t have any

parallel edges or loops

Parallel Edges
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Connected graph
• A graph is connected if there exists a path

between any two vertices in the graph
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Tree
• A connected graph is a tree if it does not have 

cycles
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Cycles

A cycle is a closed path that starts from a 

vertex and ends at the same vertex
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A closed path is a path where all vertices have 

2 edges incident to them
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Subgraphs
A subgraph of a graph G is a graph whose vertex 

set is a subset of that of G and whose edge set is a 

subset of that of G
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Spanning Tree

A spanning tree of a graph G is a connected 

subgraph of G and the subgraph is a tree that 

contains all vertices in G
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Representing Graphs 
Representing Vertices 

Representing Edges: Edge Array 

Representing Edges: Edge Objects 

Representing Edges:Adjacency Matrices 

Representing Edges:Adjacency Lists 
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Representing Vertices 
String[] vertices = {"Seattle", 

"San Francisco", "Los Angles", 

"Denver", "Kansas City", "Chicago",…};

OR

List<String> vertices;

vertices.add("Seattle");…

OR

public class City {

private String cityName;

}

City[] vertices = {city0, city1, … };

In all these representations the vertices can be 

conveniently labeled using  the indexes 0, 1, 2, …, n-1, 

for a graph for n vertices.
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Representing Edges: Edge Array
 The edges can be represented using a two-dimensional array 

of all the edges:
int[][] edges = {

{0, 1}, {0, 3}, {0, 5}, // edges starting from 0

{1, 0}, {1, 2}, {1, 3}, // edges starting from 1

{2, 1}, {2, 3}, {2, 4}, {2, 10},

{3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},

{4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},

{5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},

{6, 5}, {6, 7},

{7, 4}, {7, 5}, {7, 6}, {7, 8},

{8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},

{9, 8}, {9, 11},

{10, 2}, {10, 4}, {10, 8}, {10, 11},

{11, 8}, {11, 9}, {11, 10}

};20
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Representing Edges: Edge Objects 
public class Edge {

int u, v;

public Edge(int u, int v) {

this.u = u;

this.v = v;

}…

}

List<Edge> list = new ArrayList();

list.add(new Edge(0, 1)); 

list.add(new Edge(0, 3)); 

 Storing Edge objects in an ArrayList is useful if you 

don’t know the number of edges in advance
21



(c) Paul Fodor & Pearson Inc.

Representing Edges: Adjacency Matrix 
• Knowing that the graph has N vertices and we can use a two-

dimensional N * N matrix to represent the existence of edges
int[][] adjacencyMatrix = {

{0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // Seattle

{1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},// San Francisco

{0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, // Los Angeles

{1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, // Denver

{0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0}, // Kansas City

{1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}, // Chicago

{0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0}, // Boston

{0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0}, // New York

{0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1}, // Atlanta

{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}, // Miami

{0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1}, // Dallas

{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}  // Houston

};

• Since the matrix is symmetric for an undirected graph, to save storage we can 

use a ragged array
22
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Representing Edges: Adjacency Vertex List 
List<Integer>[] neighbors = new List[12];

List<List<Integer>> neighbors = new ArrayList();

 
 neighbors[0] 

 neighbors[1] 

 neighbors[2] 

 neighbors[3] 

 neighbors[4] 

 neighbors[5] 

 neighbors[6] 

 neighbors[7] 

 neighbors[8] 

 neighbors[9] 

neighbors[10] 

neighbors[11] 

 

for Seattle 

San Francisco 

Los Angeles 

Denver 

Kansas City 

Chicago 

Boston 

New York 

Atlanta 

Miami 

Dallas 

 Houston 

    1     3     5 

    0     2     3 

    1     3     4    10 

    0     1     2    4     5 

    2     3     5    7     8    10 

    0     3     4    6     7 

    5     7 

    4     5    6    8 

    4     7     9    10    11 

    8   11 

    2     4     8    11 

    8     9   10 

OR



(c) Paul Fodor & Pearson Inc.
24

Representing Edges: Adjacency Edge List 
List<Edge>[] neighbors = new List[12];
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Representing Adjacency Edge List Using ArrayList

List<ArrayList<Edge>> neighbors = 

new ArrayList();

neighbors.add(new ArrayList<Edge>());

neighbors.get(0).add(new Edge(0, 1)); 

neighbors.get(0).add(new Edge(0, 3)); 

neighbors.get(0).add(new Edge(0, 5)); 

neighbors.add(new ArrayList<Edge>());

neighbors.get(1).add(new Edge(1, 0)); 

neighbors.get(1).add(new Edge(1, 2)); 

neighbors.get(1).add(new Edge(1, 3)); 

...

neighbors.add(new ArrayList<Edge>());

neighbors.get(11).add(new Edge(11, 8)); 

neighbors.get(11).add(new Edge(11, 9)); 

neighbors.get(11).add(new Edge(11, 10)); 
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Modeling Graphs 
• The Graph interface defines the common operations for a graph

• An abstract class named AbstractGraph that partially 

implements the Graph interface
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public interface Graph<V> {

/** Add a vertex to the graph */  

public boolean addVertex(V vertex);

/** Add an edge to the graph */  

public boolean addEdge(int u, int v);

/** Obtain a depth-first search tree */

public AbstractGraph<V>.Tree dfs(int v);

/** Obtain a breadth-first search tree */

public AbstractGraph<V>.Tree bfs(int v);

/** Return the number of vertices in the graph */

public int getSize();

/** Return the vertices in the graph */

public java.util.List<V> getVertices();

/** Return the object for the specified vertex index */

public V getVertex(int index);

/** Return the index for the specified vertex object */

public int getIndex(V v);

/** Return the neighbors of vertex with the specified index */

public java.util.List<Integer> getNeighbors(int index);

/** Return the degree for a specified vertex */

public int getDegree(int v);

/** Print the edges */

public void printEdges();

/** Clear graph */

public void clear();

}
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import java.util.ArrayList;

import java.util.List;

public abstract class AbstractGraph<V> implements Graph<V> {

// Store vertices

protected List<V> vertices = new ArrayList();

// Adjacency lists

protected List<List<Edge>> neighbors = new ArrayList();

/** Edge inner class inside the AbstractGraph class */

public static class Edge {

public int u; // Starting vertex of the edge

public int v; // Ending vertex of the edge    

/** Construct an edge for (u, v) */

public Edge(int u, int v) {

this.u = u;

this.v = v;

}    

public boolean equals(Object o) {

return u == ((Edge)o).u && v == ((Edge)o).v; 

}

}
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@Override /** Add a vertex to the graph */  

public boolean addVertex(V vertex) {

if (!vertices.contains(vertex)) {

vertices.add(vertex);

neighbors.add(new ArrayList<Edge>());

return true;

} else {

return false;

}

}

/** Construct an empty graph */

protected AbstractGraph() {

}

/** Construct a graph from vertices and edges stored in arrays */

protected AbstractGraph(V[] vertices, int[][] edges) {

for (int i = 0; i < vertices.length; i++)

addVertex(vertices[i]);

createAdjacencyLists(edges, vertices.length);

}

/** Construct a graph from vertices and edges stored in List */

protected AbstractGraph(List<V> vertices, List<Edge> edges) {

for (int i = 0; i < vertices.size(); i++)

addVertex(vertices.get(i));    

createAdjacencyLists(edges, vertices.size());

}
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/** Create adjacency lists for each vertex */

private void createAdjacencyLists(int[][] edges,int numberOfVertices){

for (int i = 0; i < edges.length; i++) {

addEdge(edges[i][0], edges[i][1]);

}

}

@Override /** Add an edge to the graph */  

public boolean addEdge(int u, int v) {

return addEdge(new Edge(u, v));

} 

/** Create adjacency lists for each vertex */

private void createAdjacencyLists(List<Edge> edges,int numberOfVertices){

for (Edge edge: edges) {

addEdge(edge.u, edge.v);

}

}

/** Add an edge to the graph */  

protected boolean addEdge(Edge e) {

if (e.u < 0 || e.u > getSize() - 1)

throw new IllegalArgumentException("No such index: " + e.u);

if (e.v < 0 || e.v > getSize() - 1)

throw new IllegalArgumentException("No such index: " + e.v);    

if (!neighbors.get(e.u).contains(e)) {

neighbors.get(e.u).add(e);

return true;

} else {

return false;

}

}  
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/** Construct a graph for integer vertices 0, 1, 2 and edge list */

protected AbstractGraph(List<Edge> edges, int numberOfVertices) {

for (int i = 0; i < numberOfVertices; i++) 

addVertex((V)(new Integer(i))); // vertices is {0, 1, ...}  

createAdjacencyLists(edges, numberOfVertices);

}

/** Construct a graph from integer vertices 0, 1, and edge array */

protected AbstractGraph(int[][] edges, int numberOfVertices) {

for (int i = 0; i < numberOfVertices; i++) 

addVertex((V)(new Integer(i))); // vertices is {0, 1, ...}

createAdjacencyLists(edges, numberOfVertices);

}

@Override /** Return the vertices in the graph */

public List<V> getVertices() {

return vertices;

}
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@Override /** Return the object for the specified vertex */

public V getVertex(int index) {

return vertices.get(index);

}

@Override /** Return the index for the specified vertex object */

public int getIndex(V v) {

return vertices.indexOf(v);

}

@Override /** Return the number of vertices in the graph */

public int getSize() {

return vertices.size();

}

@Override /** Return the neighbors of the specified vertex */

public List<Integer> getNeighbors(int index) {

List<Integer> result = new ArrayList();

for (Edge e: neighbors.get(index))

result.add(e.v); 

return result;

}

@Override /** Return the (out)degree for a specified vertex */

public int getDegree(int u) {

return neighbors.get(u).size();

}
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@Override /** Print the edges */

public void printEdges() {

for (int u = 0; u < neighbors.size(); u++) {

System.out.print(getVertex(u) + " (" + u + "): ");

for (Edge e: neighbors.get(u)) {

System.out.print("(" + getVertex(e.u) + ", " +

getVertex(e.v) + ") ");

}

System.out.println();

}

}

@Override /** Clear the graph */

public void clear() {

vertices.clear();

neighbors.clear();

}

}
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import java.util.*;

public class UnweightedGraph<V> extends AbstractGraph<V> {

/** Construct an empty graph */

public UnweightedGraph() {

}

/** Construct a graph from vertices and edges stored in arrays */

public UnweightedGraph(V[] vertices, int[][] edges) {

super(vertices, edges);

}

/** Construct a graph from vertices and edges stored in List */

public UnweightedGraph(List<V> vertices, List<Edge> edges) {

super(vertices, edges);

}

/** Construct a graph for integer vertices 0, 1, 2 and edge list */

public UnweightedGraph(List<Edge> edges, int numberOfVertices) {

super(edges, numberOfVertices);

}

/** Construct a graph from integer vertices 0, 1, and edge array */

public UnweightedGraph(int[][] edges, int numberOfVertices) {

super(edges, numberOfVertices);

}

}
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public class TestGraph {

public static void main(String[] args) {

String[] vertices = {"Seattle", "San Francisco", "Los Angeles",

"Denver", "Kansas City", "Chicago", "Boston", "New York",

"Atlanta", "Miami", "Dallas", "Houston"};

int[][] edges = {

{0, 1}, {0, 3}, {0, 5},

{1, 0}, {1, 2}, {1, 3},

{2, 1}, {2, 3}, {2, 4}, {2, 10},

{3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},

{4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},

{5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},

{6, 5}, {6, 7},

{7, 4}, {7, 5}, {7, 6}, {7, 8},

{8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},

{9, 8}, {9, 11},

{10, 2}, {10, 4}, {10, 8}, {10, 11},

{11, 8}, {11, 9}, {11, 10}

};

Graph<String> graph1 = new UnweightedGraph(vertices, edges);

System.out.println("The number of vertices in graph1: " 

+ graph1.getSize());
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System.out.println("The vertex with index 1 is " 

+ graph1.getVertex(1));

System.out.println("The index for Miami is " + 

graph1.getIndex("Miami"));

System.out.println("The edges for graph1:");

graph1.printEdges();

String[] names = {"Peter", "Jane", "Mark", "Cindy", "Wendy"};

java.util.ArrayList<AbstractGraph.Edge> edgeList

= new java.util.ArrayList();

edgeList.add(new AbstractGraph.Edge(0, 2));

edgeList.add(new AbstractGraph.Edge(1, 2));

edgeList.add(new AbstractGraph.Edge(2, 4));

edgeList.add(new AbstractGraph.Edge(3, 4));

// Create a graph with 5 vertices

Graph<String> graph2 = new UnweightedGraph(

java.util.Arrays.asList(names), edgeList);

System.out.println("\nThe number of vertices in graph2: " 

+ graph2.getSize());

System.out.println("The edges for graph2:");

graph2.printEdges();

}

}
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The number of vertices in graph1: 12

The vertex with index 1 is San Francisco

The index for Miami is 9

The edges for graph1:

Seattle (0): (0, 1) (0, 3) (0, 5)

San Francisco (1): (1, 0) (1, 2) (1, 3)

Los Angeles (2): (2, 1) (2, 3) (2, 4) (2, 10)

Denver (3): (3, 0) (3, 1) (3, 2) (3, 4) (3, 5)

Kansas City (4): (4, 2) (4, 3) (4, 5) (4, 7) (4, 8) (4, 10)

Chicago (5): (5, 0) (5, 3) (5, 4) (5, 6) (5, 7)

Boston (6): (6, 5) (6, 7)

New York (7): (7, 4) (7, 5) (7, 6) (7, 8)

Atlanta (8): (8, 4) (8, 7) (8, 9) (8, 10) (8, 11)

Miami (9): (9, 8) (9, 11)

Dallas (10): (10, 2) (10, 4) (10, 8) (10, 11)

Houston (11): (11, 8) (11, 9) (11, 10)

The number of vertices in graph2: 5

The edges for graph2:

Peter (0): (0, 2)

Jane (1): (1, 2)

Mark (2): (2, 4)

Cindy (3): (3, 4)

Wendy (4):
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Graph Traversals 
 Graph traversal is the process of visiting each vertex in the 

graph exactly once

 There are two popular ways to traverse a graph: depth-first 
traversal (or depth-first search) and breadth-first traversal
(or breadth-first search)

 Both traversals result in a spanning tree, which can be modeled 
using a class:

39
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Depth-First Search 
 The depth-first search of a graph starts from a vertex in the graph and 

visits all vertices in the graph as far as possible before backtracking

Input: G = (V, E) and a starting vertex v

Output: a DFS tree rooted at v

Tree dfs(vertex v) {

visit v;

for each neighbor w of v

if (w has not been visited) {

set v as the parent for w;

dfs(w);

}

}

 Since each edge and each vertex is visited only once, the time complexity 

of the dfs method is O(|E| + |V|), where |E| denotes the 

number of edges and |V| the number of vertices
40
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Depth-First Search Example

41
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@Override /** Obtain a DFS tree starting from vertex v */

public Tree dfs(int v) {

int[] parent = new int[vertices.size()];

for (int i = 0; i < parent.length; i++)

parent[i] = -1; // Initialize parent[i] to -1

// Mark visited vertices (default false)

boolean[] isVisited = new boolean[vertices.size()];

List<Integer> searchOrder = new ArrayList();

// Recursively search

dfs(v, parent, isVisited, searchOrder);

// Return the search tree

return new Tree(v, parent, searchOrder);

}

/** Recursive method for DFS search */

private void dfs(int u, int[] parent, boolean[] isVisited, 

List<Integer> searchOrder) {

// Store the visited vertex

searchOrder.add(u);

isVisited[u] = true; // Vertex v visited

for (Edge e : neighbors.get(u))

if (!isVisited[e.v]) {

parent[e.v] = u; // The parent of vertex e.v is u

dfs(e.v, parent, isVisited, searchOrder); // Recursive search

}

}
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// Add the inner class Tree in the AbstractGraph class 

public class Tree {

private int root; // The root of the tree

private int[] parent; // Store the parent of each vertex

private List<Integer> searchOrder; // Store the search order

/** Construct a tree with root, parent, and searchOrder */

public Tree(int root, int[] parent, List<Integer> searchOrder){

this.root = root;

this.parent = parent;

this.searchOrder = searchOrder;

}

/** Return the root of the tree */

public int getRoot() {

return root;

}

/** Return the parent of vertex v */

public int getParent(int v) {

return parent[v];

}
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/** Return the path of vertices from a vertex to the root */

public List<V> getPath(int index) {

ArrayList<V> path = new ArrayList();

do { 

path.add(vertices.get(index));

index = parent[index];

} while (index != -1);

return path;

}

/** Print a path from the root to vertex v */

public void printPath(int index) {

List<V> path = getPath(index);

System.out.print("A path from " + vertices.get(root) + " to " +

vertices.get(index) + ": ");

for (int i = path.size() - 1; i >= 0; i--)

System.out.print(path.get(i) + " ");

}

/** Return an array representing search order */

public List<Integer> getSearchOrder() {

return searchOrder;

}

/** Return number of vertices found */

public int getNumberOfVerticesFound() {

return searchOrder.size();

} 
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/** Print the whole tree */

public void printTree() {

System.out.println("Root is: " + vertices.get(root));

System.out.print("Edges: ");

for (int i = 0; i < parent.length; i++) 

if (parent[i] != -1) {

// Display an edge

System.out.print("(" + vertices.get(parent[i]) + ", " +

vertices.get(i) + ") ");

} 

System.out.println(); 

}

}
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public class TestDFS {

public static void main(String[] args) {

String[] vertices = {"Seattle", "San Francisco", "Los Angeles",

"Denver", "Kansas City", "Chicago", "Boston", "New York",

"Atlanta", "Miami", "Dallas", "Houston"};

int[][] edges = {

{0, 1}, {0, 3}, {0, 5},

{1, 0}, {1, 2}, {1, 3},

{2, 1}, {2, 3}, {2, 4}, {2, 10},

{3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},

{4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},

{5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},

{6, 5}, {6, 7},

{7, 4}, {7, 5}, {7, 6}, {7, 8},

{8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},

{9, 8}, {9, 11},

{10, 2}, {10, 4}, {10, 8}, {10, 11},

{11, 8}, {11, 9}, {11, 10}

};

Graph<String> graph = new UnweightedGraph(vertices, edges);

AbstractGraph<String>.Tree dfs = graph.dfs(graph.getIndex("Chicago"));
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java.util.List<Integer> searchOrders = dfs.getSearchOrder();

System.out.println(dfs.getNumberOfVerticesFound() +

" vertices are searched in this DFS order:");

for (int i = 0; i < searchOrders.size(); i++)

System.out.print(graph.getVertex(searchOrders.get(i)) + " ");

System.out.println();

for (int i = 0; i < searchOrders.size(); i++)

if (dfs.getParent(i) != -1)

System.out.println("the parent of " + graph.getVertex(i) +

" is " + graph.getVertex(dfs.getParent(i)));

}

}       12 vertices are searched in this DFS order:

Chicago Seattle San Francisco Los Angeles Denver Kansas City New York

Boston Atlanta Miami Houston Dallas

the parent of Seattle is Chicago

the parent of San Francisco is Seattle

the parent of Los Angeles is San Francisco

the parent of Denver is Los Angeles

the parent of Kansas City is Denver

the parent of New York is Kansas City

the parent of Boston is New York

the parent of Atlanta is New York

the parent of Miami is Atlanta

the parent of Houston is Miami 

the parent of Dallas is Houston
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Applications of the DFS 
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 Detecting whether a graph is connected
 Search the graph starting from any vertex

 If the number of vertices searched is the same as the number 

of vertices in the graph, the graph is connected. Otherwise, 

the graph is not connected.

 Detecting whether there is a path between two vertices

AND find it (not the shortest)

Search the graph starting from one of the 2 vertexes
Check if the second vertex is reached by DFS
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Applications of the DFS 
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Finding all connected components:
A connected component is a maximal connected 

subgraph in which every pair of vertices are 

connected by a path 
 Label all vertexes as unreached

 Repeat until no vertex is unreached

 Start from any unreached vertex and compute DFS 

(marking all reached vertexes, including the first vertex, as 

reached) -> this DFS is one connected component
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Breadth-First Search 
 The breadth-first search of a graph visits the vertices 

level by level

The first level consists of the starting vertex (root)

Each next level consists of the vertices adjacent to the 

vertices in the preceding level

First the root is visited, then all the children of the 

root, then the grandchildren of the root from left to 

right, and so on

 To ensure that each vertex is visited only once, it skips a 

vertex if it has already been visited
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Breadth-First Search Algorithm
Input: G = (V, E) and a starting vertex v

Output: a BFS tree rooted at v

bfs(vertex v) {

create an empty queue for storing vertices to be visited;

add v into the queue;

mark v visited;

while the queue is not empty {

dequeue a vertex, say u, from the queue

process (e.g., prints) u;

for each neighbor w of u

if w has not been visited {

add w into the queue;

set u as the parent for w; 

mark w visited;

}

}

}
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Breadth-First Search Example

Queue: 0

Queue: 1 2 3

Queue: 2 3 4

isVisited[0] = true

isVisited[1] = true, isVisited[2] = true, 

isVisited[3] = true

isVisited[4] = true
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Breadth-First Search Example
 

Seattle 

San Francisco 

Los Angeles 

Denver 

Chicago 

Kansas City 

Houston 

Boston 

New York 

Atlanta 

Miami 

661 

888 

1187 

810 

Dallas 

1331 

2097 

1003 
807 

381 

1015 

1267 

1663 

1435 

239 

496 

781 

864 

1260 

983 

787 

214 

533 

599 
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@Override /** Starting bfs search from vertex v */

public Tree bfs(int v) {

List<Integer> searchOrder = new ArrayList();

int[] parent = new int[vertices.size()];

for (int i = 0; i < parent.length; i++)

parent[i] = -1; // Initialize parent[i] to -1

java.util.LinkedList<Integer> queue =

new java.util.LinkedList(); // list used as a queue

queue.offer(v); // Enqueue v

boolean[] isVisited = new boolean[vertices.size()];

isVisited[v] = true; // Mark it visited

while (!queue.isEmpty()) {

int u = queue.poll(); // Dequeue to u

searchOrder.add(u); // u searched

for (Edge e: neighbors.get(u)) 

if (!isVisited[e.v]) {

queue.offer(e.v); // Enqueue v

parent[e.v] = u; // The parent of w is u

isVisited[e.v] = true; // Mark it visited

}

}

return new Tree(v, parent, searchOrder);

}
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public class TestBFS {

public static void main(String[] args) {

String[] vertices = {"Seattle", "San Francisco", "Los Angeles",

"Denver", "Kansas City", "Chicago", "Boston", "New York",

"Atlanta", "Miami", "Dallas", "Houston"};

int[][] edges = {

{0, 1}, {0, 3}, {0, 5},

{1, 0}, {1, 2}, {1, 3},

{2, 1}, {2, 3}, {2, 4}, {2, 10},

{3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},

{4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},

{5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},

{6, 5}, {6, 7},

{7, 4}, {7, 5}, {7, 6}, {7, 8},

{8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},

{9, 8}, {9, 11},

{10, 2}, {10, 4}, {10, 8}, {10, 11},

{11, 8}, {11, 9}, {11, 10}

};

Graph<String> graph = new UnweightedGraph(vertices, edges);

AbstractGraph<String>.Tree bfs = graph.bfs(graph.getIndex("Chicago"));
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java.util.List<Integer> searchOrders = bfs.getSearchOrder();

System.out.println(bfs.getNumberOfVerticesFound() +

" vertices are searched in this order:");

for (int i = 0; i < searchOrders.size(); i++)

System.out.println(graph.getVertex(searchOrders.get(i)));

for (int i = 0; i < searchOrders.size(); i++)

if (bfs.getParent(i) != -1)

System.out.println("the parent of " + graph.getVertex(i) + 

" is " + graph.getVertex(bfs.getParent(i)));

}

}          12 vertices are searched in this order:

Chicago Seattle Denver Kansas City Boston New York

San Francisco Los Angeles Atlanta Dallas Miami Houston

the parent of Seattle is Chicago

the parent of San Francisco is Seattle

the parent of Los Angeles is Denver

the parent of Denver is Chicago

the parent of Kansas City is Chicago

the parent of Boston is Chicago

the parent of New York is Chicago

the parent of Atlanta is Kansas City

the parent of Miami is Atlanta

the parent of Dallas is Kansas City

the parent of Houston is Atlanta 
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Applications of the BFS 
 Detecting whether a graph is connected (i.e., if there is a path 

between any two vertices in the graph)

 check is the size of the spanning tree is the same with the 

number of vertices

 Detecting whether there is a path between two vertices
 Compute the BFS from the first vertex and check if the second 

vertex is reached

 Finding a shortest path between two vertices 
 We can prove that the path between the root and any node in the 

BFS tree is the shortest path between the root and that node

 Finding all connected components

 Detect whether there is a cycle in the graph by modifying BFS 

(if a node was seen before, then there is a cycle - you can also 

extract the cycle)
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Applications of the BFS 
 Testing whether a graph is bipartite

 A graph is bipartite if the vertices of the graph can be 

divided into two disjoint sets such that no edges exist between 

vertices in the same set
 A graph is bipartite graph if and only if it is 2-colorable. 

 While doing BFS traversal, each node in the BFS tree is given 

the opposite color to its parent. 
 If there exists an edge connecting current vertex to a previously-

colored vertex with the same color, then we can safely conclude that 

the graph is NOT bipartite.

 If the graph is bipartite, then one partition is the union of all 

odd number stratas, while another is the union of the even 

number stratas
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