Graphs and Applications

Paul Fodor
CSE260, Computer Science B: Honors
Stony Brook University

http://www.cs.stonybrook.edu/~cse260
Objectives

- To model real-world problems using graphs
- Explain the Seven Bridges of Königsberg problem
- To describe the graph terminologies: vertices, edges, simple graphs, weighted/unweighted graphs, and directed/undirected graphs
- To represent vertices and edges using lists, edge arrays, edge objects, adjacency matrices, and adjacency lists
- To model graphs using the Graph interface, the AbstractGraph class, and the UnweightedGraph class
- To represent the traversal of a graph using the AbstractGraph.Tree
- To design and implement depth-first search
 - To solve the connected-component problem using depth-first search
- To design and implement breadth-first search
 - To solve the nine-tail problem using breadth-first search
Modeling real-world problems using graphs

- Graphs are useful in modeling and solving real-world problems
- For example, the problem to find the least number of flights between two cities is to find a shortest path between two vertices in a graph
Modeling Problems Using Graphs

- Many practical problems can be represented by graphs because graphs are used to represent:
 - travel routes (airline scheduling), optimal mail/package delivery, supply chain implementation
 - networks of communication
 - *routing* is the selection of paths for traffic in a network
 - social media analysis: marketing (community detection), centrality measurement, information flow, maximizing influence, etc.
 - computer chip design (placement of electronic components into an electrical network on a monolithic semiconductor)
 - Search Engine Algorithms (e.g., PageRank algorithm)
- The development of algorithms to handle graphs is therefore of major interest in computer science.
How it all started?

• The study of graph problems is known as *graph theory*.

• It was founded by Leonhard Euler in 1736, when he introduced graph terminology to solve the famous Seven Bridges of Königsberg problem

 • The city of Königsberg, Prussia (now Kaliningrad, Russia), was divided by the Pregel River.
 • There were two islands on the river.
 • The city and islands were connected by seven bridges.
 • Euler replaced each land mass with a **vertex** (or a **node**), and each bridge with an **edge**:

![Graph Diagram](image-url)
Seven Bridges of Königsberg

- Euler's question: *can one take a walk, cross each bridge exactly once, and return to the starting point?*
 - That is: *Is there a path starting from any vertex, traversing all edges exactly once, and returning to the starting vertex?*
 - Euler proved that for such a path to exist, each vertex must have an even number of edges
 - Therefore, the Seven Bridges of Königsberg problem has no solution!

Swiss mathematician
Leonhard Euler
(15 April 1707 – 18 September 1783)
Basic Graph Terminology

• A graph \(G = (V, E) \), where \(V \) represents a set of vertices and \(E \) represents a set of edges.

• A graph may be **undirected** (i.e., if \((x,y)\) is in \(E \), then \((y,x)\) is also in \(E \)) or **directed**.

Peter likes Mark
Mark does not like Peter
Adjacent Vertices

- Two vertices in a graph are said to be *adjacent* (or *neighbors*) if they are connected by an edge.
- An edge in a graph that joins two vertices is said to be *incident* to both vertices.
- For example, A and B are adjacent.
Degree

The *degree* of a vertex is the number of edges incident to it:
Complete graph

every two pairs of vertices are connected

Incomplete graph
Unweighted

Weighted

(c) Paul Fodor & Pearson Inc.
Parallel Edges

If two vertices are connected by two or more edges, these edges are called *parallel edges*.

A *loop* is an edge that links a vertex to itself.

A *simple graph* is one that has *doesn’t have any parallel edges or loops*.
Connected graph

- A graph is *connected* if there exists a path between any two vertices in the graph.
Tree

- A connected graph is a tree if it does not have cycles
Subgraph

A *subgraph* of a graph G is a graph whose vertex set is a *subset* of that of G and whose edge set is a *subset* of that of G.
Cycle

A *closed path* is a path where all vertices have 2 edges incident to them.

A *cycle* is a closed path that starts from a vertex and ends at the same vertex.
Spanning Tree

A *spanning tree* of a graph G is a connected subgraph of G and the subgraph is a tree that contains all vertices in G.
Representing Graphs

- Representing Vertices
- Representing Edges: Edge Array
- Representing Edges: Edge Objects
- Representing Edges: Adjacency Matrices
- Representing Edges: Adjacency Lists
Representing Vertices

String[] vertices = {"Seattle", "San Francisco", "Los Angeles", "Denver", "Kansas City", "Chicago", ...};

OR

List<String> vertices;
vertices.add("Seattle"); ...

OR

public class City {
 private String cityName;
}
City[] vertices = {city0, city1, ...};

Then the vertices can be conveniently labeled using the indexes 0, 1, 2, ..., n-1, for a graph for n vertices
Representing Edges: Edge Array

- The edges can be represented using a two-dimensional array of all the edges:

```java
int[][] edges = {
    {0, 1}, {0, 3}, {0, 5}, // edges starting from 0
    {1, 0}, {1, 2}, {1, 3}, // edges starting from 1
    {2, 1}, {2, 3}, {2, 4}, {2, 10},
    {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
    {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
    {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
    {6, 5}, {6, 7},
    {7, 4}, {7, 5}, {7, 6}, {7, 8},
    {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
    {9, 8}, {9, 11},
    {10, 2}, {10, 4}, {10, 8}, {10, 11},
    {11, 8}, {11, 9}, {11, 10}
};
```
Representing Edges: Edge Objects

public class Edge {
 int u, v;
 public Edge(int u, int v) {
 this.u = u;
 this.v = v;
 }
}

List<Edge> list = new ArrayList();
list.add(new Edge(0, 1));
list.add(new Edge(0, 3));

• Storing Edge objects in an ArrayList is useful if you don’t know the number of edges in advance
Representing Edges: Adjacency Matrix

- Knowing that the graph has N vertices and we can use a two-dimensional $N \times N$ matrix to represent the existence of edges

```java
int[][] adjacencyMatrix = {
    {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // Seattle
    {1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // San Francisco
    {0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, // Los Angeles
    {1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, // Denver
    {0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0}, // Kansas City
    {1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}, // Chicago
    {0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0}, // Boston
    {0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0}, // New York
    {0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1}, // Atlanta
    {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}, // Miami
    {0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1}, // Dallas
    {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}  // Houston
};
```
- Since the matrix is symmetric for an undirected graph, to save storage we can use a ragged array
Representing Edges: Adjacency Vertex List

```java
List<Integer>[] neighbors = new List[12];
```

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denver</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kansas City</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlanta</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miami</td>
<td>8</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Houston</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR

```java
List<List<Integer>> neighbors = new ArrayList();
```
Representing Edges: Adjacency Edge List

```csharp
List<Edge>[] neighbors = new List[12];
```

List of Edges:

- **Seattle**
 - neighbors[0]: Edge(0, 1), Edge(0, 3), Edge(0, 5)

- **San Francisco**
 - neighbors[1]: Edge(1, 0), Edge(1, 2), Edge(1, 3)

- **Los Angeles**
 - neighbors[2]: Edge(2, 1), Edge(2, 3), Edge(2, 4), Edge(2, 10)

- **Denver**
 - neighbors[3]: Edge(3, 0), Edge(3, 1), Edge(3, 2), Edge(3, 4)

- **Kansas City**
 - neighbors[4]: Edge(4, 2), Edge(4, 3), Edge(4, 5), Edge(4, 7), Edge(4, 8), Edge(4, 10)

- **Chicago**
 - neighbors[5]: Edge(5, 0), Edge(5, 3), Edge(5, 4), Edge(5, 6)

- **Boston**
 - neighbors[6]: Edge(6, 5), Edge(6, 7)

- **New York**
 - neighbors[7]: Edge(7, 4), Edge(7, 5), Edge(7, 6), Edge(7, 8)

- **Atlanta**
 - neighbors[8]: Edge(8, 4), Edge(8, 7), Edge(8, 9), Edge(8, 10), Edge(8, 11)

- **Miami**
 - neighbors[9]: Edge(9, 8), Edge(9, 11)

- **Dallas**
 - neighbors[10]: Edge(10, 2), Edge(10, 4), Edge(10, 8), Edge(10, 11)

- **Houston**
 - neighbors[11]: Edge(11, 8), Edge(11, 9), Edge(11, 10)
Representing Adjacency Edge List Using ArrayList

```java
List<ArrayList<Edge>> neighbors =
    new ArrayList();
neighbors.add(new ArrayList<>());
neighbors.get(0).add(new Edge(0, 1));
neighbors.get(0).add(new Edge(0, 3));
neighbors.get(0).add(new Edge(0, 5));
neighbors.add(new ArrayList<>());
neighbors.get(1).add(new Edge(1, 0));
neighbors.get(1).add(new Edge(1, 2));
neighbors.get(1).add(new Edge(1, 3));
...
neighbors.add(new ArrayList<>());
neighbors.get(11).add(new Edge(11, 8));
neighbors.get(11).add(new Edge(11, 9));
neighbors.get(11).add(new Edge(11, 10));
```
Modeling Graphs

• The **Graph** interface defines the common operations for a graph
• An **abstract** class named **AbstractGraph** that partially implements the **Graph** interface
public interface Graph<V> {
 /** Add a vertex to the graph */
 public boolean addVertex(V vertex);
 /** Add an edge to the graph */
 public boolean addEdge(int u, int v);
 /** Obtain a depth-first search tree */
 public AbstractGraph<V>.Tree dfs(int v);
 /** Obtain a breadth-first search tree */
 public AbstractGraph<V>.Tree bfs(int v);
 /** Return the number of vertices in the graph */
 public int getSize();
 /** Return the vertices in the graph */
 public java.util.List<V> getVertices();
 /** Return the object for the specified vertex index */
 public V getVertex(int index);
 /** Return the index for the specified vertex object */
 public int getIndex(V v);
 /** Return the neighbors of vertex with the specified index */
 public java.util.List<Integer> getNeighbors(int index);
 /** Return the degree for a specified vertex */
 public int getDegree(int v);
 /** Print the edges */
 public void printEdges();
 /** Clear graph */
 public void clear();
}
import java.util.ArrayList;
import java.util.List;

public abstract class AbstractGraph<V> implements Graph<V> {
 // Store vertices
 protected List<V> vertices = new ArrayList();
 // Adjacency lists
 protected List<List<Edge>> neighbors = new ArrayList();

 /** Edge inner class inside the AbstractGraph class */
 public static class Edge {
 public int u; // Starting vertex of the edge
 public int v; // Ending vertex of the edge
 /** Construct an edge for (u, v) */
 public Edge(int u, int v) {
 this.u = u;
 this.v = v;
 }
 public boolean equals(Object o) {
 return u == ((Edge)o).u && v == ((Edge)o).v;
 }
 }
}
@Override /** Add a vertex to the graph */
public boolean addVertex(V vertex) {
 if (!vertices.contains(vertex)) {
 vertices.add(vertex);
 neighbors.add(new ArrayList<Edge>());
 return true;
 } else {
 return false;
 }
}

/** Construct an empty graph */
protected AbstractGraph() {
}

/** Construct a graph from vertices and edges stored in arrays */
protected AbstractGraph(V[] vertices, int[][] edges) {
 for (int i = 0; i < vertices.length; i++)
 addVertex(vertices[i]);
 createAdjacencyLists(edges, vertices.length);
}

/** Construct a graph from vertices and edges stored in List */
protected AbstractGraph(List<V> vertices, List<Edge> edges) {
 for (int i = 0; i < vertices.size(); i++)
 addVertex(vertices.get(i));
 createAdjacencyLists(edges, vertices.size());
}
/** Create adjacency lists for each vertex */
private void createAdjacencyLists(int[][] edges, int numberOfVertices) {
 for (int i = 0; i < edges.length; i++) {
 addEdge(edges[i][0], edges[i][1]);
 }
}

/** Create adjacency lists for each vertex */
private void createAdjacencyLists(List<Edge> edges, int numberOfVertices) {
 for (Edge edge : edges) {
 addEdge(edge.u, edge.v);
 }
}

/** Add an edge to the graph */
protected boolean addEdge(Edge e) {
 if (e.u < 0 || e.u > getSize() - 1)
 throw new IllegalArgumentException("No such index: " + e.u);
 if (e.v < 0 || e.v > getSize() - 1)
 throw new IllegalArgumentException("No such index: " + e.v);
 if (!neighbors.get(e.u).contains(e)) {
 neighbors.get(e.u).add(e);
 return true;
 } else {
 return false;
 }
}
/** Construct a graph for integer vertices 0, 1, 2 and edge list */
protected AbstractGraph(List<Edge> edges, int numberOfVertices) {
 for (int i = 0; i < numberOfVertices; i++)
 addVertex((V)(new Integer(i))); // vertices is {0, 1, ...}
 createAdjacencyLists(edges, numberOfVertices);
}

/** Construct a graph from integer vertices 0, 1, and edge array */
protected AbstractGraph(int[][] edges, int numberOfVertices) {
 for (int i = 0; i < numberOfVertices; i++)
 addVertex((V)(new Integer(i))); // vertices is {0, 1, ...}
 createAdjacencyLists(edges, numberOfVertices);
}

@Override /** Return the vertices in the graph */
public List<V> getVertices() {
 return vertices;
}

@Override /** Add an edge to the graph */
public boolean addEdge(int u, int v) {
 return addEdge(new Edge(u, v));
}
@Override /** Return the object for the specified vertex */
public V getVertex(int index) {
 return vertices.get(index);
}

@Override /** Return the index for the specified vertex object */
public int getIndex(V v) {
 return vertices.indexOf(v);
}

@Override /** Return the number of vertices in the graph */
public int getSize() {
 return vertices.size();
}

@Override /** Return the neighbors of the specified vertex */
public List<Integer> getNeighbors(int index) {
 List<Integer> result = new ArrayList<>();
 for (Edge e : neighbors.get(index))
 result.add(e.v);
 return result;
}

@Override /** Return the degree for a specified vertex */
public int getDegree(int v) {
 return neighbors.get(v).size();
}
@Override /** Print the edges */
public void printEdges() {
 for (int u = 0; u < neighbors.size(); u++) {
 System.out.print(getVertex(u) + " (" + u + "): ");
 for (Edge e: neighbors.get(u)) {
 System.out.print("(" + getVertex(e.u) + ", " +
 getVertex(e.v) + ") ");
 }
 System.out.println();
 }
}

@Override /** Clear the graph */
public void clear() {
 vertices.clear();
 neighbors.clear();
}
import java.util.*;
public class UnweightedGraph<V> extends AbstractGraph<V> {
 /** Construct an empty graph */
 public UnweightedGraph() {

 }

 /** Construct a graph from vertices and edges stored in arrays */
 public UnweightedGraph(V[] vertices, int[][] edges) {
 super(vertices, edges);
 }

 /** Construct a graph from vertices and edges stored in List */
 public UnweightedGraph(List<V> vertices, List<Edge> edges) {
 super(vertices, edges);
 }

 /** Construct a graph for integer vertices 0, 1, 2 and edge list */
 public UnweightedGraph(List<Edge> edges, int numberOfVertices) {
 super(edges, numberOfVertices);
 }

 /** Construct a graph from integer vertices 0, 1, and edge array */
 public UnweightedGraph(int[][] edges, int numberOfVertices) {
 super(edges, numberOfVertices);
 }
}
public class TestGraph {
 public static void main(String[] args) {

 int[][] edges = {
 {0, 1}, {0, 3}, {0, 5},
 {1, 0}, {1, 2}, {1, 3},
 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 {6, 5}, {6, 7},
 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 {9, 8}, {9, 11},
 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 {11, 8}, {11, 9}, {11, 10}
 };

 Graph<String> graph1 = new UnweightedGraph(vertices, edges);

 System.out.println("The number of vertices in graph1: "+ graph1.getSize());
 }
}
System.out.println("The vertex with index 1 is " + graph1.indexOfVertex(1));
System.out.println("The index for Miami is " + graph1.getIndex("Miami"));

System.out.println("The edges for graph1:");
graph1.printEdges();

String[] names = {"Peter", "Jane", "Mark", "Cindy", "Wendy"};
java.util.ArrayList<AbstractGraph.Edge> edgeList = new java.util.ArrayList();
edgeList.add(new AbstractGraph.Edge(0, 2));
edgeList.add(new AbstractGraph.Edge(1, 2));
edgeList.add(new AbstractGraph.Edge(2, 4));
edgeList.add(new AbstractGraph.Edge(3, 4));

// Create a graph with 5 vertices
Graph<String> graph2 = new UnweightedGraph(
 java.util.Arrays.asList(names), edgeList);

System.out.println("\nThe number of vertices in graph2: " + graph2.getSize());
System.out.println("The edges for graph2:");
graph2.printEdges();
The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
The edges for graph1:
Seattle (0): (0, 1) (0, 3) (0, 5)
San Francisco (1): (1, 0) (1, 2) (1, 3)
Los Angeles (2): (2, 1) (2, 3) (2, 4) (2, 10)
Denver (3): (3, 0) (3, 1) (3, 2) (3, 4) (3, 5)
Kansas City (4): (4, 2) (4, 3) (4, 5) (4, 7) (4, 8) (4, 10)
Chicago (5): (5, 0) (5, 3) (5, 4) (5, 6) (5, 7)
Boston (6): (6, 5) (6, 7)
New York (7): (7, 4) (7, 5) (7, 6) (7, 8)
Atlanta (8): (8, 4) (8, 7) (8, 9) (8, 10) (8, 11)
Miami (9): (9, 8) (9, 11)
Dallas (10): (10, 2) (10, 4) (10, 8) (10, 11)
Houston (11): (11, 8) (11, 9) (11, 10)

The number of vertices in graph2: 5
The edges for graph2:
Peter (0): (0, 2)
Jane (1): (1, 2)
Mark (2): (2, 4)
Cindy (3): (3, 4)
Wendy (4):
Graph Traversals

- **Graph traversal** is the process of visiting each vertex in the graph exactly once.
- There are two popular ways to traverse a graph: *depth-first traversal* (or *depth-first search*) and *breadth-first traversal* (or *breadth-first search*).
- Both traversals result in a spanning tree, which can be modeled using a class:

```
AbstractGraph<V>.Tree

- root: int
- parent: int[]
- searchOrder: List<Integer>

+ Tree(root: int, parent: int[], searchOrder: List<Integer>)
+ getRoot(): int
+ getSearchOrder(): List<Integer>
+ getParent(index: int): int
+ getNumberOfVerticesFound(): int
+ getPath(index: int): List<V>
+ printPath(index: int): void
+ printTree(): void
```

The root of the tree.
The parents of the vertices.
The orders for traversing the vertices.

Constructs a tree with the specified root, parent, and searchOrder.

Returns the root of the tree.
Returns the order of vertices searched.
Returns the parent for the specified vertex index.
Returns the number of vertices searched.
Returns a list of vertices from the specified vertex index to the root.
Displays a path from the root to the specified vertex.
Displays tree with the root and all edges.
Depth-First Search

- The depth-first search of a graph starts from a vertex in the graph and visits all vertices in the graph as far as possible before backtracking.

Input: \(G = (V, E) \) and a starting vertex \(v \)

Output: a DFS tree rooted at \(v \)

Tree dfs(vertex \(v \)) {
 visit \(v \);
 for each neighbor \(w \) of \(v \)
 if (\(w \) has not been visited) {
 set \(v \) as the parent for \(w \);
 dfs(\(w \));
 }
}

- Since each edge and each vertex is visited only once, the time complexity of the dfs method is \(O(|E| + |V|) \), where \(|E| \) denotes the number of edges and \(|V| \) the number of vertices.
Depth-First Search Example

(a)

(b)

(c)

(d)

(e)
Depth-First Search Example
@Override /** Obtain a DFS tree starting from vertex v */
public Tree dfs(int v) {
 int[] parents = new int[vertices.size()];
 for (int i = 0; i < parent.length; i++)
 parent[i] = -1; // Initialize parent[i] to -1

 // Mark visited vertices (default false)
 boolean[] isVisited = new boolean[vertices.size()];
 List<Integer> searchOrder = new ArrayList();

 // Recursively search
 dfs(v, parents, isVisited, searchOrder);

 // Return the search tree
 return new Tree(v, parent, searchOrder);
}

/** Recursive method for DFS search */
private void dfs(int u, int[] parent, boolean[] isVisited,
 List<Integer> searchOrder) {

 // Store the visited vertex
 searchOrder.add(u);
 isVisited[u] = true; // Vertex v visited

 for (Edge e : neighbors.get(u))
 if (!isVisited[e.v]) {
 parent[e.v] = u; // The parent of vertex e.v is u
 dfs(e.v, parent, isVisited, searchOrder); // Recursive search
 }
}
public class Tree {
 private int root; // The root of the tree
 private int[] parent; // Store the parent of each vertex
 private List<Integer> searchOrder; // Store the search order

 /** Construct a tree with root, parent, and searchOrder */
 public Tree(int root, int[] parent, List<Integer> searchOrder) {
 this.root = root;
 this.parent = parent;
 this.searchOrder = searchOrder;
 }

 /** Return the root of the tree */
 public int getRoot() {
 return root;
 }

 /** Return the parent of vertex v */
 public int getParent(int v) {
 return parent[v];
 }
}
/** Return the path of vertices from a vertex to the root */
public List<V> getPath(int index) {
 ArrayList<V> path = new ArrayList<>();
 do {
 path.add(vertices.get(index));
 index = parent[index];
 } while (index != -1);
 return path;
}

/** Print a path from the root to vertex v */
public void printPath(int index) {
 List<V> path = getPath(index);
 System.out.print("A path from " + vertices.get(root) + " to " +
 vertices.get(index) + ": ");
 for (int i = path.size() - 1; i >= 0; i--)
 System.out.print(path.get(i) + " ");
}

/** Return an array representing search order */
public List<Integer> getSearchOrder() {
 return searchOrder;
}
/** Return number of vertices found */
public int getNumberOfVerticesFound() {
 return searchOrder.size();
}
/** Print the whole tree */
public void printTree() {
 System.out.println("Root is: " + vertices.get(root));
 System.out.print("Edges: ");
 for (int i = 0; i < parent.length; i++)
 if (parent[i] != -1) {
 // Display an edge
 System.out.print("(" + vertices.get(parent[i]) + ", " + vertices.get(i) + ") ");
 }
 System.out.println();
}
public class TestDFS {
 public static void main(String[] args) {
 String[] vertices = {
 "Seattle", "San Francisco", "Los Angeles",
 "Atlanta", "Miami", "Dallas", "Houston"};

 int[][] edges = {
 {0, 1}, {0, 3}, {0, 5},
 {1, 0}, {1, 2}, {1, 3},
 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 {6, 5}, {6, 7},
 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 {9, 8}, {9, 11},
 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 {11, 8}, {11, 9}, {11, 10}
 };

 Graph<String> graph = new UnweightedGraph(vertices, edges);

 AbstractGraph<String>.Tree dfs = graph.dfs(graph.getIndex("Chicago"));
java.util.List<Integer> searchOrders = dfs.getSearchOrder();

System.out.println(dfs.getNumberOfVerticesFound() +
 " vertices are searched in this DFS order:");

for (int i = 0; i < searchOrders.size(); i++)
 System.out.print(graph.getVertex(searchOrders.get(i)) + " ");
System.out.println();

for (int i = 0; i < searchOrders.size(); i++)
 if (dfs.getParent(i) != -1)
 System.out.println("the parent of " + graph.getVertex(i) +
 " is " + graph.getVertex(dfs.getParent(i)));
}

12 vertices are searched in this DFS order:
 Chicago Seattle San Francisco Los Angeles Denver Kansas City New York
 Boston Atlanta Miami Houston Dallas
the parent of Seattle is Chicago
the parent of San Francisco is Seattle
the parent of Los Angeles is San Francisco
the parent of Denver is Los Angeles
the parent of Kansas City is Denver
the parent of New York is Kansas City
the parent of Boston is New York
the parent of Atlanta is New York
the parent of Miami is Atlanta
the parent of Houston is Miami
the parent of Dallas is Houston
Applications of the DFS

- Detecting whether a graph is **connected**
 - Search the graph starting from any vertex
 - If the number of vertices searched is the same as the number of vertices in the graph, the graph is connected. Otherwise, the graph is not connected.

- Detecting whether there is a path between two vertices AND find it (not the shortest)
 - Search the graph starting from one of the 2 vertexes
 - Check if the second vertex is reached by DFS
Applications of the DFS

• Finding all connected components:

• A connected component is a maximal connected subgraph in which every pair of vertices are connected by a path

 • Label all vertexes as unreached
 • Repeat until no vertex is unreached

 • Start from any unreached vertex and compute DFS (marking all reached vertexes, including the first vertex, as reached) -> this DFS is one connected component
Breadth-First Search

- The *breadth-first search* of a graph visits the vertices level by level
 - The first level consists of the starting vertex (root)
 - Each next level consists of the vertices adjacent to the vertices in the preceding level
 - First the root is visited, then all the children of the root, then the grandchildren of the root from left to right, and so on
 - To ensure that each vertex is visited only once, it skips a vertex if it has already been visited
Breadth-First Search Algorithm

Input: G = (V, E) and a starting vertex v
Output: a BFS tree rooted at v

bfs(vertex v) {
 create an empty queue for storing vertices to be visited;
 add v into the queue;
 mark v visited;
 while the queue is not empty {
 dequeue a vertex, say u, from the queue
 process u;
 for each neighbor w of u
 if w has not been visited {
 add w into the queue;
 set u as the parent for w;
 mark w visited;
 }
 }
}
Breadth-First Search Example

Queue: 0
\(\text{isVisited}[0] = \text{true} \)

Queue: 1 2 3
\(\text{isVisited}[1] = \text{true}, \text{isVisited}[2] = \text{true}, \text{isVisited}[3] = \text{true} \)

Queue: 2 3 4
\(\text{isVisited}[4] = \text{true} \)
Breadth-First Search Example

Seattle
San Francisco
Los Angeles
Denver
Chicago
Kansas City
Houston
Boston
New York
Atlanta
Miami
Dallas
Houston
@Override /** Starting bfs search from vertex v */
public Tree bfs(int v) {
 List<Integer> searchOrder = new ArrayList();
 int[] parent = new int[vertices.size()];
 for (int i = 0; i < parent.length; i++)
 parent[i] = -1; // Initialize parent[i] to -1
 java.util.LinkedList<Integer> queue =
 new java.util.LinkedList(); // list used as a queue
 queue.offer(v); // Enqueue v
 boolean[] isVisited = new boolean[vertices.size()];
 isVisited[v] = true; // Mark it visited
 while (!queue.isEmpty()) {
 int u = queue.poll(); // Dequeue to u
 searchOrder.add(u); // u searched
 for (Edge e: neighbors.get(u))
 if (!isVisited[e.v]) {
 queue.offer(e.v); // Enqueue v
 parent[e.v] = u; // The parent of w is u
 isVisited[e.v] = true; // Mark it visited
 }
 }
 return new Tree(v, parent, searchOrder);
}
public class TestBFS {
 public static void main(String[] args) {

 int[][] edges = {
 {0, 1}, {0, 3}, {0, 5},
 {1, 0}, {1, 2}, {1, 3},
 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 {6, 5}, {6, 7},
 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 {9, 8}, {9, 11},
 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 {11, 8}, {11, 9}, {11, 10}
 };

 Graph<String> graph = new UnweightedGraph(vertices, edges);

 AbstractGraph<String>.Tree bfs = graph.bfs(graph.getIndex("Chicago"));
```java
java.util.List<Integer> searchOrders = bfs.getSearchOrder();
System.out.println(bfs.getNumberOfVerticesFound() + 
    " vertices are searched in this order: ");
for (int i = 0; i < searchOrders.size(); i++)
    System.out.println(graph.getVertex(searchOrders.get(i)));
for (int i = 0; i < searchOrders.size(); i++)
    if (bfs.getParent(i) != -1)
        System.out.println("the parent of " + graph.getVertex(i) + 
            " is " + graph.getVertex(bfs.getParent(i)));
}

12 vertices are searched in this order:
    Chicago Seattle Denver Kansas City Boston New York
    San Francisco Los Angeles Atlanta Dallas Miami Houston
the parent of Seattle is Chicago
the parent of San Francisco is Seattle
the parent of Los Angeles is Denver
the parent of Denver is Chicago
the parent of Kansas City is Chicago
the parent of Boston is Chicago
the parent of New York is Chicago
the parent of Atlanta is Kansas City
the parent of Miami is Atlanta
the parent of Dallas is Kansas City
the parent of Houston is Atlanta
```
Applications of the BFS

- Detecting whether a graph is connected (i.e., if there is a path between any two vertices in the graph)
 - check is the size of the spanning tree is the same with the number of vertices
- Detecting whether there is a path between two vertices
 - Compute the BFS from the first vertex and check if the second vertex is reached
- Finding a **shortest path** between two vertices
 - We can prove that the path between the root and any node in the BFS tree is the shortest path between the root and that node
- Finding all connected components
- Detect whether there is a cycle in the graph by modifying BFS (if a node was seen before, then there is a cycle - you can also extract the cycle)
Applications of the BFS

• Testing whether a graph is **bipartite**
 • A graph is **bipartite** if the vertices of the graph can be divided into two disjoint sets such that no edges exist between vertices in the same set
 • A graph is bipartite if and only if it is 2-colorable.
 • While doing **BFS** traversal, each node in the **BFS** tree is given the opposite color to its parent.
 • If there exists an edge connecting current vertex to a previously-colored vertex with the same color, then we can safely conclude that the graph is **NOT bipartite**.
• If the graph is bipartite, then one partition is the union of all odd number stratas, while another is the union of the even number stratas
The Nine Tail Problem

- Nine coins are placed in a three by three matrix with some face up (H) and some face down (T)
- A legal move is to take any coin that is face up (H) and reverse it, together with the coins adjacent to it (this does not include coins that are diagonally adjacent)
- Your task is to find the minimum number of the moves that lead to all coins face down (T)

- The nine tails problem can be reduced to the shortest path problem
Representing Nine Coins

- Each state of the nine coins represents a node in the graph.
- We use bits 0 and 1 for H and T:

```
HHH
TTT
HHH
```

- Since there are nine cells and each cell is either 0 (H) or 1 (T), there are a total of 2^9 (512) nodes, labeled 0, 1, ..., and 511.

```
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

....
```

- Represent the node as a single dimensional array of chars 0 or 1:

```
0 0 0
1 1 1
0 0 0
```

A node is an array of nine characters

- 511 represents the state of nine face-down coins (we call this last node the target node).
Model the Nine Tail Problem

- The task is to build a graph that consists of 512 nodes labeled 0, 1, 2, …, 511, and edges among the nodes
 - We assign an edge from node v to u if there is a legal move from u to v
 - We start from 511

The graph consists of 512 nodes labeled 0, 1, 2, …, 511, and edges among the nodes. Each node is connected to other nodes based on legal moves from the current node. The graph starts from node 511 and extends to other nodes such as 51, 30, 47, 240, 488, and 408, with further connections to other nodes in the graph. The diagram illustrates the connections between these nodes, showing the complexity of the Nine Tail Problem.
A tree rooted at node 511.

Constructs a model for the nine tails problem and obtains the tree. Returns a path from the specified node to the root. The path returned consists of the node labels in a list.

Returns a list of Edge objects for the graph.

Returns a node consisting of nine characters of Hs and Ts. Returns the index of the specified node.

Flips the node at the specified position and its adjacent positions and returns the index of the flipped node.

Flips the node at the specified row and column.

Displays the node on the console.
import java.util.*;

public class NineTailModel {
 public final static int NUMBER_OF_NODES = 512;
 protected AbstractGraph<Integer>.Tree tree; // Define a tree

 /** Construct a model */
 public NineTailModel() {
 // Create edges
 List<AbstractGraph.Edge> edges = getEdges();
 // Create a graph
 UnweightedGraph<Integer> graph =
 new UnweightedGraph(edges, NUMBER_OF_NODES);
 // Obtain a BSF tree rooted at the target node
 tree = graph.bfs(511);
 }

 /** Create all edges for the graph */
 private List<AbstractGraph.Edge> getEdges() {
 List<AbstractGraph.Edge> edges = new ArrayList(); // Store edges
 for (int u = 0; u < NUMBER_OF_NODES; u++) {
 char[] node = getNode(u); // Get the node for vertex u
 for (int k = 0; k < 9; k++) { // for every coin
 if (node[k] == 'H') {
 int v = getFlippedNode(node, k);
 // Add edge (v, u) for a legal move from node u to node v
 edges.add(new AbstractGraph.Edge(v, u));
 }
 }
 }
 return edges;
 }
}

(c) Paul Fodor & Pearson Inc.
public static int getFlippedNode(char[] node, int position) {
 int row = position / 3;
 int column = position % 3;
 flipACell(node, row, column);
 flipACell(node, row - 1, column);
 flipACell(node, row + 1, column);
 flipACell(node, row, column - 1);
 flipACell(node, row, column + 1);
 return getIndex(node);
}

public static void flipACell(char[] node, int row, int column){
 if (row >= 0 && row <= 2 && column >= 0 && column <= 2) {
 // Within the boundary
 if (node[row * 3 + column] == 'H')
 node[row * 3 + column] = 'T'; // Flip from H to T
 else
 node[row * 3 + column] = 'H'; // Flip from T to H
 }
}

public List<Integer> getShortestPath(int nodeIndex) {
 return tree.getPath(nodeIndex);
}
public static int getIndex(char[] node) { // transforms from matrix to int
 int result = 0;
 for (int i = 0; i < 9; i++)
 if (node[i] == 'T')
 result = result * 2 + 1;
 else
 result = result * 2 + 0;
 return result;
}

public static char[] getNode(int index) { // transforms from int to matrix
 char[] result = new char[9];
 for (int i = 0; i < 9; i++) {
 int digit = index % 2;
 if (digit == 0)
 result[8 - i] = 'H';
 else
 result[8 - i] = 'T';
 index = index / 2;
 }
 return result;
}

public static void printNode(char[] node) {
 for (int i = 0; i < 9; i++)
 if (i % 3 != 2)
 System.out.print(node[i]);
 else
 System.out.println(node[i]);
 System.out.println();
}
import java.util.Scanner;

public class NineTail {
 public static void main(String[] args) {
 // Prompt the user to enter nine coins H and T's
 System.out.print("Enter the initial nine coins Hs and Ts: ");
 Scanner input = new Scanner(System.in);
 String s = input.nextLine();
 char[] initialNode = s.toCharArray();

 NineTailModel model = new NineTailModel();
 java.util.List<Integer> path =
 model.getShortestPath(NineTailModel.getIndex(initialNode));
 System.out.println("The steps to flip the coins are: ");
 for (int i = 0; i < path.size(); i++)
 NineTailModel.printNode(NineTailModel.getNode(path.get(i)));
 }
}
Enter the initial nine coins Hs and Ts:

H H H
T T T
H T H

The steps to flip the coins are

H H H
H H H
T H T
T H H
T T H
H H T
T H H
H T H
T T T
T H T
H H T
T T H
T H T
H H H
T H T
T T T
T T T
T T T