
Paul Fodor

CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Sorting

1

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor (CS Stony Brook) & Pearson

Objectives
 To study and analyze time complexity of various sorting

algorithms

To design, implement, and analyze bubble sort

To design, implement, and analyze merge sort

To design, implement, and analyze quick sort

To design and implement a binary heap

To design, implement, and analyze heap sort

To design, implement, and analyze bucket sort and

radix sort

To design, implement, and analyze external sort for

files that have a large amount of data
2

(c) Paul Fodor (CS Stony Brook) & Pearson

What data to sort?
 The data to be sorted might be integers, doubles,

characters, Strings or any objects that are comparable.

 For simplicity, we assume:

data to be sorted are integers

data is sorted in ascending order

data is stored in an array
 The programs can be easily modified to sort other types of data, to sort in descending

order, or to sort data in an ArrayList or a LinkedList.

 LinkedList might be more efficient for some operations (no shifting

required to insert/delete an element at any position of the array), but overall

complexity stays the same

 The Java API contains several overloaded sort methods for sorting

primitive type values and objects in the java.util.Arrays and

java.util.Collections class. 3

(c) Paul Fodor (CS Stony Brook) & Pearson

Bubble Sort
Repeatedly steps through the list to be sorted, compares each pair of

adjacent items and swaps them if they are in the wrong order

for (int k = 1; k < list.length; k++) {

 // Perform the kth pass

 for (int i = 0; i < list.length - k; i++) {

 if (list[i] > list[i + 1])

 // swap list[i] with list[i + 1];

 ...

 }

}

 After the first pass, the last element becomes the largest in the array

 After the second pass, the second-to-last element becomes the

second largest in the array
 It is called "bubble" sort because the large values gradually "bubble" to the top (end

of the array)

 It is also called "sinking sort" because the smaller values gradually “sink” their way

to the bottom (beginning of the array)
4

(c) Paul Fodor (CS Stony Brook) & Pearson

 2 5 9 4 8 1

 2 5 4 9 8 1

 2 5 4 8 9 1

 2 5 4 8 1 9

(a) 1st pass

2 4 5 8 1 9

 2 4 5 8 1 9

 2 4 5 1 8 9

(b) 2nd pass

2 4 5 1 8 9

 2 4 1 5 8 9

(c) 3rd pass

2 1 4 5 8 9

(d) 4th pass

 2 9 5 4 8 1

(e) 5th pass

 2 5 4 8 1 9

 2 4 5 1 8 9

 2 4 1 5 8 9

 1 2 4 5 8 9

Bubble Sort Example

 Example:

5

(c) Paul Fodor (CS Stony Brook) & Pearson

Bubble Sort Optimization
 The pass through the list is repeated until no swaps are needed,

which indicates that the list is sorted

 If no swap takes place in a pass, there is no need to perform the

next pass, because all the elements are already sorted!

 We can use this property to improve the previous algorithm:
boolean needNextPass = true;

for (int k = 1; k < list.length && needNextPass; k++) {

 // Array may be sorted and next pass not needed

 needNextPass = false;

 // Perform the kth pass

 for (int i = 0; i < list.length - k; i++)

 if (list[i] > list[i + 1]) {

 // swap list[i] with list[i + 1];

 needNextPass = true; // Next pass still needed

 }

}
6

(c) Paul Fodor (CS Stony Brook) & Pearson

Bubble Sort Analysis
 In the best case, the bubble sort algorithm needs just the first

pass to find that the array is already sorted—no next pass is

needed.
 Since the number of comparisons is n - 1 in the first pass, the best-

case time for a bubble sort is O(n).

7

(c) Paul Fodor (CS Stony Brook) & Pearson

Bubble Sort Analysis
 Time complexity (i.e., Worse case) :

22
12...)2()1(

2 nn
nn −=+++−+−

time: O(n2)

8

(c) Paul Fodor (CS Stony Brook) & Pearson

public class BubbleSort {

 public static void bubbleSort(int[] list) {

 boolean needNextPass = true;

 for (int k = 1; k < list.length && needNextPass; k++) {

 // Array may be sorted and next pass not needed

 needNextPass = false;

 // Perform the kth pass

 for (int i = 0; i < list.length - k; i++) {

 if (list[i] > list[i + 1]) {

 int temp = list[i];

 list[i] = list[i + 1];

 list[i + 1] = temp;

 needNextPass = true; // Next pass still needed

 }

 }

 }

 }

 public static void main(String[] args) {

 int size = 100000;

 int[] a = new int[size];

 randomInitiate(a);

 long startTime = System.currentTimeMillis();

 bubbleSort(a);

 long endTime = System.currentTimeMillis();

 System.out.println((endTime - startTime) + "ms");

 }

 private static void randomInitiate(int[] a) {

 for (int i = 0; i < a.length; i++)

 a[i] = (int) (Math.random() * a.length);

 }

}

14650ms

(c) Paul Fodor (CS Stony Brook) & Pearson

Merge Sort
 Merge sort is a divide and conquer

algorithm invented by John von

Neumann in 1945

Divide the unsorted list into n sublists,

each containing 1 element (a list of 1

element is considered sorted)

Repeatedly merge sorted sublists to

produce new sorted sublists until there

is only 1 sublist remaining
 This will be the sorted list.

10

John von Neumann

(c) Paul Fodor (CS Stony Brook) & Pearson

Merge Sort is a divide&conquer algorithm

 2 9 5 4 8 1 6 7

 2 9 5 4 8 1 6 7

split

 2 9

split

 5 4

 2

split

 9 5 4

 8 1 6 7

 8 1 6 7

 2 9

merge

 4 5 1 8 6 7

 2 4 5 9 1 6 7 8

 1 2 4 5 6 7 8 9

merge

merge

divide

conquer

11

(c) Paul Fodor (CS Stony Brook) & Pearson

How to Merge Two Sorted Lists

 2 4 5 9

 current1

 1 6 7 8

 current2

 current3

 (a) Beginning state (b) After moving 1 to temp

 2 4 5 9

 current1

 1 2

 1 6 7 8

 current2

 current3

 (c) After moving 2 to temp

 2 4 5 9

 current1

 1

 1 6 7 8

 current2

 current3

12

(c) Paul Fodor (CS Stony Brook) & Pearson

How to Merge Two Sorted Lists

After moving all the elements

in list2 to temp

 to temp

 2 4 5 9

 current1

 1 2 4 5 6 7 8 9

 1 6 7 8

 current2

 current3

After moving the rest of

list1 to temp

 2 4 5 9

 current1

 1 2 4 5 6 7 8

 1 6 7 8

 current2

 current3

13

(c) Paul Fodor (CS Stony Brook) & Pearson
14

/** Merge two sorted lists */

public static void merge(int[] list1, int[] list2, int[] temp){

 int current1 = 0; // Current index in list1

 int current2 = 0; // Current index in list2

 int current3 = 0; // Current index in temp

 while (current1 < list1.length && current2 < list2.length) {

 if (list1[current1] < list2[current2])

 temp[current3++] = list1[current1++];

 else

 temp[current3++] = list2[current2++];

 }

 while (current1 < list1.length)

 temp[current3++] = list1[current1++];

 while (current2 < list2.length)

 temp[current3++] = list2[current2++];

}

(c) Paul Fodor (CS Stony Brook) & Pearson

public static void mergeSort(int[] list) {

 if (list.length > 1) {

 // Merge sort the first half

 int[] firstHalf = new int[list.length / 2];

 System.arraycopy(list,0,firstHalf,0,list.length / 2);

 mergeSort(firstHalf);

 // Merge sort the second half

 int secondHalfLength = list.length - list.length / 2;

 int[] secondHalf = new int[secondHalfLength];

 System.arraycopy(list,list.length / 2,secondHalf,0,

 secondHalfLength);

 mergeSort(secondHalf);

 // Merge firstHalf with secondHalf into list

 merge(firstHalf, secondHalf, list);

 }

}

15

(c) Paul Fodor (CS Stony Brook) & Pearson
16

Example:

public static void main(String[] args) {

 int[] list = {14,12,2,3,2,-2,1,3,6,5};

 mergeSort(list);

 for (int x:list)

 System.out.print(x + " ");

}

-2 1 2 2 3 3 5 6 12 14

(c) Paul Fodor (CS Stony Brook) & Pearson

public class MergeSortTest {

 public static void mergeSort(int[] list) {

 if (list.length > 1) {

 // Merge sort the first half

 int[] firstHalf = new int[list.length / 2];

 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);

 mergeSort(firstHalf);

 // Merge sort the second half

 int secondHalfLength = list.length - list.length / 2;

 int[] secondHalf = new int[secondHalfLength];

 System.arraycopy(list, list.length / 2, secondHalf, 0, secondHalfLength);

 mergeSort(secondHalf);

 // Merge firstHalf with secondHalf into list

 merge(firstHalf, secondHalf, list);

 }

 }

 public static void merge(int[] list1, int[] list2, int[] temp) {

 int current1 = 0; // Current index in list1

 int current2 = 0; // Current index in list2

 int current3 = 0; // Current index in temp

 while (current1 < list1.length && current2 < list2.length) {

 if (list1[current1] < list2[current2])

 temp[current3++] = list1[current1++];

 else

 temp[current3++] = list2[current2++];

 }

 while (current1 < list1.length)

 temp[current3++] = list1[current1++];

 while (current2 < list2.length)

 temp[current3++] = list2[current2++];

 }

(c) Paul Fodor (CS Stony Brook) & Pearson

public static void main(String[] args) {

 int size = 100000;

 int[] a = new int[size];

 randomInitiate(a);

 long startTime = System.currentTimeMillis();

 mergeSort(a);

 long endTime = System.currentTimeMillis();

 System.out.println((endTime - startTime) + "ms");

 }

 private static void randomInitiate(int[] a) {

 for (int i = 0; i < a.length; i++)

 a[i] = (int) (Math.random() * a.length);

 }

}

16ms

(c) Paul Fodor (CS Stony Brook) & Pearson

Merge Sort Time Complexity
 Let T(n) denote the time required for sorting an array of

n elements using merge sort.
The merge sort algorithm splits the array into two

subarrays, sorts the subarrays using the same algorithm

recursively, and then merges the subarrays

 The first T(n/2) is the time for sorting the first half of the array

and the second T(n/2) is the time for sorting the second half

mergetime
n

T
n

TnT ++=)
2

()
2

()(

19

(c) Paul Fodor (CS Stony Brook) & Pearson

Merge Sort Time
 To merge two sorted subarrays, it takes at most n-1 comparisons to

compare the elements from the two subarrays and n moves to move

elements to the temporary array

20

(c) Paul Fodor (CS Stony Brook) & Pearson

Quick Sort
 Quick sort, developed by C. A. R. Hoare in 1962,

works as follows:

 The algorithm selects an element, called the pivot,

in the array
 could be just the first element

 Divides/partitions the array into two parts

such that all the elements in the first part are less

21

C. A. R. Hoare

than or equal to the pivot and all the elements in the second part are

 greater than the pivot
 This can be done in the same array (see how next slide)

 Recursively apply the quick sort algorithm to the first part and then the

second part

 Concatenate the first sorted part, the pivot and the second sorted part

into the final sorted list

(c) Paul Fodor (CS Stony Brook) & Pearson

Partition

with forward

and

backward

search

 5 2 9 3 8 4 0 1 6 7

pivot low high

(a) Initialize pivot, low, and high

 5 2 9 3 8 4 0 1 6 7

pivot low high

(b) Search forward and backward

 5 2 1 3 8 4 0 9 6 7

pivot low high

(c) 9 is swapped with 1

 5 2 1 3 8 4 0 9 6 7

pivot low high

(d) Continue search

 5 2 1 3 0 4 8 9 6 7

pivot low high

(e) 8 is swapped with 0

 5 2 1 3 0 4 8 9 6 7

pivot low high

(f) when high < low, search is over

 4 2 1 3 0 5 8 9 6 7

pivot

(g) pivot is in the right place

The index of the pivot is returned

22

swap elem[high] with pivot

stop when elem[low]>pivot

step when elem[high]<pivot

(c) Paul Fodor (CS Stony Brook) & Pearson

Quick Sort Example Steps

 5 2 9 3 8 4 0 1 6 7

pivot

(a) The original array

 4 2 1 3 0 5 8 9 6 7

pivot

(b)The original array is partitioned

 0 2 1 3 4
(c) The partial array (4 2 1 3 0) is

partitioned

 0 2 1 3 (d) The partial array (0 2 1 3) is

partitioned

 1 2 3

pivot

pivot

pivot

(e) The partial array (2 1 3) is

partitioned

23

(c) Paul Fodor (CS Stony Brook) & Pearson

public static void quickSort(int[] list) {

 quickSort(list, 0, list.length - 1);

}

public static void quickSort(int[] list, int first, int last) {

 if (last > first) {

 int pivotIndex = partition(list, first, last);

 quickSort(list, first, pivotIndex - 1);

 quickSort(list, pivotIndex + 1, last);

 }

}

24

(c) Paul Fodor (CS Stony Brook) & Pearson

public static int partition(int[] list, int first, int last) {

 int pivot = list[first]; // Choose the first element as pivot

 int low = first + 1; // Index for forward search

 int high = last; // Index for backward search

 while (high > low) {

 // Search forward from left

 while (low <= high && list[low] <= pivot)

 low++;

 // Search backward from right

 while (low <= high && list[high] > pivot)

 high--;

 // Swap two elements in the list

 if (high > low) {

 int temp = list[high];

 list[high] = list[low];

 list[low] = temp;

 }

 }

 // Account for duplicated elements:

 while (high > first && list[high] >= pivot)

 high--;

 // Swap pivot with list[high]

 if (pivot > list[high]) {

 list[first] = list[high];

 list[high] = pivot;

 return high;

 } else

 return first;

}
25

(c) Paul Fodor (CS Stony Brook) & Pearson

public class QuickSortTest {

 public static void quickSort(int[] list) {

 quickSort(list, 0, list.length - 1);

 }

 public static void quickSort(int[] list, int first, int last) {

 if (last > first) {

 int pivotIndex = partition(list, first, last);

 quickSort(list, first, pivotIndex - 1);

 quickSort(list, pivotIndex + 1, last);

 }

 }

 public static int partition(int[] list, int first, int last) {

 int pivot = list[first]; // Choose the first element as pivot

 int low = first + 1; // Index for forward search

 int high = last; // Index for backward search

 while (high > low) {

 // Search forward from left

 while (low <= high && list[low] <= pivot)

 low++;

 // Search backward from right

 while (low <= high && list[high] > pivot)

 high--;

 // Swap two elements in the list

 if (high > low) {

 int temp = list[high];

 list[high] = list[low];

 list[low] = temp;

 }

 }

 // Account for duplicated elements:

 while (high > first && list[high] >= pivot)

 high--;

(c) Paul Fodor (CS Stony Brook) & Pearson

// Swap pivot with list[high]

 if (pivot > list[high]) {

 list[first] = list[high];

 list[high] = pivot;

 return high;

 } else

 return first;

 }

 public static void main(String[] args) {

 int size = 100000;

 int[] a = new int[size];

 randomInitiate(a);

 long startTime = System.currentTimeMillis();

 quickSort(a);

 long endTime = System.currentTimeMillis();

 System.out.println((endTime - startTime) + "ms");

 }

 private static void randomInitiate(int[] a) {

 for (int i = 0; i < a.length; i++)

 a[i] = (int) (Math.random() * a.length);

 }

}

16ms

(c) Paul Fodor (CS Stony Brook) & Pearson

Quick Sort Time Complexity
To partition an array of n elements, it takes

n-1 comparisons and n moves in the worst case

 So, the time required for partition is O(n)

 In the worst case, each time the pivot divides the

array into one big subarray with the other empty
 The size of the big subarray is one less than the one

before divided

Therefore, the algorithm requires:

28

)(12...)2()1(2nOnn =+++−+−

(c) Paul Fodor (CS Stony Brook) & Pearson

Best-Case Time Complexity

)log()
2

()
2

()(nnOn
n

T
n

TnT =++=

29

 In the best case, each time the pivot divides the

array into two parts of about the same size

(c) Paul Fodor (CS Stony Brook) & Pearson

Average-Case Time

30

 On average, each time the pivot will not divide the array into

one empty part nor two parts of the same size
 However, statistically, the sizes of the two parts are very close =>

the average time is also O(n log n)

 Both merge sort and quick sort employ the divide-and-conquer

approach

 For merge sort, the bulk of the work is to merge two sublists
 Merge sort is more efficient than quick sort in the worst case, but the

two are equally efficient in the average case

 Merge sort requires a temporary array for sorting two

subarrays
 Quick sort does not need additional array space. Thus, quick sort is

more space efficient than merge sort.

(c) Paul Fodor (CS Stony Brook) & Pearson

Heap Sort: Binary tree
A binary tree is a hierarchical structure: it

either is empty or it consists of an element,

called the root, and two distinct binary trees,

called the left subtree and right subtree
The length of a path is the number of the edges

in the path

The depth of a node is the length of the path

from the root to that node

31

(c) Paul Fodor (CS Stony Brook) & Pearson

Complete Binary Tree
 A binary tree is complete if every level of the tree is full except

that the last level may not be full and all the leaves on the

last level are placed left-most. Examples of complete binary

trees:

 Not complete:

32

(c) Paul Fodor (CS Stony Brook) & Pearson

Binary Heap
 A binary heap is a binary tree with the following properties:

 It is a complete binary tree, and

 Each node is greater than or equal to any of its children
 Example heap:

 Example not a heap, because the root (39) is less than its right child (42)

33

(c) Paul Fodor (CS Stony Brook) & Pearson

Heap Sort
Heaps are a useful data structures for

designing efficient sorting algorithms and

priority queues

Heap sort uses a binary heap: it first adds all

the elements to a heap and then removes the

largest elements successively to obtain a

sorted list

34

(c) Paul Fodor (CS Stony Brook) & Pearson

Storing a Heap
 A heap can be stored in an ArrayList or an array if the heap size is

known in advance
 For a node at position i, its left child is at position 2i+1 and its right

child is at position 2i+2, and its parent is at index (i-1)/2 (integer

division)
 For example: the root is at position 0, and its two children are at positions 1 and 2

 The node for element 39 is at position 4, so its left child (element 14) is at 9

because(2*4+1), its right child (element 33) is at 10 because(2*4+2), and

its parent (element 42) is at 1 because((4-1)/2)

22 29 14 33 30 17 9

32 39 44 13

42 59

62
 62 42 59 32 39 44 13 22 29 14 33 30 17 9

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10][11][12][13]

[10][11]

parent

left

right

35

(c) Paul Fodor (CS Stony Brook) & Pearson

To add a new node to a heap, first add it to the end

of the heap and then rebuild the tree with this

algorithm:

Let the last node be the current node;

while (the current node is greater than its parent) {

 Swap the current node with its parent;

 Now the current node is one level up;

}

Adding Elements to a Heap

36

(c) Paul Fodor (CS Stony Brook) & Pearson

Adding Elements to the Heap

37

 Adding 88 in a heap:

 Place the new node 88 at the end of the tree

 Swap 88 with 19

 Swap 88 with 22

(c) Paul Fodor (CS Stony Brook) & Pearson

Adding Elements to the Heap

38

 Suppose a heap is initially empty. after adding numbers 3, 5, 1,

19, 11, and 22 in this order

 3

(a) After adding 3 (b) Add 5 (c) After adding 5

(d) Add 1

5

3 1

(e) Add 19

19

5

3 1

(f) Swap 19 with 3

3

5

19 1

3

5

 5

 3

(c) Paul Fodor (CS Stony Brook) & Pearson

Adding Elements to the Heap

39

 Suppose a heap is initially empty. after adding numbers 3, 5, 1,

19, 11, and 22 in this order

(g) After adding 19 …

3

19

5 1

(h) After adding 11 …

3 5

19

11 1

(i) After adding 22

3 5 1

22

11 19

(c) Paul Fodor (CS Stony Brook) & Pearson

 Often we need to remove the maximum element, which

is the root in a heap
After the root is removed, the tree must be rebuilt to

maintain the heap property using this algorithm:

Move the last node to replace the root;

Let the root be the current node;

while (the current node has children and the

current node is smaller than one of its children) {

 Swap the current node with the larger of its

 children;

 Now the current node is one level down;

}

40

Removing the Root and Rebuild the Heap

(c) Paul Fodor (CS Stony Brook) & Pearson

Removing root 62 from the heap (replaces it with the

last node in the heap: 9)

22 29 14 33 30 17 9

32 39 44 13

42 59

 62

41

Removing the Root and Rebuild the Heap

(c) Paul Fodor (CS Stony Brook) & Pearson

22 29 14 33 30 17

32 39 44 13

42 59

 9

Move 9 to root and compare it with its children

42

Removing the Root and Rebuild the Heap

(c) Paul Fodor (CS Stony Brook) & Pearson

22 29 14 33 30 17

32 39 44 13

42 9

 59
Swap 9 with 59

43

Removing the Root and Rebuild the Heap

(c) Paul Fodor (CS Stony Brook) & Pearson

22 29 14 33 30 17

32 39 9 13

42 44

 59

Swap 9 with 44

44

Removing the Root and Rebuild the Heap

(c) Paul Fodor (CS Stony Brook) & Pearson

22 29 14 33 9 17

32 39 30 13

42 44

 59

45

Swap 9 with 30

Removing the Root and Rebuild the Heap

(c) Paul Fodor (CS Stony Brook) & Pearson

The Heap Class

46

(c) Paul Fodor (CS Stony Brook) & Pearson
47

public class Heap<E extends Comparable> {

 private java.util.ArrayList<E> list = new java.util.ArrayList<E>();

 /** Create a default heap */

 public Heap() {

 }

 /** Create a heap from an array of objects */

 public Heap(E[] objects) {

 for (int i = 0; i < objects.length; i++)

 add(objects[i]);

 }

 /** Add a new object into the heap */

 public void add(E newObject) {

 list.add(newObject); // Append to the end of the heap

 int currentIndex = list.size() - 1; // The index of the last node

 while (currentIndex > 0) {

 int parentIndex = (currentIndex - 1) / 2;

 // Swap if the current object is greater than its parent

 if (list.get(currentIndex).compareTo(

 list.get(parentIndex)) > 0) {

 E temp = list.get(currentIndex);

 list.set(currentIndex, list.get(parentIndex));

 list.set(parentIndex, temp);

 } else

 break; // the tree is a heap now

 currentIndex = parentIndex;

 }

 }

(c) Paul Fodor (CS Stony Brook) & Pearson

/** Remove the root from the heap */

 public E remove() {

 if (list.size() == 0) return null;

 E removedObject = list.get(0);

 list.set(0, list.get(list.size() - 1));

 list.remove(list.size() - 1);

 int currentIndex = 0;

 while (currentIndex < list.size()) {

 int leftChildIndex = 2 * currentIndex + 1;

 int rightChildIndex = 2 * currentIndex + 2;

 // Find the maximum between two children

 if (leftChildIndex >= list.size())

 break; // The tree is a heap

 int maxIndex = leftChildIndex;

 if (rightChildIndex < list.size())

 if (list.get(maxIndex).compareTo(

 list.get(rightChildIndex)) < 0)

 maxIndex = rightChildIndex;

48

(c) Paul Fodor (CS Stony Brook) & Pearson

// Swap if the current node is less than the maximum

 if (list.get(currentIndex).compareTo(

 list.get(maxIndex)) < 0) {

 E temp = list.get(maxIndex);

 list.set(maxIndex, list.get(currentIndex));

 list.set(currentIndex, temp);

 currentIndex = maxIndex;

 }

 else

 break; // The tree is a heap

 }

 return removedObject;

 }

 /** Get the number of nodes in the tree */

 public int getSize() {

 return list.size();

 }

}

49

(c) Paul Fodor (CS Stony Brook) & Pearson

Heap Sort

50

public class HeapSort {

 public static <E extends Comparable> void heapSort(E[] list) {

 // Create a Heap of E

 Heap<E> heap = new Heap<E>();

 // Add elements to the heap

 for (int i = 0; i < list.length; i++)

 heap.add(list[i]);

 // Remove the highest elements from the heap

 for (int i = list.length - 1; i >= 0; i--)

 list[i] = heap.remove();

 }

 /** A test method */

 public static void main(String[] args) {

 Integer[] list = {2, 3, 2, 5, 6, 1, -2, 3, 14, 12};

 heapSort(list);

 for (int i = 0; i < list.length; i++)

 System.out.print(list[i] + " ");

 }

}

(c) Paul Fodor (CS Stony Brook) & Pearson
51

public class HeapSortTest {

 public static void main(String[] args) {

 int size = 100000;

 int[] a = new int[size];

 randomInitiate(a);

 Integer[] b = new Integer[a.length];

 for(int i=0; i<b.length; i++)

 b[i] = a[i];

 long startTime = System.currentTimeMillis();

 HeapSort.heapSort(b);

 long endTime = System.currentTimeMillis();

 System.out.println((endTime - startTime) + "ms");

 }

 private static void randomInitiate(int[] a) {

 for (int i = 0; i < a.length; i++)

 a[i] = (int) (Math.random() * a.length);

 }

}

76ms

(c) Paul Fodor (CS Stony Brook) & Pearson

 Let h denote the height for a heap of n elements. Since a heap

is a complete binary tree, the first level has 1 node, the second

level has 2 nodes, the kth level has 2(k-1) nodes, the (h-1)th level

has 2(h-2) nodes, and the hth level has at least one node and at

most 2(h-1) nodes. Therefore,

 Let h denote the height for a heap of n elements. Since a heap

is a complete binary tree, the first level has 1 node, the second

level has 2 nodes, the kth level has 2(k-1) nodes, the (h-1)th level

has 2(h-2) nodes, and the hth level has at least one node and at

most 2(h-1) nodes. Therefore, the number of nodes n is:

 Thus, log(n + 1) ≤ h < log(n + 1) + 1

 Hence, the height of the heap is O(log n)

Heap Sort Time Complexity

122 22...212...21 −−− +++++++ hhh n

1212 1 −−− hh n

hh n 212 1 +−

hh n 2log)1log(2log 1 +−

hnh +−)1log(1

52

(c) Paul Fodor (CS Stony Brook) & Pearson

 Since the add method traces a path from a leaf to a

root, it takes at most h = log n steps to add a new

element to the heap.

 Thus, the total time for constructing an initial heap is

 O(n log n) for an array of n elements.

 Since the remove method traces a path from a root to a

leaf, it takes at most h = log n steps to rebuild a heap

after removing the root from the heap.

 Since the remove method is invoked n times, the

total time for producing a sorted array from a heap is

O(n log n)

Heap Add and Remove Time

53

(c) Paul Fodor (CS Stony Brook) & Pearson

 Heap Sort Time: O(n log n)

 Merge sort requires a temporary array for

merging two subarrays; a heap sort does not

need additional array space.
 Therefore, a heap sort is more space efficient than a

merge sort.

Heap Sort Time Complexity

54

(c) Paul Fodor (CS Stony Brook) & Pearson

Bucket Sort and Radix Sort
 All sort algorithms discussed so far are general sorting

algorithms that work for any types of keys (e.g.,

integers, strings, and any comparable objects)
 These algorithms sort the elements by comparing their keys

 The lower bound for general sorting algorithms is O(n logn)

So, no sorting algorithms based on comparisons can

perform better than O(n logn)

 However, if the keys are "small" integers, you can use

bucket sort without having to compare the keys

55

(c) Paul Fodor (CS Stony Brook) & Pearson

Bucket Sort
 The bucket sort algorithms:

 Assume the keys are in the range from 0 to t

 We need t+1 buckets labeled 0, 1, ..., and t

 If an element’s key is i, the element is put into the bucket i
 Each bucket holds the elements with the same key value

 You can use an ArrayList to implement each bucket element

56

(c) Paul Fodor (CS Stony Brook) & Pearson

Bucket Sort

57

static int t;

 public static <E> void bucketSort(E[] list) {

 java.util.ArrayList<E>[] bucket = new java.util.ArrayList[t+1];

 // Distribute the elements from list to buckets

 for (int i = 0; i < list.length; i++) {

 // Assume element has the getKey() method

 int key = getKey(list[i]); // list[i].getKey()

 if (bucket[key] == null)

 bucket[key] = new java.util.ArrayList<E>();

 bucket[key].add(list[i]);

 }

 // Now move the elements from the buckets back to list

 int k = 0; // k is an index for list

 for (int i = 0; i < bucket.length; i++)

 if (bucket[i] != null)

 for (int j = 0; j < bucket[i].size(); j++)

 list[k++] = bucket[i].get(j);

 }

(c) Paul Fodor (CS Stony Brook) & Pearson

Bucket Sort
 Takes O(n + t) time to sort the list and uses O(n + t) space,

where n is the list size and t is the number of buckets

 Bucket sort is stable, meaning that if two elements in the original

list have the same key value, their order is not changed in the

sorted list.
 That is, if element e1 and element e2 have the same key and e1

precedes e2 in the original list, e1 still precedes e2 in the sorted

list

 For sorting positive integers, if t is too large, using the bucket

sort is not desirable
 Instead, you can use a radix sort

 The radix sort is based on the bucket sort, but a radix sort uses only

ten buckets
58

(c) Paul Fodor (CS Stony Brook) & Pearson

Radix Sort
Assume that the keys are positive integers

The idea for the radix sort is to divide the

keys into subgroups based on their

radix/digits positions
It applies a bucket sort repeatedly for the key

values on radix positions, starting from the

least-significant position

59

(c) Paul Fodor (CS Stony Brook) & Pearson

Radix Sort
 Bucket sort 331, 454, 230, 34, 343, 45, 59, 453, 345, 231, 9

 Remove elements from the buckets and bucket sort by 2nd digit:

230, 331, 231, 343, 453, 454, 34, 45, 345, 59, 09

009, 230, 331, 231, 034, 343, 045, 345, 453, 454,59

60
9, 34, 45, 59, 230, 231, 331, 343, 345, 453, 454

(c) Paul Fodor (CS Stony Brook) & Pearson

Radix Sort
Radix sort takes O(d*n) time to sort n

elements with integer keys, where d is the

maximum number of the radix positions

among all keys

61

(c) Paul Fodor (CS Stony Brook) & Pearson
62

public class RadixSort {

 static int t = 10;

 public static void bucketSort(int[] list) {

 java.util.ArrayList<Integer>[] bucket =new java.util.ArrayList[t+1];

 // Distribute the elements from list to buckets

 for (int i = 0; i < list.length; i++) {

 // Assume element has the getKey() method

 int key = getKey(list[i]);

 if (bucket[key] == null)

 bucket[key] = new java.util.ArrayList<Integer>();

 bucket[key].add(list[i]);

 }

 // Now move the elements from the buckets back to list

 int k = 0; // k is an index for list

 for (int i = 0; i < bucket.length; i++) {

 if (bucket[i] != null) {

 for (int j = 0; j < bucket[i].size(); j++)

 list[k++] = (int)(bucket[i].get(j));

 }

 }

 }

 static int radix = 0;

 public static int getKey(int n) { // get the n'th digit from right

 for(int i=0; i<radix; i++)

 n = n / 10;

 return n % 10;

 }

(c) Paul Fodor (CS Stony Brook) & Pearson
63

public static void main(String[] args) {

 int size = 100000;

 int[] a = new int[size];

 randomInitiate(a);

 long startTime = System.currentTimeMillis();

 // radix sort

 for(int i=0; i<6; i++) { // run bucketSort for 6 digits

 radix = i; // starting from right

 bucketSort(a);

 }

 long endTime = System.currentTimeMillis();

 System.out.println((endTime - startTime) + "ms");

 }

 private static void randomInitiate(int[] a) {

 for (int i = 0; i < a.length; i++)

 a[i] = (int) (Math.random() * a.length);

 }

}

433ms

(c) Paul Fodor (CS Stony Brook) & Pearson

External Sort
All the sort algorithms discussed in the preceding

sections assume that all data to be sorted is

available at one time in internal memory such as an

array

To sort data stored in an external file, you may

first bring data to the memory, then sort it

internally.

However, if the file is too large, all data in the file

cannot be brought to memory at one time

64

(c) Paul Fodor (CS Stony Brook) & Pearson

Phase I
 Repeatedly bring partial data from the file to an array,

sort the array using an internal sorting algorithm, and

output the data from the array to a temporary file

Program

Array

 ……

Original file

Temporary file

 S1 S2 Sk

65

(c) Paul Fodor (CS Stony Brook) & Pearson

Phase II
 Merge pairs of sorted segments (e.g., S1 with S2, S3

with S4, ..., and so on) into a larger sorted segment and

save the new segment into a new temporary file

 Continue the same process until one sorted segment

results

 S1 S2 S3 S4 S5 S6 S7 S8

Sk

 S1, S2 merged S3, S4 merged S5, S6 merged S7, S8 merged

 S1, S2, S3, S4 merged S5, S6 , S7, S8 merged

 S1, S2, S3, S4 , S5, S6 , S7, S8 merged

Merge

Merge

Merge

66

(c) Paul Fodor (CS Stony Brook) & Pearson

Implementing Phase II
 A segment is too large to be brought to an array in memory

 To implement a merge step, copy half number of segments

from file f1.dat to a temporary file f2.dat.

 Then merge the first remaining segment in f1.dat with the first

segment in f2.dat into a temporary file named f3.dat.

67

 S1 S2 S3 S4 S5 S6 S7 S8

Sk

 S1, S5 merged S2, S6 merged S3, S7 merged S4, S8 merged

f1.dat

 S1 S2 S3 S4 f2.dat
Copy to f2.dat

f3.dat

(c) Paul Fodor (CS Stony Brook) & Pearson

External Sort Complexity
 In the external sort, the dominating cost is that of I/O.
 Assume n is the number of elements to be sorted in the file

 In Phase I, n number of elements are read from the

original file and output to a temporary file, therefore, the

I/O for Phase I is O(n).

68

(c) Paul Fodor (CS Stony Brook) & Pearson

External Sort Complexity
 In Phase II, before the first merge step, the number of

sorted segments is n/c, where c is MAX_ARRAY_SIZE
 Each merge step reduces the number of segments by half

 After the first merge step, the number of segments is

 n/c * 1/2 = n/2c

 After the second merge step, the number of segments is

 n/2c * 1/2 = n/(22c)

 After the third merge step the number of segments is n/23c

 After log(n/c) merge steps, the number of segments is

reduced to 1

 Therefore, the total number of merge steps is log(n/c)

69

(c) Paul Fodor (CS Stony Brook) & Pearson

External Sort Complexity
 In each merge step, half the number of segments are read from

file f1 and then written into a temporary file f2 - the remaining

segments in f1 are merged with the segments in f2

 The number of I/Os in each merge step is O(n)

 Since the total number of merge steps is log(n/c), the total

number of I/Os in Step 2 is:

 O(n)*log(n/c) = O(n log n)

 Therefore, the complexity of the external sort is

O(n log n) in I/Os

70

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.io.*;

public class CreateLargeFile {

 public static void main(String[] args) throws Exception {

 DataOutputStream output = new DataOutputStream(

 new BufferedOutputStream(new FileOutputStream("largedata.dat")));

 for (int i = 0; i < 800004; i++)

 output.writeInt((int)(Math.random() * 1000000));

 output.close();

 // Display first 100 numbers

 DataInputStream input =

 new DataInputStream(new FileInputStream("largedata.dat"));

 for (int i = 0; i < 100; i++)

 System.out.print(input.readInt() + " ");

 input.close();

 }

}

71

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.io.*;

public class SortLargeFile {

 public static final int MAX_ARRAY_SIZE = 43;

 public static final int BUFFER_SIZE = 100000;

 public static void main(String[] args) throws Exception {

 // Sort largedata.dat to sortedfile.dat

 sort("largedata.dat", "sortedfile.dat");

 // Display the first 100 numbers in the sorted file

 displayFile("sortedfile.dat");

 }

 /** Sort data in source file and into target file */

 public static void sort(String sourcefile, String targetfile)

 throws Exception {

 // Implement Phase 1: Create initial segments

 int numberOfSegments =

 initializeSegments(MAX_ARRAY_SIZE, sourcefile, "f1.dat");

 // Implement Phase 2: Merge segments recursively

 merge(numberOfSegments, MAX_ARRAY_SIZE,

 "f1.dat", "f2.dat", "f3.dat", targetfile);

 }

72

(c) Paul Fodor (CS Stony Brook) & Pearson

/** Sort original file into sorted segments */

 private static int initializeSegments

 (int segmentSize, String originalFile, String f1)

 throws Exception {

 int[] list = new int[segmentSize];

 DataInputStream input = new DataInputStream(

 new BufferedInputStream(new FileInputStream(originalFile)));

 DataOutputStream output = new DataOutputStream(

 new BufferedOutputStream(new FileOutputStream(f1)));

 int numberOfSegments = 0;

 while (input.available() > 0) {

 numberOfSegments++;

 int i = 0;

 for (; input.available() > 0 && i < segmentSize; i++) {

 list[i] = input.readInt();

 }

 // Sort an array list[0..i-1]

 java.util.Arrays.sort(list, 0, i);

 // Write the array to f1.dat

 for (int j = 0; j < i; j++) {

 output.writeInt(list[j]);

 }

 }

 input.close();

 output.close();

 return numberOfSegments;

 }
73

(c) Paul Fodor (CS Stony Brook) & Pearson

private static void merge(int numberOfSegments, int segmentSize,

 String f1, String f2, String f3, String targetfile)

 throws Exception {

 if (numberOfSegments > 1) {

 mergeOneStep(numberOfSegments, segmentSize, f1, f2, f3);

 merge((numberOfSegments + 1) / 2, segmentSize * 2,

 f3, f1, f2, targetfile);

 }

 else { // Rename f1 as the final sorted file

 File sortedFile = new File(targetfile);

 if (sortedFile.exists()) sortedFile.delete();

 new File(f1).renameTo(sortedFile);

 }

 }

 private static void mergeOneStep(int numberOfSegments,

 int segmentSize, String f1, String f2, String f3)

 throws Exception {

 DataInputStream f1Input = new DataInputStream(

 new BufferedInputStream(new FileInputStream(f1), BUFFER_SIZE));

 DataOutputStream f2Output = new DataOutputStream(

 new BufferedOutputStream(new FileOutputStream(f2), BUFFER_SIZE));

 // Copy half number of segments from f1.dat to f2.dat

 copyHalfToF2(numberOfSegments, segmentSize, f1Input, f2Output);

 f2Output.close();74

(c) Paul Fodor (CS Stony Brook) & Pearson

// Merge remaining segments in f1 with segments in f2 into f3

 DataInputStream f2Input = new DataInputStream(

 new BufferedInputStream(new FileInputStream(f2), BUFFER_SIZE));

 DataOutputStream f3Output = new DataOutputStream(

 new BufferedOutputStream(new FileOutputStream(f3), BUFFER_SIZE));

 mergeSegments(numberOfSegments / 2,

 segmentSize, f1Input, f2Input, f3Output);

 f1Input.close();

 f2Input.close();

 f3Output.close();

 }

 /** Copy first half number of segments from f1.dat to f2.dat */

 private static void copyHalfToF2(int numberOfSegments,

 int segmentSize, DataInputStream f1, DataOutputStream f2)

 throws Exception {

 for (int i = 0; i < (numberOfSegments / 2) * segmentSize; i++) {

 f2.writeInt(f1.readInt());

 }

 }

75

(c) Paul Fodor (CS Stony Brook) & Pearson

/** Merge all segments */

 private static void mergeSegments(int numberOfSegments,

 int segmentSize, DataInputStream f1, DataInputStream f2,

 DataOutputStream f3) throws Exception {

 for (int i = 0; i < numberOfSegments; i++) {

 mergeTwoSegments(segmentSize, f1, f2, f3);

 }

 // If f1 has one extra segment, copy it to f3

 while (f1.available() > 0) {

 f3.writeInt(f1.readInt());

 }

 }

 /** Merges two segments */

 private static void mergeTwoSegments(int segmentSize,

 DataInputStream f1, DataInputStream f2,

 DataOutputStream f3) throws Exception {

 int intFromF1 = f1.readInt();

 int intFromF2 = f2.readInt();

 int f1Count = 1;

 int f2Count = 1;

76

(c) Paul Fodor (CS Stony Brook) & Pearson
77

while (true) {

 if (intFromF1 < intFromF2) {

 f3.writeInt(intFromF1);

 if (f1.available() == 0 || f1Count++ >= segmentSize) {

 f3.writeInt(intFromF2);

 break;

 } else {

 intFromF1 = f1.readInt();

 }

 } else {

 f3.writeInt(intFromF2);

 if (f2.available() == 0 || f2Count++ >= segmentSize) {

 f3.writeInt(intFromF1);

 break;

 } else {

 intFromF2 = f2.readInt();

 }

 }

 }

 while (f1.available() > 0 && f1Count++ < segmentSize) {

 f3.writeInt(f1.readInt());

 }

 while (f2.available() > 0 && f2Count++ < segmentSize) {

 f3.writeInt(f2.readInt());

 }

 }

(c) Paul Fodor (CS Stony Brook) & Pearson
78

/** Display the first 100 numbers in the specified file */

 public static void displayFile(String filename) {

 try {

 DataInputStream input =

 new DataInputStream(new FileInputStream(filename));

 for (int i = 0; i < 100; i++)

 System.out.print(input.readInt() + " ");

 input.close();

 }

 catch (IOException ex) {

 ex.printStackTrace();

 }

 }

}

	Slide 1: Sorting
	Slide 2: Objectives
	Slide 3: What data to sort?
	Slide 4: Bubble Sort
	Slide 5: Bubble Sort Example
	Slide 6: Bubble Sort Optimization
	Slide 7: Bubble Sort Analysis
	Slide 8: Bubble Sort Analysis
	Slide 9
	Slide 10: Merge Sort
	Slide 11: Merge Sort is a divide&conquer algorithm
	Slide 12: How to Merge Two Sorted Lists
	Slide 13: How to Merge Two Sorted Lists
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Merge Sort Time Complexity
	Slide 20: Merge Sort Time
	Slide 21: Quick Sort
	Slide 22: Partition with forward and backward search
	Slide 23: Quick Sort Example Steps
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Quick Sort Time Complexity
	Slide 29: Best-Case Time Complexity
	Slide 30: Average-Case Time
	Slide 31: Heap Sort: Binary tree
	Slide 32: Complete Binary Tree
	Slide 33: Binary Heap
	Slide 34: Heap Sort
	Slide 35: Storing a Heap
	Slide 36: Adding Elements to a Heap
	Slide 37: Adding Elements to the Heap
	Slide 38: Adding Elements to the Heap
	Slide 39: Adding Elements to the Heap
	Slide 40: Removing the Root and Rebuild the Heap
	Slide 41: Removing the Root and Rebuild the Heap
	Slide 42: Removing the Root and Rebuild the Heap
	Slide 43: Removing the Root and Rebuild the Heap
	Slide 44: Removing the Root and Rebuild the Heap
	Slide 45: Removing the Root and Rebuild the Heap
	Slide 46: The Heap Class
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Heap Sort
	Slide 51
	Slide 52: Heap Sort Time Complexity
	Slide 53: Heap Add and Remove Time
	Slide 54: Heap Sort Time Complexity
	Slide 55: Bucket Sort and Radix Sort
	Slide 56: Bucket Sort
	Slide 57: Bucket Sort
	Slide 58: Bucket Sort
	Slide 59: Radix Sort
	Slide 60: Radix Sort
	Slide 61: Radix Sort
	Slide 62
	Slide 63
	Slide 64: External Sort
	Slide 65: Phase I
	Slide 66: Phase II
	Slide 67: Implementing Phase II
	Slide 68: External Sort Complexity
	Slide 69: External Sort Complexity
	Slide 70: External Sort Complexity
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

