AVL Trees

Paul Fodor
CSE260, Computer Science B: Honors
Stony Brook University

http://www.cs.stonybrook.edu/~cse260
Objectives

- To know what an **AVL tree** is
- To understand how to **rebalance** a tree using the **LL rotation**, **LR rotation**, **RR rotation**, and **RL rotation**
- To know how to design the **AVLTree** class
- To **insert** elements into an AVL tree
- To implement node **rebalancing**
- To **delete** elements from an AVL tree
- To implement and test the **AVLTree** class
- To analyze the **complexity** of search, insert, and delete operations in AVL trees
Why AVL Trees?

- The search, insertion, and deletion time for a binary search tree is dependent on the **height of the tree**
 - In the worst case, the height is $O(n)$, so worse time complexity is $O(n)$
 - If a tree is *perfectly balanced*, i.e., a complete binary tree, its height is $\log n$
 - So, search, insertion, and deletion time would be $O(\log n)$
 - Can we maintain a perfectly balanced tree?
 - Yes, but it will be costly to do so
 - The compromise is to maintain a *well-balanced tree*, i.e., the heights of two subtrees for every node are about the same
What are AVL Trees?

- **AVL trees** are well-balanced binary search trees were invented by two Russian computer scientists: **Georgy Adelson-Velsky** and **Evgenii Landis** in 1962 at the Institute for Theoretical and Experimental Physics in Moscow.

- In an AVL tree, the difference between the heights of two subtrees for every node is 0 or 1.

- The **maximum height** of an AVL tree is $O(\log n)$.

Adelson-Velsky (left) also developed Kaissa, the first computer chess champion (1974)

Evgenii Mikhailovich Landis
Balance Factor/Left-Heavy/Right-Heavy

- The process for inserting or deleting an element in an AVL tree is the same as in a regular binary search tree.
 - The difference is that you may have to *rebalance* the tree after an insertion or deletion operation.

- The *balance factor* of a node is the *height of its right subtree* minus the *height of its left subtree*.

- A node is said to be *balanced* if its balance factor is -1, 0, or 1.
 - A node is said to be *left-heavy* if its balance factor is -1.
 - A node is said to be *right-heavy* if its balance factor is +1.
Balancing Trees

• If a node is **not balanced** (i.e., its balance factor is not -1, 0, or 1) after an insertion or deletion operation, you need to rebalance it:
 • The process of rebalancing a node is called a **rotation**
 • There are four possible rotations:
 • **LL rotation** *(left-heavy left-heavy rotation)*
 • **RR rotation** *(right-heavy right-heavy rotation)*
 • **LR rotation** *(left-heavy right-heavy rotation)*
 • **RL rotation** *(right-heavy left-heavy rotation)*
LL imbalance and LL rotation

- **LL Rotation**: An *left-heavy, left-heavy imbalance* occurs at a node A if A has a balance factor -2 (*left-heavy*) and its left child B has a balance factor -1 (*left-heavy*) or 0.

- This type of imbalance can be fixed by performing a single *right rotation* at A:

```
    h+1
   /   \\
T1    h    T2    h
   /     \     /     /
 T3     T1  B    A
```

T2’s height is h or h+1.
LL imbalance and LL rotation

- **LL case 1:** If the left child B has a balance factor -1
LL imbalance and LL rotation

- **LL case 2:** If the left child B has a balance factor of 0
RR Rotation: An **RR imbalance** occurs at a node A if A has a balance factor $+2$ (**right-heavy**) and a right child B has a balance factor $+1$ (**right-heavy**) or 0.

This type of imbalance can be fixed by performing a single **left rotation** at A:

```
                A  +2
                 /
                /  \
               /    \
              B  +1 or 0
                 /
                /  \
               /    \
              T3    T2
                /
               /  \
              h    h
```

T2’s height is h or $h+1$.

```
                B  0 or -1
                 /
                /  \
               /    \
              0 or +1
                 /
                /  \
              A  T1
                /
               /  \
              /    \
             h    h+1
```

$T2$’s height is h or $h+1$.

(c) Paul Fodor (CS Stony Brook) & Pearson
LR imbalance and LR rotation

- **LR Rotation**: An *LR imbalance* occurs at a node \(A \) if \(A \) has a balance factor \(-2 \) (*left-heavy*) and a left child \(B \) has a balance factor \(+1 \) (*right-heavy*)
- Assume \(B \)’s right child is \(C \)
- This type of imbalance can be fixed by performing a double rotation: first a single left rotation at \(B \) and then a single right rotation at \(A \)

T2 and T3 may have different height, but at least one must have height of \(h \).
RL Rotation: An **RL imbalance** occurs at a node A if A has a balance factor +2 (**right-heavy**) and a right child B has a balance factor -1 (**left-heavy**)

- Assume B’s left child is C
- This type of imbalance can be fixed by performing a double rotation: first a single right rotation at B and then a single left rotation at A

![Diagram showing the RL imbalance and the double rotation process](c) Paul Fodor (CS Stony Brook) & Pearson
Insert 25, 20

Insert 5

Need LL rotation at node 25

Balanced
Insert 34

Insert 50

Need RR rotation at node 25

Balanced
Insert 30

- RL rotation at node 20

Balanced
Insert 10

LR rotation at node 20

Balanced
Delete 34, 30, 50

LL rotation at node 25

Balanced
After 5 is deleted

```
10
 ▼ 2
  ▼
25
```

RL rotation at 10

```
20
 ▼ 0
  ▼
10
```

```
10
 ▼ -1
  ▼
20
```

Balanced
Designing Classes for AVL Trees

- An AVL is a binary search tree, so we can define the `AVLTree` class to extend the `BST` class

```java
public class AVLTree<Node extends Comparable<Node>, E extends TreeNode<Node>> extends BST<Node, E> {
    public AVLTree() {
        super();
    }

    public AVLTree(Node[] objects) {
        super(objects);
    }

    @Override
    public TreeNode<Node> createNewNode() {
        return super.createNewNode();
    }

    public boolean insert(E e) {
        return super.insert(e);
    }

    public boolean delete(E e) {
        return super.delete(e);
    }

    public void updateHeight(TreeNode<Node> node) {
        super.updateHeight(node);
    }

    public void balancePath(E e) {
        super.balancePath(e);
    }

    public int balanceFactor(TreeNode<Node> node) {
        return super.balanceFactor(node);
    }

    public void balanceLL(TreeNode<Node> A, TreeNode<Node> parentOfA) {
        super.balanceLL(A, parentOfA);
    }

    public void balanceLR(TreeNode<Node> A, TreeNode<Node> parentOfA) {
        super.balanceLR(A, parentOfA);
    }

    public void balanceRR(TreeNode<Node> A, TreeNode<Node> parentOfA) {
        super.balanceRR(A, parentOfA);
    }

    public void balanceRL(TreeNode<Node> A, TreeNode<Node> parentOfA) {
        super.balanceRL(A, parentOfA);
    }
}
```

- Creates an empty AVL tree.
- Creates an AVL tree from an array of objects.
- Overrides this method to create an `AVLTreeNode`.
- Returns true if the element is added successfully.
- Returns true if the element is removed from the tree successfully.
- Resets the height of the specified node.
- Balances the nodes in the path from the node for the element to the root if needed.
- Returns the balance factor of the node.
- Performs LL balance.
- Performs LR balance.
- Performs RR balance.
- Performs RL balance.
public class AVLTree<E extends Comparable<E>> extends BST<E> {
 /** AVLTreeNode is TreeNode plus height */
 protected static class AVLTreeNode<E extends Comparable<E>> extends BST.TreeNode<E> {
 protected int height = 0; // New data field

 public AVLTreeNode(E o) {
 super(o);
 }
 }

 @Override /** Override createNewNode to create an AVLTreeNode */
 protected AVLTreeNode<E> createNewNode(E e) {
 return new AVLTreeNode<E>(e);
 }

 /** Create a default AVL tree */
 public AVLTree() {
 }

 /** Create an AVL tree from an array of objects */
 public AVLTree(E[] objects) {
 super(objects);
 }
}
@Override /** Insert an element and rebalance if necessary */
public boolean insert(E e) {
 boolean successful = super.insert(e);
 if (!successful)
 return false; // e is already in the tree
 else {
 balancePath(e); // Balance from e to the root if necessary
 }
 return true; // e is inserted
}
/** Balance the nodes in the path from the specified
 * node to the root if necessary */

private void balancePath(E e) {
 java.util.ArrayList<TreeNode<E>> path = path(e); // from root to e
 for (int i = path.size() - 1; i >= 0; i--) {
 AVLTreeNode<E> A = (AVLTreeNode<E>)(path.get(i));
 updateHeight(A);
 AVLTreeNode<E> parentOfA = (A == root) ? null :
 (AVLTreeNode<E>)(path.get(i - 1));
 switch(balanceFactor(A)) {
 case -2:
 if (balanceFactor((AVLTreeNode<E>)A.left) <= 0) {
 balanceLL(A, parentOfA); // Perform LL rotation
 } else {
 balanceLR(A, parentOfA); // Perform LR rotation
 }
 break;
 case +2:
 if (balanceFactor((AVLTreeNode<E>)A.right) >= 0) {
 balanceRR(A, parentOfA); // Perform RR rotation
 } else {
 balanceRL(A, parentOfA); // Perform RL rotation
 }
 break;
 }
 }
}
/** Update the height of a specified node */
private void updateHeight(AVLTreeNode<E> node) {
 if (node.left == null && node.right == null) // node is a leaf
 node.height = 0;
 else if (node.left == null) // node has no left subtree
 node.height = 1 + ((AVLTreeNode<E>)(node.right)).height;
 else if (node.right == null) // node has no right subtree
 node.height = 1 + ((AVLTreeNode<E>)(node.left)).height;
 else
 node.height = 1 +
 Math.max(((AVLTreeNode<E>)(node.right)).height,
 ((AVLTreeNode<E>)(node.left)).height);
}

/** Return the balance factor of the node */
private int balanceFactor(AVLTreeNode<E> node) {
 if (node.right == null) // node has no right subtree
 return -node.height;
 else if (node.left == null) // node has no left subtree
 return +node.height;
 else
 return ((AVLTreeNode<E>)(node.right)).height -
 ((AVLTreeNode<E>)(node.left)).height;
}
/** Balance LL */
private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA) {
 TreeNode<E> B = A.left; // A is left-heavy and B is left-heavy
 if (A == root) {
 root = B;
 } else {
 if (parentOfA.left == A) {
 parentOfA.left = B;
 } else {
 parentOfA.right = B;
 }
 }
 A.left = B.right; // Make T2 the left subtree of A
 B.right = A; // Make A the left child of B
 updateHeight((AVLTreeNode<E>)A);
 updateHeight((AVLTreeNode<E>)B);
}
/** Balance RR */
private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA) {
 TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy
 if (A == root) {
 root = B;
 } else {
 if (parentOfA.left == A) {
 parentOfA.left = B;
 } else {
 parentOfA.right = B;
 }
 }
 A.right = B.left; // Make T2 the right subtree of A
 B.left = A;
 updateHeight((AVLTreeNode<E>)A);
 updateHeight((AVLTreeNode<E>)B);
}
/** Balance LR */
private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA) {
 TreeNode<E> B = A.left; // we know that A is left-heavy
 TreeNode<E> C = B.right; // we know that B is right-heavy
 if (A == root) {
 root = C;
 } else {
 if (parentOfA.left == A) {
 parentOfA.left = C;
 } else {
 parentOfA.right = C;
 }
 }
 A.left = C.right; // Make T3 the left subtree of A
 B.right = C.left; // Make T2 the right subtree of B
 C.left = B;
 C.right = A;
 // Adjust heights
 updateHeight((AVLTreeNode<E>)A);
 updateHeight((AVLTreeNode<E>)B);
 updateHeight((AVLTreeNode<E>)C);
}
/** Balance RL */
private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA) {
 TreeNode<E> B = A.right; // we know that A is right-heavy
 TreeNode<E> C = B.left; // we know that B is left-heavy
 if (A == root) {
 root = C;
 } else {
 if (parentOfA.left == A) {
 parentOfA.left = C;
 } else {
 parentOfA.right = C;
 }
 }
 A.right = C.left; // Make T2 the right subtree of A
 B.left = C.right; // Make T3 the left subtree of B
 C.left = A;
 C.right = B;
 // Adjust heights
 updateHeight((AVLTreeNode<E>)A);
 updateHeight((AVLTreeNode<E>)B);
 updateHeight((AVLTreeNode<E>)C);
}
@Override /** Delete an element from the binary tree.
* Return true if the element is deleted successfully
* Return false if the element is not in the tree */
public boolean delete(E element) {
 if (root == null)
 return false; // Element is not in the tree
 // Locate the node to be deleted and also locate its parent node
 TreeNode<E> parent = null;
 TreeNode<E> current = root;
 while (current != null) {
 if (element.compareTo(current.element) < 0) {
 parent = current;
 current = current.left;
 } else if (element.compareTo(current.element) > 0) {
 parent = current;
 current = current.right;
 } else
 break; // Element is in the tree pointed by current
 }
 if (current == null)
 return false; // Element is not in the tree
 // Case 1: current has no left children
 if (current.left == null) {
 // Connect the parent with the right child of the current node
 if (parent == null) {
 root = current.right;
 }
 }
else {
 if (element.compareTo(parent.element) < 0)
 parent.left = current.right;
 else
 parent.right = current.right;
 // Balance the tree if necessary
 balancePath(parent.element);
}
} else {
 // Case 2: The current node has a left child
 // Locate the rightmost node in the left subtree of
 // the current node and also its parent
 TreeNode<E> parentOfRightMost = current;
 TreeNode<E> rightMost = current.left;
 while (rightMost.right != null) {
 parentOfRightMost = rightMost;
 rightMost = rightMost.right; // Keep going to the right
 }
 // Replace the element in current by the element in rightMost
 current.element = rightMost.element;
 // Eliminate rightmost node
 if (parentOfRightMost.right == rightMost)
 parentOfRightMost.right = rightMost.left;
 else
 // Special case: parentOfRightMost is current
 parentOfRightMost.left = rightMost.left;
// Balance the tree if necessary
balancePath(parentOfRightMost.element);
}
size--;
return true; // Element deleted
}
public class TestAVLTree {
 public static void main(String[] args) {
 // Create an AVL tree
 AVLTree<Integer> tree = new AVLTree<>((new Integer[]{25, 20, 5}));
 System.out.println("After inserting 25, 20, 5:");
 printTree(tree);

 tree.insert(34);
 tree.insert(50);
 System.out.println("\nAfter inserting 34, 50:");
 printTree(tree);

 tree.insert(30);
 System.out.println("\nAfter inserting 30");
 printTree(tree);

 tree.insert(10);
 System.out.println("\nAfter inserting 10");
 printTree(tree);

 tree.delete(34);
 tree.delete(30);
 tree.delete(50);
 System.out.println("\nAfter removing 34, 30, 50:");
 printTree(tree);
 }
}
tree.delete(5);
System.out.print("\nAfter removing 5: ");
printTree(tree);

System.out.print("\nTraverse the elements in the tree: ");
for (int e: tree) { // inorder: 10 20 25
 System.out.print(e + " ");
}

public static void printTree(BST tree) {
 // Traverse tree
 System.out.print("\nPreorder: ");
 tree.preorder();
 System.out.print("\nInorder (sorted): ");
 tree.inorder();
 System.out.print("\nPostorder: ");
 tree.postorder();
 System.out.print("\nThe number of nodes is " + tree.getSize());
 System.out.println();
}
After inserting 25, 20, 5:
Preorder: 20 5 25
Inorder (sorted): 5 20 25
Postorder: 5 25 20
The number of nodes is 3

After inserting 34, 50:
Preorder: 20 5 34 25 50
Inorder (sorted): 5 20 25 34 50
Postorder: 5 25 50 34 20
The number of nodes is 5

After inserting 30
Preorder: 25 20 5 34 30 50
Inorder (sorted): 5 20 25 30 34 50
Postorder: 5 20 30 50 34 25
The number of nodes is 6

After inserting 10
Preorder: 25 10 5 20 34 30 50
Inorder (sorted): 5 10 20 25 30 34 50
Postorder: 5 20 10 30 50 34 25
The number of nodes is 7

After removing 34, 30, 50:
Preorder: 10 5 25 20
Inorder (sorted): 5 10 20 25
Postorder: 5 20 25 10
The number of nodes is 4

After removing 5:
Preorder: 20 10 25
Inorder (sorted): 10 20 25
Postorder: 10 25 20
The number of nodes is 3

Traverse the elements in the tree:
10 20 25
AVL Tree Time Complexity Analysis

- Let $G(h)$ denote the minimum number of the nodes in an AVL tree with height h
 - $G(1) = 1$
 - $G(2) = 2$
 - The minimum number of nodes in an AVL tree with height $h > 2$ must have two minimum subtrees: one with height $h-1$ and the other with height $h-2$
 - Thus, $G(h) = G(h - 1) + G(h - 2) + 1$
 - A Fibonacci number at index i can be described using the recurrence relation: $F(i) = F(i - 1) + F(i - 2)$
 - Therefore, the function $G(h)$ is essentially the same as $F(i)$
 - It can be proven that $h < 1.4405 \log(n + 2) - 1.3277$ where n is the number of nodes in the tree
 - Hence, the height of an AVL tree is $O(\log n)$
AVL Tree Time Complexity Analysis

• The search, insert, and delete methods involve only the nodes along a single path in the tree
 • The `updateHeight` and `balanceFactor` methods are executed in a constant time for each node in the path
 • The `balancePath` method is executed in a constant time for a node in the path
• Thus, the time complexity for the search, insert, and delete methods is $O(\log n)$