Sorting

Paul Fodor
CSE260, Computer Science B: Honors
Stony Brook University

http://www.cs.stonybrook.edu/~cse260
Objectives

• To study and analyze time complexity of various sorting algorithms
 • To design, implement, and analyze *bubble sort*
 • To design, implement, and analyze *merge sort*
 • To design, implement, and analyze *quick sort*
 • To design and implement a *binary heap*
 • To design, implement, and analyze *heap sort*
 • To design, implement, and analyze *bucket sort* and *radix sort*
 • To design, implement, and analyze *external sort* for files that have a large amount of data
What data to sort?

• The data to be sorted might be integers, doubles, characters, Strings or any objects that are comparable.

• For simplicity, we assume:
 • data to be sorted are integers
 • data is sorted in ascending order
 • data is stored in an array

 • The programs can be easily modified to sort other types of data, to sort in descending order, or to sort data in an ArrayList or a LinkedList.
 • LinkedList might be more efficient for some operations (no shifting required to insert/delete an element at any position of the array), but overall complexity stays the same

• The Java API contains several overloaded sort methods for sorting primitive type values and objects in the java.util.Arrays and java.util.Collections class.
Bubble Sort

Repeatedly steps through the list to be sorted, compares each pair of adjacent items and swaps them if they are in the wrong order.

```java
for (int k = 1; k < list.length; k++) {
    // Perform the kth pass
    for (int i = 0; i < list.length - k; i++) {
        if (list[i] > list[i + 1]) {
            // swap list[i] with list[i + 1];
            ...
        }
    }
}
```

- After the first pass, the last element becomes the largest in the array.
- After the second pass, the second-to-last element becomes the second largest in the array.
 - It is called "bubble" sort because the large values gradually "bubble" to the top (end of the array).
 - It is also called "sinking sort" because the smaller values gradually “sink” their way to the bottom (beginning of the array).
Bubble Sort Example

Example:

(a) 1st pass
2 5 4 8 1
2 5 9 4 8 1
2 5 4 9 8 1
2 5 4 8 9 1
2 5 4 8 1 9

(b) 2nd pass
2 4 5 8 1 9
2 4 5 8 1 9
2 4 5 8 1 9
2 4 5 8 1 9
2 4 5 8 1 9

(c) 3rd pass
2 4 5 1 8 9
2 4 5 1 8 9
2 4 1 5 8 9
2 4 5 1 8 9
2 4 5 1 8 9

(d) 4th pass
2 4 1 5 8 9
2 4 1 5 8 9
2 4 1 5 8 9
2 4 1 5 8 9
2 4 1 5 8 9

(e) 5th pass
1 2 4 5 8 9
1 2 4 5 8 9
1 2 4 5 8 9
1 2 4 5 8 9
1 2 4 5 8 9
Bubble Sort Optimization

- The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted.
- If no swap takes place in a pass, there is no need to perform the next pass, because all the elements are already sorted!
- We can use this property to improve the previous algorithm:

```java
boolean needNextPass = true;
for (int k = 1; k < list.length && needNextPass; k++) {
    // Array may be sorted and next pass not needed
    needNextPass = false;
    // Perform the kth pass
    for (int i = 0; i < list.length - k; i++)
        if (list[i] > list[i + 1]) {
            // swap list[i] with list[i + 1];
            needNextPass = true; // Next pass still needed
        }
}
```
Bubble Sort Analysis

• In the **best case**, the bubble sort algorithm needs just the first pass to find that the array is already sorted—no next pass is needed.
 • Since the number of comparisons is $n - 1$ in the first pass, the best-case time for a bubble sort is $O(n)$.
Bubble Sort Analysis

- **Time complexity (i.e., Worse case):**

\[
(n - 1) + (n - 2) + \ldots + 2 + 1 = \frac{n^2}{2} - \frac{n}{2}
\]

Time: \(O(n^2)\)
public class BubbleSort {
 public static void bubbleSort(int[] list) {
 boolean needNextPass = true;
 for (int k = 1; k < list.length && needNextPass; k++) {
 // Array may be sorted and next pass not needed
 needNextPass = false;
 // Perform the kth pass
 for (int i = 0; i < list.length - k; i++) {
 if (list[i] > list[i + 1]) {
 int temp = list[i];
 list[i] = list[i + 1];
 list[i + 1] = temp;
 needNextPass = true; // Next pass still needed
 }
 }
 }
 }
 public static void main(String[] args) {
 int size = 100000;
 int[] a = new int[size];
 randomInitiate(a);
 long startTime = System.currentTimeMillis();
 bubbleSort(a);
 long endTime = System.currentTimeMillis();
 System.out.println((endTime - startTime) + "ms");
 }
 private static void randomInitiate(int[] a) {
 for (int i = 0; i < a.length; i++)
 a[i] = (int) (Math.random() * a.length);
 }
}

14650ms
Merge Sort

- *Merge sort* is a *divide and conquer algorithm* invented by John von Neumann in 1945.
- Divide the unsorted list into \(n \) sublists, each containing 1 element (a list of 1 element is considered sorted).
- Repeatedly *merge* sorted sublists to produce new sorted sublists until there is only 1 sublist remaining.
 - This will be the sorted list.
Merge Sort is a divide & conquer algorithm.
How to Merge Two Sorted Lists

(a) Beginning state

(b) After moving 1 to temp

(c) After moving 2 to temp
How to Merge Two Sorted Lists

After moving all the elements in list 2 to temp

After moving the rest of list 1 to temp
/** Merge two sorted lists */
public static void merge(int[] list1, int[] list2, int[] temp) {
 int current1 = 0; // Current index in list1
 int current2 = 0; // Current index in list2
 int current3 = 0; // Current index in temp

 while (current1 < list1.length && current2 < list2.length) {
 if (list1[current1] < list2[current2])
 temp[current3++] = list1[current1++];
 else
 temp[current3++] = list2[current2++];
 }

 while (current1 < list1.length)
 temp[current3++] = list1[current1++];

 while (current2 < list2.length)
 temp[current3++] = list2[current2++];
}
public static void mergeSort(int[] list) {
 if (list.length > 1) {
 // Merge sort the first half
 int[] firstHalf = new int[list.length / 2];
 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
 mergeSort(firstHalf);

 // Merge sort the second half
 int secondHalfLength = list.length - list.length / 2;
 int[] secondHalf = new int[secondHalfLength];
 System.arraycopy(list, list.length / 2, secondHalf, 0, secondHalfLength);
 mergeSort(secondHalf);

 // Merge firstHalf with secondHalf into list
 merge(firstHalf, secondHalf, list);
 }
}
Example:

```java
public static void main(String[] args) {
    int[] list = {14,12,2,3,2,-2,1,3,6,5};
    mergeSort(list);
    for (int x:list)
        System.out.print(x + " ");
}

-2 1 2 2 3 3 5 6 12 14
```
public class MergeSortTest {
 public static void mergeSort(int[] list) {
 if (list.length > 1) {
 // Merge sort the first half
 int[] firstHalf = new int[list.length / 2];
 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
 mergeSort(firstHalf);
 // Merge sort the second half
 int secondHalfLength = list.length - list.length / 2;
 int[] secondHalf = new int[secondHalfLength];
 System.arraycopy(list, list.length / 2, secondHalf, 0, secondHalfLength);
 mergeSort(secondHalf);
 // Merge firstHalf with secondHalf into list
 merge(firstHalf, secondHalf, list);
 }
 }

 public static void merge(int[] list1, int[] list2, int[] temp) {
 int current1 = 0; // Current index in list1
 int current2 = 0; // Current index in list2
 int current3 = 0; // Current index in temp
 while (current1 < list1.length && current2 < list2.length) {
 if (list1[current1] < list2[current2])
 temp[current3++] = list1[current1++];
 else
 temp[current3++] = list2[current2++];
 }
 while (current1 < list1.length)
 temp[current3++] = list1[current1++];
 while (current2 < list2.length)
 temp[current3++] = list2[current2++];
 }
}

(c) Paul Fodor (CS Stony Brook) & Pearson
public static void main(String[] args) {
 int size = 100000;
 int[] a = new int[size];
 randomInitiate(a);
 long startTime = System.currentTimeMillis();
 mergeSort(a);
 long endTime = System.currentTimeMillis();
 System.out.println((endTime - startTime) + "ms");
}

private static void randomInitiate(int[] a) {
 for (int i = 0; i < a.length; i++)
 a[i] = (int) (Math.random() * a.length);
}

16ms
Merge Sort Time Complexity

- Let $T(n)$ denote the time required for sorting an array of n elements using merge sort.
- The merge sort algorithm splits the array into two subarrays, sorts the subarrays using the same algorithm recursively, and then merges the subarrays.

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + \text{mergetime}$$

- The first $T(n/2)$ is the time for sorting the first half of the array and the second $T(n/2)$ is the time for sorting the second half.
Merge Sort Time

- To merge two sorted subarrays, it takes at most $n-1$ comparisons to compare the elements from the two subarrays and n moves to move elements to the temporary array.

\[
T(n) = 2T\left(\frac{n}{2} \right) + 2n - 1 = 2(2T\left(\frac{n}{4} \right) + 2 \frac{n}{2} - 1) + 2n - 1 \\
= 2^2 T\left(\frac{n}{2^2} \right) + 2n - 2 + 2n - 1 \\
= 2^k T\left(\frac{n}{2^k} \right) + 2n - 2^k - 1 + \ldots + 2n - 2 + 2n - 1 \\
= 2^{\log n} T\left(\frac{n}{2^{\log n}} \right) + 2n - 2^{\log n - 1} + \ldots + 2n - 2 + 2n - 1 \\
= n + 2n \log n - 2^{\log n} + 1 \\
= 2n \log n + 1 \\
= O(n \log n)
\]
Quick Sort

- **Quick sort**, developed by C. A. R. Hoare in 1962, works as follows:
 - The algorithm selects an element, called the *pivot*, in the array
 - could be just the first element
 - **Divides/partitions** the array into two parts such that all the elements in the first part are less than or equal to the pivot and all the elements in the second part are greater than the pivot
 - This can be done in the same array (see how next slide)
 - Recursively apply the quick sort algorithm to the first part and then the second part
 - Concatenate the first sorted part, the pivot and the second sorted part into the final sorted list
Partition with forward and backward search

(a) Initialize pivot, low, and high

(b) Search forward and backward
 stop when elem[low]>pivot
 step when elem[high]<pivot

(c) 9 is swapped with 1

(d) Continue search

(e) 8 is swapped with 0

(f) when high < low, search is over
 swap elem[high] with pivot

(g) pivot is in the right place

The index of the pivot is returned
Quick Sort Example Steps

(a) The original array

(b) The original array is partitioned

(c) The partial array (4 2 1 3 0) is partitioned

(d) The partial array (0 2 1 3) is partitioned

(e) The partial array (2 1 3) is partitioned
public static void quickSort(int[] list) {
 quickSort(list, 0, list.length - 1);
}

public static void quickSort(int[] list, int first, int last) {
 if (last > first) {
 int pivotIndex = partition(list, first, last);
 quickSort(list, first, pivotIndex - 1);
 quickSort(list, pivotIndex + 1, last);
 }
}
public static int partition(int[] list, int first, int last) {
 int pivot = list[first]; // Choose the first element as pivot
 int low = first + 1; // Index for forward search
 int high = last; // Index for backward search
 while (high > low) {
 // Search forward from left
 while (low <= high && list[low] <= pivot)
 low++;
 // Search backward from right
 while (low <= high && list[high] > pivot)
 high--;
 // Swap two elements in the list
 if (high > low) {
 int temp = list[high];
 list[high] = list[low];
 list[low] = temp;
 }
 }
 // Account for duplicated elements:
 while (high > first && list[high] >= pivot)
 high--;
 // Swap pivot with list[high]
 if (pivot > list[high]) {
 list[first] = list[high];
 list[high] = pivot;
 return high;
 } else
 return first;
}
public class QuickSortTest {
 public static void quickSort(int[] list) {
 quickSort(list, 0, list.length - 1);
 }
 public static void quickSort(int[] list, int first, int last) {
 if (last > first) {
 int pivotIndex = partition(list, first, last);
 quickSort(list, first, pivotIndex - 1);
 quickSort(list, pivotIndex + 1, last);
 }
 }
 public static int partition(int[] list, int first, int last) {
 int pivot = list[first]; // Choose the first element as pivot
 int low = first + 1; // Index for forward search
 int high = last; // Index for backward search
 while (high > low) {
 // Search forward from left
 while (low <= high && list[low] <= pivot)
 low++;

 // Search backward from right
 while (low <= high && list[high] > pivot)
 high--;

 // Swap two elements in the list
 if (high > low) {
 int temp = list[high];
 list[high] = list[low];
 list[low] = temp;
 }
 }
 // Account for duplicated elements:
 while (high > first && list[high] >= pivot)
 high--;
 }
}

// Swap pivot with list[high]
if (pivot > list[high]) {
 list[first] = list[high];
 list[high] = pivot;
 return high;
} else
 return first;

public static void main(String[] args) {
 int size = 100000;
 int[] a = new int[size];
 randomInitiate(a);

 long startTime = System.currentTimeMillis();
 quickSort(a);
 long endTime = System.currentTimeMillis();

 System.out.println((endTime - startTime) + "ms");
}

private static void randomInitiate(int[] a) {
 for (int i = 0; i < a.length; i++)
 a[i] = (int) (Math.random() * a.length);
}

16ms
Quick Sort Time Complexity

- To **partition** an array of \(n \) elements, it takes \(n-1 \) comparisons and \(n \) moves in the worst case.
- So, the time required for partition is \(O(n) \).
- In the **worst case**, each time the pivot divides the array into one big subarray with the other empty.
- The size of the big subarray is one less than the one before divided.
- Therefore, the algorithm requires:

\[
(n - 1) + (n - 2) + \ldots + 2 + 1 = O(n^2)
\]
Best-Case Time Complexity

- In the best case, each time the pivot divides the array into two parts of about the same size

\[T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n = O(n \log n) \]
Average-Case Time

- On average, each time the pivot will not divide the array into one empty part nor two parts of the same size
 - However, statistically, the sizes of the two parts are very close \Rightarrow the average time is also $O(n \log n)$
- Both merge sort and quick sort employ the divide-and-conquer approach
 - For merge sort, the bulk of the work is to merge two sublists
 - Merge sort is more efficient than quick sort in the worst case, but the two are equally efficient in the average case
 - Merge sort requires a temporary array for sorting two subarrays
 - Quick sort does not need additional array space. Thus, quick sort is more space efficient than merge sort.
Heap Sort: Binary tree

- A *binary tree* is a hierarchical structure: it either is empty or it consists of an element, called the *root*, and two distinct binary trees, called the *left subtree* and *right subtree*.
- The *length* of a path is the number of the edges in the path.
- The *depth* of a node is the length of the path from the root to that node.
Complete Binary Tree

- A binary tree is **complete** if every level of the tree is full except that the **last level may not be full** and **all the leaves on the last level are placed left-most**. Examples of complete binary trees:

```
        42
      /   /
     32   39
  /   /  /  /  /
22  29 14  33
```

- Not complete:

```
        42
      /   /
     32   39
  /   /  /  /  /
22  29 14  33
```
A binary heap is a binary tree with the following properties:

- It is a complete binary tree, and
- Each node is greater than or equal to any of its children

Example heap:

```
  42
 /  \\
32  39
/  \/
22 29 14 33
```

Example not a heap, because the root (39) is less than its right child (42)
Heap Sort

- Heaps are a useful data structures for designing efficient sorting algorithms and priority queues

- **Heap sort** uses a binary heap: it first adds all the elements to a heap and then removes the largest elements successively to obtain a sorted list
Storing a Heap

- A heap can be stored in an **ArrayList** or an array if the heap size is known in advance.
 - For a node at position i, its left child is at position $2i+1$ and its right child is at position $2i+2$, and its parent is at index $(i-1)/2$ (integer division).
 - For example: the root is at position 0, and its two children are at positions 1 and 2.
 - The node for element 39 is at position 4, so its left child (element 14) is at 9 because $(2*4+1)$, its right child (element 33) is at 10 because $(2*4+2)$, and its parent (element 42) is at 1 because $((4-1)/2)$.

(c) Paul Fodor (CS Stony Brook) & Pearson
Adding Elements to a Heap

- To add a new node to a heap, first add it to the end of the heap and then rebuild the tree with this algorithm:

 Let the last node be the current node;
 while (the current node is greater than its parent) {
 Swap the current node with its parent;
 Now the current node is one level up;
 }

(c) Paul Fodor (CS Stony Brook) & Pearson
Adding Elements to the Heap

- Adding 88 in a heap:
 - Place the new node 88 at the end of the tree
 - Swap 88 with 19
 - Swap 88 with 22

(a) Add 88 to a heap
(b) After swapping 88 with 19
(c) After swapping 88 with 22
Adding Elements to the Heap

- Suppose a heap is initially empty. After adding numbers 3, 5, 1, 19, 11, and 22 in this order:

 - (a) After adding 3
 - (b) Add 5
 - (c) After adding 5
 - (d) Add 1
 - (e) Add 19
 - (f) Swap 19 with 3
Adding Elements to the Heap

- Suppose a heap is initially empty. after adding numbers 3, 5, 1, 19, 11, and 22 in this order

(g) After adding 19 …

(h) After adding 11 …

(i) After adding 22
Removing the Root and Rebuild the Heap

- Often we need to remove the maximum element, which is the root in a heap
- After the root is removed, the tree must be rebuilt to maintain the heap property using this algorithm:

```
Move the last node to replace the root;
Let the root be the current node;
while (the current node has children and the current node is smaller than one of its children) {
    Swap the current node with the larger of its children;
    Now the current node is one level down;
}
```
Removing the Root and Rebuild the Heap

- Removing root 62 from the heap (replaces it with the last node in the heap: 9)
Removing the Root and Rebuild the Heap

Move 9 to root and compare it with its children

```
9
  42
 /   \
32   39
  \
  22  29 14  33
```

```
9
  59
 /   \
44   13
    /
   30 17
```

(c) Paul Fodor (CS Stony Brook) & Pearson
Removing the Root and Rebuild the Heap

Swap 9 with 59
Removing the Root and Rebuild the Heap

Swap 9 with 44

(c) Paul Fodor (CS Stony Brook) & Pearson
Removing the Root and Rebuild the Heap

Swap 9 with 30

Swap 9 with 30
The Heap Class

Heap<E extends Comparable<E>>

- **list**: java.util.ArrayList<E>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap()</td>
<td>Creates a default empty heap.</td>
</tr>
<tr>
<td>Heap(objects: E[])</td>
<td>Creates a heap with the specified objects.</td>
</tr>
<tr>
<td>add(newObject: E): void</td>
<td>Adds a new object to the heap.</td>
</tr>
<tr>
<td>remove(): E</td>
<td>Removes the root from the heap and returns it.</td>
</tr>
<tr>
<td>getSize(): int</td>
<td>Returns the size of the heap.</td>
</tr>
</tbody>
</table>
public class Heap<E extends Comparable> {
 private java.util.ArrayList<E> list = new java.util.ArrayList<E>();
 /** Create a default heap */
 public Heap() {
 }
 /** Create a heap from an array of objects */
 public Heap(E[] objects) {
 for (int i = 0; i < objects.length; i++)
 add(objects[i]);
 }
 /** Add a new object into the heap */
 public void add(E newObject) {
 list.add(newObject); // Append to the end of the heap
 int currentIndex = list.size() - 1; // The index of the last node
 while (currentIndex > 0) {
 int parentIndex = (currentIndex - 1) / 2;
 // Swap if the current object is greater than its parent
 if (list.get(currentIndex).compareTo(
 list.get(parentIndex)) > 0) {
 E temp = list.get(currentIndex);
 list.set(currentIndex, list.get(parentIndex));
 list.set(parentIndex, temp);
 } else
 break; // the tree is a heap now
 }
 currentIndex = parentIndex;
 }
}
/** Remove the root from the heap */
public E remove() {
 if (list.size() == 0) return null;

 E removedObject = list.get(0);
 list.set(0, list.get(list.size() - 1));
 list.remove(list.size() - 1);

 int currentIndex = 0;
 while (currentIndex < list.size()) {
 int leftChildIndex = 2 * currentIndex + 1;
 int rightChildIndex = 2 * currentIndex + 2;

 // Find the maximum between two children
 if (leftChildIndex >= list.size())
 break; // The tree is a heap
 int maxIndex = leftChildIndex;
 if (rightChildIndex < list.size())
 if (list.get(maxIndex).compareTo(list.get(rightChildIndex)) < 0)
 maxIndex = rightChildIndex;

 // ...
/ Swap if the current node is less than the maximum
if (list.get(currentIndex).compareTo(
 list.get(maxIndex)) < 0) {
 E temp = list.get(maxIndex);
 list.set(maxIndex, list.get(currentIndex));
 list.set(currentIndex, temp);
 currentIndex = maxIndex;
} else
 break; // The tree is a heap
}
return removedObject;

/** Get the number of nodes in the tree */
public int getSize() {
 return list.size();
}
Heap Sort

public class HeapSort {
 public static <E extends Comparable> void heapSort(E[] list) {
 // Create a Heap of E
 Heap<E> heap = new Heap<E>();

 // Add elements to the heap
 for (int i = 0; i < list.length; i++)
 heap.add(list[i]);

 // Remove the highest elements from the heap
 for (int i = list.length - 1; i >= 0; i--)
 list[i] = heap.remove();
 }

 /** A test method */
 public static void main(String[] args) {
 Integer[] list = {2, 3, 2, 5, 6, 1, -2, 3, 14, 12};
 heapSort(list);
 for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 }
}
public class HeapSortTest {
 public static void main(String[] args) {
 int size = 100000;
 int[] a = new int[size];
 randomInitiate(a);
 Integer[] b = new Integer[a.length];
 for(int i=0; i<b.length; i++)
 b[i] = a[i];

 long startTime = System.currentTimeMillis();
 HeapSort.heapSort(b);
 long endTime = System.currentTimeMillis();

 System.out.println((endTime - startTime) + "ms");
 }
}

private static void randomInitiate(int[] a) {
 for (int i = 0; i < a.length; i++)
 a[i] = (int) (Math.random() * a.length);
}
Heap Sort Time Complexity

- Let h denote the height for a heap of n elements. Since a heap is a complete binary tree, the first level has 1 node, the second level has 2 nodes, the kth level has $2^{(k-1)}$ nodes, the $(h-1)$th level has $2^{(h-2)}$ nodes, and the hth level has at least one node and at most $2^{(h-1)}$ nodes. Therefore, the number of nodes n is:

$$1 + 2 + ... + 2^{h-2} < n \leq 1 + 2 + ... + 2^{h-2} + 2^{h-1}$$

$$2^{h-1} - 1 < n \leq 2^h - 1$$

$$2^{h-1} < n + 1 \leq 2^h$$

$$\log 2^{h-1} < \log(n + 1) \leq \log 2^h$$

$$h - 1 < \log(n + 1) \leq h$$

- Thus, $\log(n + 1) \leq h < \log(n + 1) + 1$

- Hence, the height of the heap is $O(\log n)$
Heap Add and Remove Time

- Since the add method traces a path from a leaf to a root, it takes at most $h = \log n$ steps to add a new element to the heap.
- Thus, the total time for constructing an initial heap is $O(n \log n)$ for an array of n elements.
- Since the remove method traces a path from a root to a leaf, it takes at most $h = \log n$ steps to rebuild a heap after removing the root from the heap.
- Since the remove method is invoked n times, the total time for producing a sorted array from a heap is $O(n \log n)$.
Heap Sort Time Complexity

- Heap Sort Time: $O(n \log n)$

- Merge sort requires a temporary array for merging two subarrays; a heap sort does not need additional array space.
- Therefore, a heap sort is more space efficient than a merge sort.
Bucket Sort and Radix Sort

- All sort algorithms discussed so far are general sorting algorithms that work for any types of keys (e.g., integers, strings, and any comparable objects)
- These algorithms sort the elements by comparing their keys
- The lower bound for general sorting algorithms is $O(n \log n)$
- So, no sorting algorithms based on comparisons can perform better than $O(n \log n)$

- However, if the keys are "small" integers, you can use bucket sort without having to compare the keys
Bucket Sort

• The **bucket sort** algorithms:
 • Assume the keys are in the range from 0 to \(t \)
 • We need \(t+1 \) buckets labeled 0, 1, …, and \(t \)
 • If an element’s key is \(i \), the element is put into the bucket \(i \)
 • Each bucket holds the elements with the same key value

• You can use an **ArrayList** to implement each bucket element
Bucket Sort

static int t;
public static <E> void bucketSort(E[] list) {
 java.util.ArrayList<E>[] bucket = new java.util.ArrayList[t+1];
 // Distribute the elements from list to buckets
 for (int i = 0; i < list.length; i++) {
 // Assume element has the getKey() method
 int key = getKey(list[i]); // list[i].getKey()
 if (bucket[key] == null)
 bucket[key] = new java.util.ArrayList<E>();
 bucket[key].add(list[i]);
 }
 // Now move the elements from the buckets back to list
 int k = 0; // k is an index for list
 for (int i = 0; i < bucket.length; i++)
 if (bucket[i] != null)
 for (int j = 0; j < bucket[i].size(); j++)
 list[k++] = bucket[i].get(j);
}
Bucket Sort

- Takes $O(n + t)$ time to sort the list and uses $O(n + t)$ space, where n is the list size and t is the number of buckets.
- Bucket sort is stable, meaning that if two elements in the original list have the same key value, their order is not changed in the sorted list.
 - That is, if element e_1 and element e_2 have the same key and e_1 precedes e_2 in the original list, e_1 still precedes e_2 in the sorted list.
- For sorting positive integers, if t is too large, using the bucket sort is not desirable.
 - Instead, you can use a radix sort.
 - The radix sort is based on the bucket sort, but a radix sort uses only ten buckets.
Radix Sort

- Assume that the keys are positive integers
- The idea for the radix sort is to divide the keys into subgroups based on their radix/digits positions
 - It applies a bucket sort repeatedly for the key values on radix positions, starting from the least-significant position
Radix Sort

- Bucket sort 331, 454, 230, 34, 343, 45, 59, 453, 345, 231, 9

- Remove elements from the buckets and bucket sort by 2nd digit:

\[
\begin{align*}
230, & \quad 331, \quad 231, \quad 343, \quad 453, \quad 454, \quad 34, \quad 45, \quad 345, \quad 59, \quad 09 \\
9, & \quad 331, \quad 231, \quad 345
\end{align*}
\]
Radix Sort

- Radix sort takes $O(d*n)$ time to sort n elements with integer keys, where d is the maximum number of the radix positions among all keys.
public class RadixSort {
 static int t = 10;
 public static void bucketSort(int[] list) {
 java.util.ArrayList<Integer>[] bucket = new java.util.ArrayList[t+1];
 // Distribute the elements from list to buckets
 for (int i = 0; i < list.length; i++) {
 // Assume element has the getKey() method
 int key = getKey(list[i]);
 if (bucket[key] == null)
 bucket[key] = new java.util.ArrayList<Integer>();
 bucket[key].add(list[i]);
 }
 // Now move the elements from the buckets back to list
 int k = 0; // k is an index for list
 for (int i = 0; i < bucket.length; i++) {
 if (bucket[i] != null) {
 for (int j = 0; j < bucket[i].size(); j++)
 list[k++] = (int)(bucket[i].get(j));
 }
 }
 }
 static int radix = 0;
 public static int getKey(int n) { // get the n'th digit from right
 for(int i=0; i<radix; i++)
 n = n / 10;
 return n % 10;
 }
}
public static void main(String[] args) {
 int size = 100000;
 int[] a = new int[size];
 randomInitiate(a);
 long startTime = System.currentTimeMillis();
 // radix sort
 for(int i=0; i<6; i++) { // run bucketSort for 6 digits
 radix = i; // starting from right
 bucketSort(a);
 }
 long endTime = System.currentTimeMillis();
 System.out.println((endTime - startTime) + "ms");
}

private static void randomInitiate(int[] a) {
 for (int i = 0; i < a.length; i++)
 a[i] = (int) (Math.random() * a.length);
}

433ms
External Sort

- All the sort algorithms discussed in the preceding sections assume that all data to be sorted is available at one time in internal memory such as an array.
- To sort data stored in an external file, you may first bring data to the memory, then sort it internally.
- However, if the file is too large, all data in the file cannot be brought to memory at one time.
Phase I

- Repeatedly bring partial data from the file to an array, sort the array using an internal sorting algorithm, and output the data from the array to a temporary file.

Program

Array

Original file

Temporary file

S_1 S_2 \ldots S_k
Phase II

- **Merge** pairs of sorted segments (e.g., S1 with S2, S3 with S4, …, and so on) into a larger sorted segment and save the new segment into a new temporary file.
- Continue the same process until one sorted segment results.
Implementing Phase II

- A segment is too large to be brought to an array in memory.
- To implement a merge step, copy half number of segments from file f1.dat to a temporary file f2.dat.

\[
\begin{array}{cccccccc}
S_1 & S_2 & S_3 & S_4 & S_5 & S_6 & S_7 & S_8 \\
\end{array}
\]

\[\text{f1.dat}\]

Copy to f2.dat

\[
\begin{array}{cccc}
S_1 & S_2 & S_3 & S_4 \\
\end{array}
\]

\[\text{f2.dat}\]

\[
\begin{array}{cccc}
S_1, S_5 \text{ merged} & S_2, S_6 \text{ merged} & S_3, S_7 \text{ merged} & S_4, S_8 \text{ merged} \\
\end{array}
\]

\[\text{f3.dat}\]

- Then merge the first remaining segment in f1.dat with the first segment in f2.dat into a temporary file named f3.dat.
External Sort Complexity

• In the external sort, the dominating cost is that of I/O.
• Assume n is the number of elements to be sorted in the file.
• In Phase I, n number of elements are read from the original file and output to a temporary file, therefore, the I/O for Phase I is $O(n)$.
External Sort Complexity

- In Phase II, before the first merge step, the number of sorted segments is \(\frac{n}{c} \), where \(c \) is `MAX_ARRAY_SIZE`.
 - Each merge step reduces the number of segments by half.
 - After the first merge step, the number of segments is \(\frac{n}{c} \times \frac{1}{2} = \frac{n}{2c} \).
 - After the second merge step, the number of segments is \(\frac{n}{2c} \times \frac{1}{2} = \frac{n}{2^2c} \).
 - After the third merge step, the number of segments is \(\frac{n}{2^3c} \).
 - After \(\log(n/c) \) merge steps, the number of segments is reduced to 1.
 - Therefore, the total number of merge steps is \(\log(n/c) \).
External Sort Complexity

• In each merge step, half the number of segments are read from file f1 and then written into a temporary file f2 - the remaining segments in f1 are merged with the segments in f2
 • The number of I/Os in each merge step is $O(n)$
• Since the total number of merge steps is $\log(n/c)$, the total number of I/Os in Step 2 is:
 \[O(n) \times \log(n/c) = O(n \log n) \]
• Therefore, the complexity of the external sort is $O(n \log n)$ in I/Os
import java.io.*;

public class CreateLargeFile {
 public static void main(String[] args) throws Exception {
 DataOutputStream output = new DataOutputStream(
 new BufferedOutputStream(new FileOutputStream("largedata.dat")));
 for (int i = 0; i < 800004; i++)
 output.writeInt((int) (Math.random() * 1000000));
 output.close();

 // Display first 100 numbers
 DataInputStream input =
 new DataInputStream(new FileInputStream("largedata.dat"));
 for (int i = 0; i < 100; i++)
 System.out.print(input.readInt() + " ");
 input.close();
 }
}
import java.io.*;

public class SortLargeFile {
 public static final int MAX_ARRAY_SIZE = 43;
 public static final int BUFFER_SIZE = 100000;

 public static void main(String[] args) throws Exception {
 // Sort largedata.dat to sortedfile.dat
 sort("largedata.dat", "sortedfile.dat");

 // Display the first 100 numbers in the sorted file
 displayFile("sortedfile.dat");
 }

 /** Sort data in source file and into target file */
 public static void sort(String sourcefile, String targetfile) throws Exception {
 // Implement Phase 1: Create initial segments
 int numberOfSegments =
 initializeSegments(MAX_ARRAY_SIZE, sourcefile, "f1.dat");

 // Implement Phase 2: Merge segments recursively
 merge(numberOfSegments, MAX_ARRAY_SIZE,
 "f1.dat", "f2.dat", "f3.dat", targetfile);
 }
}
/** Sort original file into sorted segments */
private static int initializeSegments
 (int segmentSize, String originalFile, String f1)
 throws Exception {
 int[] list = new int[segmentSize];
 DataInputSteam input = new DataInputSteam(
 new BufferedInputSteam(new FileInputSteam(originalFile)));
 DataOutputSteam output = new DataOutputSteam(
 new BufferedOutputSteam(new FileOutputSteam(f1)));
 int numberOfSegments = 0;
 while (input.available() > 0) {
 numberOfSegments++;
 int i = 0;
 for (; input.available() > 0 && i < segmentSize; i++) {
 list[i] = input.readInt();
 }
 // Sort an array list[0..i-1]
 java.util.Arrays.sort(list, 0, i);
 // Write the array to f1.dat
 for (int j = 0; j < i; j++) {
 output.writeInt(list[j]);
 }
 }
 input.close();
 output.close();
 return numberOfSegments;
 }
private static void merge(int numberOfSegments, int segmentSize,
 String f1, String f2, String f3, String targetfile)
 throws Exception {
 if (numberOfSegments > 1) {
 mergeOneStep(numberOfSegments, segmentSize, f1, f2, f3);
 merge((numberOfSegments + 1) / 2, segmentSize * 2,
 f3, f1, f2, targetfile);
 } else { // Rename f1 as the final sorted file
 File sortedFile = new File(targetfile);
 if (sortedFile.exists()) sortedFile.delete();
 new File(f1).renameTo(sortedFile);
 }
}

private static void mergeOneStep(int numberOfSegments,
 int segmentSize, String f1, String f2, String f3)
 throws Exception {
 DataInputStream f1Input = new DataInputStream(
 new BufferedInputStream(new FileInputStream(f1), BUFFER_SIZE));
 DataOutputStream f2Output = new DataOutputStream(
 new BufferedOutputStream(new FileOutputStream(f2), BUFFER_SIZE));
 // Copy half number of segments from f1.dat to f2.dat
 copyHalfToF2(numberOfSegments, segmentSize, f1Input, f2Output);
 f2Output.close();

 // Copy half number of segments from f1.dat to f2.dat
}
/** Copy first half number of segments from f1.dat to f2.dat */
private static void copyHalfToF2(int numberOfSegments,
 int segmentSize, DataInputStream f1, DataOutputStream f2)
 throws Exception {
 for (int i = 0; i < (numberOfSegments / 2) * segmentSize; i++) {
 f2.writeInt(f1.readInt());
 }
}
/** Merge all segments */
private static void mergeSegments(int numberOfSegments,
 int segmentSize, DataInputStream f1, DataInputStream f2,
 DataOutputStream f3) throws Exception {
 for (int i = 0; i < numberOfSegments; i++) {
 mergeTwoSegments(segmentSize, f1, f2, f3);
 }

 // If f1 has one extra segment, copy it to f3
 while (f1.available() > 0) {
 f3.writeInt(f1.readInt());
 }
}

/** Merges two segments */
private static void mergeTwoSegments(int segmentSize,
 DataInputStream f1, DataInputStream f2,
 DataOutputStream f3) throws Exception {
 int intFromF1 = f1.readInt();
 int intFromF2 = f2.readInt();
 int f1Count = 1;
 int f2Count = 1;

while (true) {
 if (intFromF1 < intFromF2) {
 f3.writeInt(intFromF1);
 if (f1.available() == 0 || f1Count++ >= segmentSize) {
 f3.writeInt(intFromF2);
 break;
 } else {
 intFromF1 = f1.readInt();
 }
 } else {
 f3.writeInt(intFromF2);
 if (f2.available() == 0 || f2Count++ >= segmentSize) {
 f3.writeInt(intFromF1);
 break;
 } else {
 intFromF2 = f2.readInt();
 }
 }
}
while (f1.available() > 0 && f1Count++ < segmentSize) {
 f3.writeInt(f1.readInt());
}
while (f2.available() > 0 && f2Count++ < segmentSize) {
 f3.writeInt(f2.readInt());
}
/** Display the first 100 numbers in the specified file */
public static void displayFile(String filename) {
 try {
 DataInputStream input =
 new DataInputStream(new FileInputStream(filename));
 for (int i = 0; i < 100; i++)
 System.out.print(input.readInt() + " ");
 input.close();
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
}