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Objectives
 To study and analyze time complexity of various sorting 

algorithms

To design, implement, and analyze bubble sort 

To design, implement, and analyze merge sort 

To design, implement, and analyze quick sort 

To design and implement a binary heap 

To design, implement, and analyze heap sort 

To design, implement, and analyze bucket sort and 

radix sort 

To design, implement, and analyze external sort for 

files that have a large amount of data 
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What data to sort?
 The data to be sorted might be integers, doubles, 

characters, Strings or any objects that are comparable.

 For simplicity, we assume: 

data to be sorted are integers

data is sorted in ascending order 

data is stored in an array 
 The programs can be easily modified to sort other types of data, to sort in descending 

order, or to sort data in an ArrayList or a LinkedList. 

 LinkedList might be more efficient for some operations (no shifting 

required to insert/delete an element at any position of the array), but overall 

complexity stays the same

 The Java API contains several overloaded sort methods for sorting 

primitive type values and objects in the java.util.Arrays and 

java.util.Collections class. 3
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Bubble Sort
Repeatedly steps through the list to be sorted, compares each pair of 

adjacent items and swaps them if they are in the wrong order 

for (int k = 1; k < list.length; k++) {

  // Perform the kth pass

  for (int i = 0; i < list.length - k; i++) {

    if (list[i] > list[i + 1])

      // swap list[i] with list[i + 1];

      ...

  }

}

 After the first pass, the last element becomes the largest in the array 

 After the second pass, the second-to-last element becomes the 

second largest in the array 
 It is called "bubble" sort because the large values gradually "bubble" to the top (end 

of the array)

 It is also called "sinking sort" because the smaller values gradually “sink” their way 

to the bottom (beginning of the array)
4
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Bubble Sort Example

 Example:
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Bubble Sort Optimization
 The pass through the list is repeated until no swaps are needed, 

which indicates that the list is sorted 

 If no swap takes place in a pass, there is no need to perform the 

next pass, because all the elements are already sorted!

 We can use this property to improve the previous algorithm:
boolean needNextPass = true;

for (int k = 1; k < list.length && needNextPass; k++) {

  // Array may be sorted and next pass not needed

  needNextPass = false;

  // Perform the kth pass

  for (int i = 0; i < list.length - k; i++) 

    if (list[i] > list[i + 1]) {

      // swap list[i] with list[i + 1];

      needNextPass = true; // Next pass still needed

    }

}
6
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Bubble Sort Analysis
 In the best case, the bubble sort algorithm needs just the first 

pass to find that the array is already sorted—no next pass is 

needed. 
 Since the number of comparisons is n - 1 in the first pass, the best-

case time for a bubble sort is O(n).
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Bubble Sort Analysis
 Time complexity (i.e., Worse case) :
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public class BubbleSort {

  public static void bubbleSort(int[] list) {

    boolean needNextPass = true;

    for (int k = 1; k < list.length && needNextPass; k++) {

      // Array may be sorted and next pass not needed

      needNextPass = false;

      // Perform the kth pass

      for (int i = 0; i < list.length - k; i++) {

        if (list[i] > list[i + 1]) {

          int temp = list[i];

  list[i] = list[i + 1];

  list[i + 1] = temp;

          needNextPass = true; // Next pass still needed

        }

      }

    }

  }

  public static void main(String[] args) {

    int size = 100000;

    int[] a = new int[size];

    randomInitiate(a);

    long startTime = System.currentTimeMillis();

    bubbleSort(a);

    long endTime = System.currentTimeMillis();

    System.out.println((endTime - startTime) + "ms");

  }

  private static void randomInitiate(int[] a) {

    for (int i = 0; i < a.length; i++)

      a[i] = (int) (Math.random() * a.length);

  }

}

14650ms
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Merge Sort
 Merge sort is a divide and conquer 

algorithm invented by John von 

Neumann in 1945

Divide the unsorted list into n sublists, 

each containing 1 element (a list of 1 

element is considered sorted)

Repeatedly merge sorted sublists to 

produce new sorted sublists until there 

is only 1 sublist remaining 
 This will be the sorted list.

10
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Merge Sort is a divide&conquer algorithm
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How to Merge Two Sorted Lists
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How to Merge Two Sorted Lists
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/** Merge two sorted lists */

public static void merge(int[] list1, int[] list2, int[] temp){

  int current1 = 0; // Current index in list1

  int current2 = 0; // Current index in list2

  int current3 = 0; // Current index in temp

  while (current1 < list1.length && current2 < list2.length) {

    if (list1[current1] < list2[current2])

      temp[current3++] = list1[current1++];

    else

      temp[current3++] = list2[current2++];

  }

  while (current1 < list1.length)

    temp[current3++] = list1[current1++];

  while (current2 < list2.length)

    temp[current3++] = list2[current2++];

}
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public static void mergeSort(int[] list) {

 if (list.length > 1) {

  // Merge sort the first half

  int[] firstHalf = new int[list.length / 2];

  System.arraycopy(list,0,firstHalf,0,list.length / 2);

  mergeSort(firstHalf);

 

  // Merge sort the second half

  int secondHalfLength = list.length - list.length / 2;

  int[] secondHalf = new int[secondHalfLength];

  System.arraycopy(list,list.length / 2,secondHalf,0,

 secondHalfLength);

  mergeSort(secondHalf);

  // Merge firstHalf with secondHalf into list

  merge(firstHalf, secondHalf, list);

 }

}

15
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Example:

public static void main(String[] args) {

  int[] list = {14,12,2,3,2,-2,1,3,6,5};

  mergeSort(list);

  for (int x:list)

    System.out.print(x + " ");

}

-2 1 2 2 3 3 5 6 12 14
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public class MergeSortTest {

  public static void mergeSort(int[] list) {

    if (list.length > 1) {

      // Merge sort the first half

      int[] firstHalf = new int[list.length / 2];

      System.arraycopy(list, 0, firstHalf, 0, list.length / 2);

      mergeSort(firstHalf);

      // Merge sort the second half

      int secondHalfLength = list.length - list.length / 2;

      int[] secondHalf = new int[secondHalfLength];

      System.arraycopy(list, list.length / 2, secondHalf, 0, secondHalfLength);

      mergeSort(secondHalf);

      // Merge firstHalf with secondHalf into list

      merge(firstHalf, secondHalf, list);

    }

  }

  public static void merge(int[] list1, int[] list2, int[] temp) {

    int current1 = 0; // Current index in list1

    int current2 = 0; // Current index in list2

    int current3 = 0; // Current index in temp

    while (current1 < list1.length && current2 < list2.length) {

      if (list1[current1] < list2[current2])

        temp[current3++] = list1[current1++];

      else

        temp[current3++] = list2[current2++];

    }

    while (current1 < list1.length)

      temp[current3++] = list1[current1++];

    while (current2 < list2.length)

      temp[current3++] = list2[current2++];

  }
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public static void main(String[] args) {

    int size = 100000;

    int[] a = new int[size];

    randomInitiate(a);

    long startTime = System.currentTimeMillis();

    mergeSort(a);

    long endTime = System.currentTimeMillis();

    System.out.println((endTime - startTime) + "ms");

  }

  private static void randomInitiate(int[] a) {

    for (int i = 0; i < a.length; i++)

      a[i] = (int) (Math.random() * a.length);

  }

}

16ms
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Merge Sort Time Complexity
 Let T(n) denote the time required for sorting an array of  

n elements using merge sort. 
The merge sort algorithm splits the array into two 

subarrays, sorts the subarrays using the same algorithm 

recursively, and then merges the subarrays 

 The first T(n/2) is the time for sorting the first half of the array 

and the second T(n/2) is the time for sorting the second half

mergetime
n

T
n

TnT ++= )
2

()
2

()(
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Merge Sort Time
 To merge two sorted subarrays, it takes at most n-1 comparisons to 

compare the elements from the two subarrays and n moves to move 

elements to the temporary array

20
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Quick Sort
 Quick sort, developed by C. A. R. Hoare in 1962, 

works as follows: 

 The algorithm selects an element, called the pivot, 

in the array
 could be just the first element

 Divides/partitions the array into two parts 

such that all the elements in the first part are less 

21

C. A. R. Hoare

than or equal to the pivot and all the elements in the second part are 

   greater than the pivot
 This can be done in the same array (see how next slide)

 Recursively apply the quick sort algorithm to the first part and then the 

second part

 Concatenate the first sorted part, the pivot and the second sorted part 

into the final sorted list
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22

swap elem[high] with pivot

stop when elem[low]>pivot

step when elem[high]<pivot
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Quick Sort Example Steps
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public static void quickSort(int[] list) {

  quickSort(list, 0, list.length - 1);

}

public static void quickSort(int[] list, int first, int last) {

  if (last > first) {

    int pivotIndex = partition(list, first, last);

    quickSort(list, first, pivotIndex - 1);

    quickSort(list, pivotIndex + 1, last);

  }

}

24
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public static int partition(int[] list, int first, int last) {

 int pivot = list[first]; // Choose the first element as pivot

 int low = first + 1; // Index for forward search

 int high = last; // Index for backward search

 while (high > low) {

   // Search forward from left

   while (low <= high && list[low] <= pivot)

     low++;

   // Search backward from right

   while (low <= high && list[high] > pivot)

     high--;

    // Swap two elements in the list

    if (high > low) {

      int temp = list[high];

      list[high] = list[low];

      list[low] = temp;

    }

  }

  // Account for duplicated elements:

  while (high > first && list[high] >= pivot)

    high--;

  // Swap pivot with list[high]

  if (pivot > list[high]) {

    list[first] = list[high];

    list[high] = pivot;

    return high;

  } else 

    return first;

}
25
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public class QuickSortTest {

  public static void quickSort(int[] list) {

    quickSort(list, 0, list.length - 1);

  }

  public static void quickSort(int[] list, int first, int last) {

    if (last > first) {

      int pivotIndex = partition(list, first, last);

      quickSort(list, first, pivotIndex - 1);

      quickSort(list, pivotIndex + 1, last);

    }

  }

  public static int partition(int[] list, int first, int last) {

    int pivot = list[first]; // Choose the first element as pivot

    int low = first + 1; // Index for forward search

    int high = last; // Index for backward search

    while (high > low) {

      // Search forward from left

      while (low <= high && list[low] <= pivot)

        low++;

      // Search backward from right

      while (low <= high && list[high] > pivot)

        high--;

      // Swap two elements in the list

      if (high > low) {

        int temp = list[high];

        list[high] = list[low];

        list[low] = temp;

      }

    }

    // Account for duplicated elements:

    while (high > first && list[high] >= pivot)

      high--;
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// Swap pivot with list[high]

    if (pivot > list[high]) {

      list[first] = list[high];

      list[high] = pivot;

      return high;

    } else 

      return first;

  }

  public static void main(String[] args) {

    int size = 100000;

    int[] a = new int[size];

    randomInitiate(a);

    long startTime = System.currentTimeMillis();

    quickSort(a);

    long endTime = System.currentTimeMillis();

    System.out.println((endTime - startTime) + "ms");

  }

  private static void randomInitiate(int[] a) {

    for (int i = 0; i < a.length; i++)

      a[i] = (int) (Math.random() * a.length);

  }

}

16ms
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Quick Sort Time Complexity
To partition an array of n elements, it takes 

n-1 comparisons and n moves in the worst case

 So, the time required for partition is O(n)

 In the worst case, each time the pivot divides the 

array into one big subarray with the other empty
 The size of the big subarray is one less than the one 

before divided

Therefore, the algorithm requires:

28
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Best-Case Time Complexity

)log()
2

()
2
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n

T
n

TnT =++=
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 In the best case, each time the pivot divides the 

array into two parts of about the same size
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Average-Case Time

30

 On average, each time the pivot will not divide the array into  

one empty part nor two parts of the same size
 However, statistically, the sizes of the two parts are very close => 

the average time is also O(n log n)

 Both merge sort and quick sort employ the divide-and-conquer 

approach

 For merge sort, the bulk of the work is to merge two sublists
 Merge sort is more efficient than quick sort in the worst case, but the 

two are equally efficient in the average case

 Merge sort requires a temporary array for sorting two 

subarrays
 Quick sort does not need additional array space. Thus, quick sort is 

more space efficient than merge sort.
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Heap Sort: Binary tree
A binary tree is a hierarchical structure: it 

either is empty or it consists of an element, 

called the root, and two distinct binary trees, 

called the left subtree and right subtree 
The length of a path is the number of the edges 

in the path

The depth of a node is the length of the path 

from the root to that node

31
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Complete Binary Tree
 A binary tree is complete if every level of the tree is full except 

that the last level may not be full and all the leaves on the 

last level are placed left-most. Examples of complete binary 

trees:

 Not complete:

32



(c) Paul Fodor (CS Stony Brook) & Pearson

Binary Heap
 A binary heap is a binary tree with the following properties:

 It is a complete binary tree, and

 Each node is greater than or equal to any of its children
 Example heap:

 Example not a heap, because the root (39) is less than its right child (42)

33
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Heap Sort
Heaps are a useful data structures for 

designing efficient sorting algorithms and 

priority queues

Heap sort uses a binary heap: it first adds all 

the elements to a heap and then removes the 

largest elements successively to obtain a 

sorted list

34
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Storing a Heap
 A heap can be stored in an ArrayList or an array if the heap size is 

known in advance
 For a node at position i, its left child is at position 2i+1 and its right 

child is at position 2i+2, and its parent is at index (i-1)/2 (integer 

division)
 For example: the root is at position 0, and its two children are at positions 1 and 2

 The node for element 39 is at position 4, so its left child (element 14) is at 9 

because(2*4+1), its right child (element 33) is at 10 because(2*4+2), and 

its parent (element 42) is at 1 because((4-1)/2)
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To add a new node to a heap, first add it to the end 

of the heap and then rebuild the tree with this 

algorithm: 

Let the last node be the current node;

while (the current node is greater than its parent) {

  Swap the current node with its parent;

  Now the current node is one level up;

}

Adding Elements to a Heap

36
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Adding Elements to the Heap

37

 Adding 88 in a heap:

 Place the new node 88 at the end of the tree

 Swap 88 with 19

 Swap 88 with 22
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Adding Elements to the Heap

38

 Suppose a heap is initially empty. after adding numbers 3, 5, 1, 

19, 11, and 22 in this order
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Adding Elements to the Heap

39

 Suppose a heap is initially empty. after adding numbers 3, 5, 1, 

19, 11, and 22 in this order

 

(g) After adding 19  …  
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11                19 
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 Often we need to remove the maximum element, which 

is the root in a heap 
After the root is removed, the tree must be rebuilt to 

maintain the heap property using this algorithm:

Move the last node to replace the root;

Let the root be the current node;

while (the current node has children and the 

current node is smaller than one of its children) {

  Swap the current node with the larger of its 

    children;

  Now the current node is one level down;

}

40

Removing the Root and Rebuild the Heap
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Removing root 62 from the heap (replaces it with the 

last node in the heap: 9)
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41

Removing the Root and Rebuild the Heap
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42

Removing the Root and Rebuild the Heap
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43

Removing the Root and Rebuild the Heap
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Removing the Root and Rebuild the Heap



(c) Paul Fodor (CS Stony Brook) & Pearson

 
22     29     14     33       9     17              

32              39              30             13 

42                              44  

  59 

45

Swap 9 with 30

Removing the Root and Rebuild the Heap
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The Heap Class

46



(c) Paul Fodor (CS Stony Brook) & Pearson
47

public class Heap<E extends Comparable> {

  private java.util.ArrayList<E> list = new java.util.ArrayList<E>();

  /** Create a default heap */

  public Heap() {

  }

  /** Create a heap from an array of objects */

  public Heap(E[] objects) {

    for (int i = 0; i < objects.length; i++)

      add(objects[i]);

  }

  /** Add a new object into the heap */

  public void add(E newObject) {

    list.add(newObject); // Append to the end of the heap

   int currentIndex = list.size() - 1; // The index of the last node

    while (currentIndex > 0) {

      int parentIndex = (currentIndex - 1) / 2;

      // Swap if the current object is greater than its parent

      if (list.get(currentIndex).compareTo(

          list.get(parentIndex)) > 0) {

        E temp = list.get(currentIndex);

        list.set(currentIndex, list.get(parentIndex));

        list.set(parentIndex, temp);

      } else 

        break; // the tree is a heap now

      currentIndex = parentIndex;

    }

  }
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/** Remove the root from the heap */

  public E remove() {

    if (list.size() == 0) return null;

    E removedObject = list.get(0);

    list.set(0, list.get(list.size() - 1));

    list.remove(list.size() - 1);

    int currentIndex = 0;

    while (currentIndex < list.size()) {

      int leftChildIndex = 2 * currentIndex + 1;

      int rightChildIndex = 2 * currentIndex + 2;

      // Find the maximum between two children

      if (leftChildIndex >= list.size()) 

        break; // The tree is a heap

      int maxIndex = leftChildIndex;

      if (rightChildIndex < list.size()) 

        if (list.get(maxIndex).compareTo(

            list.get(rightChildIndex)) < 0) 

          maxIndex = rightChildIndex;
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// Swap if the current node is less than the maximum

      if (list.get(currentIndex).compareTo(

          list.get(maxIndex)) < 0) {

        E temp = list.get(maxIndex);

        list.set(maxIndex, list.get(currentIndex));

        list.set(currentIndex, temp);

        currentIndex = maxIndex;

      }

      else

        break; // The tree is a heap

    }

    return removedObject;

  }

  /** Get the number of nodes in the tree */

  public int getSize() {

    return list.size();

  }

}
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Heap Sort

50

public class HeapSort {

  public static <E extends Comparable> void heapSort(E[] list) {

    // Create a Heap of E

    Heap<E> heap = new Heap<E>();

    // Add elements to the heap

    for (int i = 0; i < list.length; i++)

      heap.add(list[i]);

    // Remove the highest elements from the heap

    for (int i = list.length - 1; i >= 0; i--)

      list[i] = heap.remove();

  }

  

  /** A test method */

  public static void main(String[] args) {

    Integer[] list = {2, 3, 2, 5, 6, 1, -2, 3, 14, 12};

    heapSort(list);

    for (int i = 0; i < list.length; i++)

      System.out.print(list[i] + " ");

  }

}
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public class HeapSortTest {

  public static void main(String[] args) {

    int size = 100000;

    int[] a = new int[size];

    randomInitiate(a);

    Integer[] b = new Integer[a.length];

    for(int i=0; i<b.length; i++)

      b[i] = a[i];

    long startTime = System.currentTimeMillis();

    HeapSort.heapSort(b);

    long endTime = System.currentTimeMillis();

    System.out.println((endTime - startTime) + "ms");

  }

  private static void randomInitiate(int[] a) {

    for (int i = 0; i < a.length; i++)

      a[i] = (int) (Math.random() * a.length);

  }

}

76ms



(c) Paul Fodor (CS Stony Brook) & Pearson

 Let h denote the height for a heap of n elements. Since a heap 

is a complete binary tree, the first level has 1 node, the second 

level has 2 nodes, the kth level has 2(k-1) nodes, the (h-1)th level 

has 2(h-2) nodes, and the hth level has at least one node and at 

most 2(h-1) nodes. Therefore, 

 Let h denote the height for a heap of n elements. Since a heap 

is a complete binary tree, the first level has 1 node, the second 

level has 2 nodes, the kth level has 2(k-1) nodes, the (h-1)th level 

has 2(h-2) nodes, and the hth level has at least one node and at 

most 2(h-1) nodes. Therefore, the number of nodes n is:

 Thus,  log(n + 1) ≤ h < log(n + 1) + 1

 Hence, the height of the heap is O(log n)

Heap Sort Time Complexity

122 22...212...21 −−− +++++++ hhh n

1212 1 −−− hh n

hh n 212 1 +−

hh n 2log)1log(2log 1 +−

hnh +− )1log(1
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 Since the add method traces a path from a leaf to a 

root, it takes at most h = log n steps to add a new 

element to the heap. 

 Thus, the total time for constructing an initial heap is 

 O(n log n) for an array of n elements.

 Since the remove method traces a path from a root to a 

leaf, it takes at most h = log n steps to rebuild a heap 

after removing the root from the heap. 

 Since the remove method is invoked n times, the 

total time for producing a sorted array from a heap is 

O(n log n) 

Heap Add and Remove Time
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 Heap Sort Time: O(n log n) 

 Merge sort requires a temporary array for 

merging two subarrays; a heap sort does not 

need additional array space. 
 Therefore, a heap sort is more space efficient than a 

merge sort.

Heap Sort Time Complexity
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Bucket Sort and Radix Sort 
 All sort algorithms discussed so far are general sorting 

algorithms that work for any types of keys (e.g., 

integers, strings, and any comparable objects)
 These algorithms sort the elements by comparing their keys

 The lower bound for general sorting algorithms is O(n logn)

So, no sorting algorithms based on comparisons can 

perform better than O(n logn)

 However, if the keys are "small" integers, you can use 

bucket sort without having to compare the keys

55



(c) Paul Fodor (CS Stony Brook) & Pearson

Bucket Sort
 The bucket sort algorithms:

 Assume the keys are in the range from 0 to t

 We need t+1 buckets labeled 0, 1, ..., and t

 If an element’s key is i, the element is put into the bucket i
 Each bucket holds the elements with the same key value 

 You can use an ArrayList to implement each bucket element
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Bucket Sort

57

static int t;

  public static <E> void bucketSort(E[] list) {

    java.util.ArrayList<E>[] bucket = new java.util.ArrayList[t+1];    

    // Distribute the elements from list to buckets

    for (int i = 0; i < list.length; i++) {

      // Assume element has the getKey() method

      int key = getKey(list[i]); // list[i].getKey()

      if (bucket[key] == null)

        bucket[key] = new java.util.ArrayList<E>();

      bucket[key].add(list[i]);

    }

    // Now move the elements from the buckets back to list

    int k = 0; // k is an index for list

    for (int i = 0; i < bucket.length; i++) 

      if (bucket[i] != null) 

        for (int j = 0; j < bucket[i].size(); j++)

          list[k++] = bucket[i].get(j);

  }
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Bucket Sort
 Takes O(n + t) time to sort the list and uses O(n + t) space, 

where n is the list size and t is the number of buckets

 Bucket sort is stable, meaning that if two elements in the original 

list have the same key value, their order is not changed in the 

sorted list.
 That is, if element e1 and element e2 have the same key and e1 

precedes e2 in the original list, e1 still precedes e2 in the sorted 

list

 For sorting positive integers, if t is too large, using the bucket 

sort is not desirable
 Instead, you can use a radix sort

 The radix sort is based on the bucket sort, but a radix sort uses only 

ten buckets
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Radix Sort
Assume that the keys are positive integers

The idea for the radix sort is to divide the 

keys into subgroups based on their 

radix/digits positions
It applies a bucket sort repeatedly for the key 

values on radix positions, starting from the 

least-significant position
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Radix Sort
 Bucket sort 331, 454, 230, 34, 343, 45, 59, 453, 345, 231, 9

 Remove elements from the buckets and bucket sort by 2nd digit:

230, 331, 231, 343, 453, 454, 34, 45, 345, 59, 09

009, 230, 331, 231, 034, 343, 045, 345, 453, 454,59

60
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Radix Sort
Radix sort takes O(d*n) time to sort n 

elements with integer keys, where d is the 

maximum number of the radix positions 

among all keys
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public class RadixSort {

  static int t = 10;

  public static void bucketSort(int[] list) {

    java.util.ArrayList<Integer>[] bucket =new java.util.ArrayList[t+1];    

    // Distribute the elements from list to buckets

    for (int i = 0; i < list.length; i++) {

      // Assume element has the getKey() method

      int key = getKey(list[i]);

      if (bucket[key] == null)

        bucket[key] = new java.util.ArrayList<Integer>();

      bucket[key].add(list[i]);

    }

    // Now move the elements from the buckets back to list

    int k = 0; // k is an index for list

    for (int i = 0; i < bucket.length; i++) {

      if (bucket[i] != null) {

        for (int j = 0; j < bucket[i].size(); j++)

          list[k++] = (int)(bucket[i].get(j));

      }

    }

  }

  static int radix = 0;

  public static int getKey(int n) { // get the n'th digit from right

    for(int i=0; i<radix; i++)

      n = n / 10;

    return n % 10;

  }
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public static void main(String[] args) {

    int size = 100000;

    int[] a = new int[size];

    randomInitiate(a);

    long startTime = System.currentTimeMillis();

    // radix sort

    for(int i=0; i<6; i++) { // run bucketSort for 6 digits  

      radix = i;             //    starting from right

      bucketSort(a);

    }

    long endTime = System.currentTimeMillis();

    System.out.println((endTime - startTime) + "ms");

  }

  private static void randomInitiate(int[] a) {

    for (int i = 0; i < a.length; i++)

      a[i] = (int) (Math.random() * a.length);

  }

}
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External Sort
All the sort algorithms discussed in the preceding 

sections assume that all data to be sorted is 

available at one time in internal memory such as an 

array

To sort data stored in an external file, you may 

first bring data to the memory, then sort it 

internally.

However, if the file is too large, all data in the file 

cannot be brought to memory at one time
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Phase I
 Repeatedly bring partial data from the file to an array, 

sort the array using an internal sorting algorithm, and 

output the data from the array to a temporary file 

 

Program 

 

Array 

                                  …… 

Original file 

Temporary file 

  S1          S2                                                                Sk 

65



(c) Paul Fodor (CS Stony Brook) & Pearson

Phase II
 Merge pairs of sorted segments (e.g., S1 with S2, S3 

with S4, ..., and so on) into a larger sorted segment and 

save the new segment into a new temporary file 

 Continue the same process until one sorted segment 

results

 

     S1          S2          S3          S4          S5          S6          S7          S8                           

Sk 

  S1, S2 merged      S3, S4 merged     S5, S6 merged    S7, S8 merged         

 

          S1, S2, S3, S4 merged                    S5, S6 , S7, S8 merged         

 

                         S1, S2, S3, S4 , S5, S6 , S7, S8 merged         

 

Merge  

Merge  

Merge  
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Implementing Phase II
 A segment is too large to be brought to an array in memory

 To implement a merge step, copy half number of segments 

from file f1.dat to a temporary file f2.dat. 

 Then merge the first remaining segment in f1.dat with the first 

segment in f2.dat into a temporary file named f3.dat.
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     S1          S2          S3          S4          S5          S6          S7          S8                           

Sk 

  S1, S5 merged     S2, S6  merged     S3, S7  merged    S4, S8  merged 

 

f1.dat 

     S1          S2          S3          S4      f2.dat 
Copy to f2.dat 

f3.dat 
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External Sort Complexity
 In the external sort, the dominating cost is that of I/O.
 Assume n is the number of elements to be sorted in the file 

 In Phase I, n number of elements are read from the 

original file and output to a temporary file, therefore, the 

I/O for Phase I is O(n).
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External Sort Complexity
 In Phase II, before the first merge step, the number of 

sorted segments is n/c, where c is MAX_ARRAY_SIZE
 Each merge step reduces the number of segments by half 

 After the first merge step, the number of segments is 

 n/c * 1/2 = n/2c

 After the second merge step, the number of segments is 

 n/2c * 1/2 = n/(22c)

 After the third merge step the number of segments is n/23c

 After log(n/c) merge steps, the number of segments is 

reduced to 1 

 Therefore, the total number of merge steps is log(n/c)
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External Sort Complexity
 In each merge step, half the number of segments are read from 

file f1 and then written into a temporary file f2 - the remaining 

segments in f1 are merged with the segments in f2

 The number of I/Os in each merge step is O(n) 

 Since the total number of merge steps is log(n/c), the total 

number of I/Os in Step 2 is: 

 O(n)*log(n/c) = O(n log n)

 Therefore, the complexity of the external sort is 

O(n log n) in I/Os
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import java.io.*;

public class CreateLargeFile {

  public static void main(String[] args) throws Exception {

    DataOutputStream output = new DataOutputStream(

      new BufferedOutputStream(new FileOutputStream("largedata.dat")));

    for (int i = 0; i < 800004; i++)

      output.writeInt((int)(Math.random() * 1000000));

    output.close();

    // Display first 100 numbers

    DataInputStream input = 

      new DataInputStream(new FileInputStream("largedata.dat"));

    for (int i = 0; i < 100; i++)

      System.out.print(input.readInt() + " ");

    input.close();

  }

}
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import java.io.*;

public class SortLargeFile {

  public static final int MAX_ARRAY_SIZE = 43;

  public static final int BUFFER_SIZE = 100000;

  public static void main(String[] args) throws Exception {

    // Sort largedata.dat to sortedfile.dat

    sort("largedata.dat", "sortedfile.dat");

    

    // Display the first 100 numbers in the sorted file

    displayFile("sortedfile.dat");

  }

  

  /** Sort data in source file and into target file */

  public static void sort(String sourcefile, String targetfile) 

      throws Exception {

    // Implement Phase 1: Create initial segments

    int numberOfSegments =

      initializeSegments(MAX_ARRAY_SIZE, sourcefile, "f1.dat");

    // Implement Phase 2: Merge segments recursively

    merge(numberOfSegments, MAX_ARRAY_SIZE,

      "f1.dat", "f2.dat", "f3.dat", targetfile);

  }
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/** Sort original file into sorted segments */

  private static int initializeSegments

      (int segmentSize, String originalFile, String f1)

      throws Exception {

    int[] list = new int[segmentSize];

    DataInputStream input = new DataInputStream(

      new BufferedInputStream(new FileInputStream(originalFile)));

    DataOutputStream output = new DataOutputStream(

      new BufferedOutputStream(new FileOutputStream(f1)));

    int numberOfSegments = 0;

    while (input.available() > 0) {

      numberOfSegments++;

      int i = 0;

      for ( ; input.available() > 0 && i < segmentSize; i++) {

        list[i] = input.readInt();

      }

      // Sort an array list[0..i-1]

      java.util.Arrays.sort(list, 0, i);

      // Write the array to f1.dat

      for (int j = 0; j < i; j++) {

        output.writeInt(list[j]);

      }

    }

    input.close();

    output.close();

    return numberOfSegments;

  }
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private static void merge(int numberOfSegments, int segmentSize, 

      String f1, String f2, String f3, String targetfile) 

      throws Exception {

    if (numberOfSegments > 1) {

      mergeOneStep(numberOfSegments, segmentSize, f1, f2, f3);

      merge((numberOfSegments + 1) / 2, segmentSize * 2, 

        f3, f1, f2, targetfile);

    }

    else { // Rename f1 as the final sorted file

      File sortedFile = new File(targetfile);

      if (sortedFile.exists()) sortedFile.delete();

      new File(f1).renameTo(sortedFile);

    }

  }

  private static void mergeOneStep(int numberOfSegments,

      int segmentSize, String f1, String f2, String f3)

      throws Exception {

    DataInputStream f1Input = new DataInputStream(

      new BufferedInputStream(new FileInputStream(f1), BUFFER_SIZE));

    DataOutputStream f2Output = new DataOutputStream(

      new BufferedOutputStream(new FileOutputStream(f2), BUFFER_SIZE));

    // Copy half number of segments from f1.dat to f2.dat

    copyHalfToF2(numberOfSegments, segmentSize, f1Input, f2Output);

    f2Output.close();74
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// Merge remaining segments in f1 with segments in f2 into f3

    DataInputStream f2Input = new DataInputStream(

      new BufferedInputStream(new FileInputStream(f2), BUFFER_SIZE));

    DataOutputStream f3Output = new DataOutputStream(

      new BufferedOutputStream(new FileOutputStream(f3), BUFFER_SIZE));

    mergeSegments(numberOfSegments / 2,

      segmentSize, f1Input, f2Input, f3Output);

    f1Input.close();

    f2Input.close();

    f3Output.close();

  }

  /** Copy first half number of segments from f1.dat to f2.dat */

  private static void copyHalfToF2(int numberOfSegments,

      int segmentSize, DataInputStream f1, DataOutputStream f2)

      throws Exception {

    for (int i = 0; i < (numberOfSegments / 2) * segmentSize; i++) {

      f2.writeInt(f1.readInt());

    }

  }
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/** Merge all segments */

  private static void mergeSegments(int numberOfSegments,

      int segmentSize, DataInputStream f1, DataInputStream f2,

      DataOutputStream f3) throws Exception {

    for (int i = 0; i < numberOfSegments; i++) {

      mergeTwoSegments(segmentSize, f1, f2, f3);

    }

    // If f1 has one extra segment, copy it to f3

    while (f1.available() > 0) {

      f3.writeInt(f1.readInt());

    }

  }

  /** Merges two segments */

  private static void mergeTwoSegments(int segmentSize,

    DataInputStream f1, DataInputStream f2,

    DataOutputStream f3) throws Exception {

    int intFromF1 = f1.readInt();

    int intFromF2 = f2.readInt();

    int f1Count = 1;

    int f2Count = 1;
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while (true) {

      if (intFromF1 < intFromF2) {

        f3.writeInt(intFromF1);

        if (f1.available() == 0 || f1Count++ >= segmentSize) {

          f3.writeInt(intFromF2);

          break;

        } else {

          intFromF1 = f1.readInt();

        }

      } else {

        f3.writeInt(intFromF2);

        if (f2.available() == 0 || f2Count++ >= segmentSize) {

          f3.writeInt(intFromF1);

          break;

        } else {

          intFromF2 = f2.readInt();

        }

      }

    }

    while (f1.available() > 0 && f1Count++ < segmentSize) {

      f3.writeInt(f1.readInt());

    }

    while (f2.available() > 0 && f2Count++ < segmentSize) {

      f3.writeInt(f2.readInt());

    }

  }
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/** Display the first 100 numbers in the specified file */

  public static void displayFile(String filename) {

    try {

      DataInputStream input = 

        new DataInputStream(new FileInputStream(filename));

      for (int i = 0; i < 100; i++)

        System.out.print(input.readInt() + " ");

      input.close();

    }

    catch (IOException ex) {

      ex.printStackTrace();

    }

  }

}
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