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Objectives 
 To estimate algorithm efficiency using the Big O notation

 To explain growth rates and why constants and non-dominating terms can be ignored

 To determine the complexity of various types of algorithms

 To analyze the binary search algorithm

 To analyze the selection sort algorithm

 Polynomial complexity

 To analyze the insertion sort algorithm

 To analyze the Tower of Hanoi algorithm

 To describe common growth functions (constant, logarithmic, linear, log-linear, 

quadratic, cubic (polynomial), exponential)

 To design efficient algorithms for finding Fibonacci numbers using dynamic programming

 To find the GCD using Euclid’s algorithm

 To finding prime numbers using the sieve of Eratosthenes

 To design efficient algorithms for finding the closest pair of points using the divide-and-

conquer approach

 To solve the Eight Queens problem using the backtracking approach

 To design efficient algorithms for finding a convex hull for a set of points
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Algorithms
An algorithm is a finite sequence of well-defined, 

computer-implementable instructions, typically to 

solve a class of problems or to perform a 

computation.

Algorithm analysis is the process of finding the 

computational complexity of algorithms, that 

is: the execution time and the storage growth rate, 

or other resources needed to execute them.

Algorithm design is the process of developing an 

algorithm for solving a problem.
3
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Execution Time? 
 Suppose two algorithms perform the same task, such as search 

(e.g., linear search vs. binary search) on sorted arrays

 Which one is better? 
 One possible approach to answer this question is to implement these 

algorithms in Java and run the programs to get the execution times 

 But there are two problems for this approach:

o First, the execution time is dependent on the specific input
• Consider linear search and binary search of a key in a sorted array: 

• If an element to be searched happens to be the first in the list, linear 

search will find the element quicker than binary search

• But in more cases binary search is much better

o Second, there are many tasks running concurrently on a computer 
• The execution time of a particular program is dependent on the system load
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Measuring Algorithm Efficiency 

Using Big O Notation!
 It is very difficult to compare algorithms by measuring their 

execution time  

 To overcome this problem, a "theoretical" approach was 

developed to analyze algorithms independent of specific inputs 

and computers (i.e., system load or hardware: CPU speed, 

memory, multiple cores, etc.)

 This approach approximates the effect of a change on the size of the 

input in the execution time, i.e., the Growth Rate

 How fast an algorithm’s execution time increases as the input 

size increases, so we can compare two algorithms by 

examining their growth rates on any inputs or computers
5
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Big O Notation
Consider the linear search for an input array 

of size n: 

public static int linearSearch(int[] list, int key) {

for (int i = 0; i < list.length; i++)

if (key == list[i])

return i;

return -1;

}
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Big O Notation
 Linear search for an array of size n: 

 The linear search algorithm compares the key with the elements in 

the array sequentially until the key is found or the array is exhausted 

 If the key is not in the array, it requires n comparisons  

 If the key is in the array, it requires "on average" n/2 comparisons 

 The algorithm’s execution time is proportional to the size of the array: 
 If you double the size of the array 2*n, you will expect the number of comparisons to 

double 

 If the key is not in the array, it requires 2*n comparisons  

 If the key is in the array, it requires "on average" 2*n/2=n comparisons 

 This algorithm grows at a linear rate
 The growth rate has an order of magnitude growth rate of n

 Computer scientists use the Big O notation to abbreviate for “order of 

magnitude” 

 Using this notation, the complexity of the linear search algorithm is 

O(n), pronounced as “order of  n” - (also called "linear" time)7
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Best, Worst, and Average Cases 
 For the same input size, an algorithm’s execution time may vary, depending 

on the input: 
 An input that results in the shortest execution time is called the best-case input

 An input that results in the longest execution time is called the worst-case input

 Best-case and worst-case are not representative, but worst-case analysis is 

very useful
 Because the algorithm will never be slower than the worst-case

 An average-case analysis attempts to determine the average amount of time 

among all possible inputs of the same size
 Average-case analysis is ideal, but difficult to perform, because it is hard to 

determine or estimate the relative probabilities and distributions of various input 

instances for many problems

 In most cases the average-case growth matches the worst-case growth rate

 Worst-case analysis is easier to obtain
 So, the analysis is generally conducted for the worst-case
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Ignoring Multiplicative Constants
 The multiplicative constants have no impact on growth rates! 

 The growth rate for  n/2 or 100*n is the same as n, i.e., 

O(n) = O(n/2) = O(100n)

growth rate

 For example: the linear search algorithm requires n comparisons in the 

worst-case and  n/2 comparisons in the average-case 

 Using the growth rate Big O notation, both cases require O(n) time
 The multiplicative constant (1/2) can be omitted
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Ignoring Non-Dominating Terms
 Consider the algorithm for finding the maximum number in an 

array of n elements 
 If n is 2, it takes one comparison to find the maximum number. 

 If n is 3, it takes two comparisons to find the maximum number. 

 In general, it takes n-1 times of comparisons to find maximum number 

in a list of  n elements. 

 Algorithm analysis is for large input sizes
 If the input size is small, there is no significance to estimate an algorithm’s 

efficiency. 

 As n grows larger, the n part in the expression n-1 dominates the 

complexity. 

 The Big  O notation allows you to ignore the non-dominating part (e.g., 

-1 in the expression n-1) and highlights the important part (e.g., n). 

 So, the complexity of this algorithm is O(n).
10
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Input size and constant time

11

The Big O notation estimates the execution time 

of an algorithm in relation to the input size

If the time is not related to the input size, the 

algorithm is said to take constant time with the 

notation O(1):
For example, retrieving an element at a given index 

in an array takes constant time, because the time does 

not grow as the size of the array increases
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Space complexity

12

 The Big O notation is usually used to measure the 

execution time (named time complexity)

 Space complexity measures the amount of memory 

space used by an algorithm
We can also measure space complexity using the Big-O 

notation
 The space complexity for most algorithms presented in our 

lectures is O(n), i.e., they exhibit linear growth rate to the 

input size

 For example, the space complexity for linear search is  O(n)

(i.e., the space required to store the array in memory grows 

linearly with the size of the array)
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Useful Mathematic Summations
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 The following mathematical summations are often useful 

in algorithm analysis: 
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Determining Big-O 
We will discuss examples to determine the Big-O 

value for:

Repetition

Sequence 

Selection

Logarithm
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Repetition: Simple Loops

T(n) = (a constant c) * n = cn = O(n)

for (i = 1; i <= n; i++) {

k = k + 5;

} It is a constant time

to execute k = k + 5

executed

n times

Ignore multiplicative constants (e.g., “c”).

Time Complexity:

15
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public class PerformanceTest {

public static void main(String[] args) {

getTime(1000000);

getTime(10000000);

getTime(100000000);

getTime(1000000000);

}

public static void getTime (long n) {

long startTime = System.currentTimeMillis();

long k = 0;

for (int i = 1; i <= n; i++) {

k = k + 5;

}

long endTime = System.currentTimeMillis();

System.out.println("Execution time for n = " + n

+ " is " + (endTime - startTime) + " milliseconds");

}

}

Execution time for n = 1,000,000 is 6 milliseconds

Execution time for n = 10,000,000 is 61 milliseconds

Execution time for n = 100,000,000 is 610 milliseconds

Execution time for n = 1,000,000,000 is 6048 milliseconds 

linear time complexity behaviour
16
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Repetition: Nested Loops

T(n) = (a constant c) * n * n = cn2 = O(n2)

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

k = k + i + j;

}

}

constant time

executed

n times

Ignore multiplicative constants (e.g., “c”).

Time Complexity

inner loop

executed

n times

17
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"Quadratic" time
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Repetition: Nested Loops

T(n) = c + 2c + 3c + 4c + … + nc = cn(n+1)/2 = 

(c/2)n2 + (c/2)n = O(n2)

for (i = 1; i <= n; i++) {

for (j = 1; j <= i; j++) {

k = k + i + j;

}

}

constant time

executed

n times

Ignore non-dominating terms

Time Complexity

inner loop

executed

i times

Ignore multiplicative constants
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Repetition: Nested Loops

T(n) = 20 * c * n = O(n)

for (i = 1; i <= n; i++) {

for (j = 1; j <= 20; j++) {

k = k + i + j;

}

}

constant time

executed

n times

Time Complexity

inner loop

executed

20 times

Ignore multiplicative constants (e.g., 20*c)
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Sequence

T(n) = c *10 + 20 * c * n = O(n)

for (i = 1; i <= n; i++) {

for (j = 1; j <= 20; j++) {

k = k + i + j;

}

}

executed

n times

Time Complexity

inner loop

executed

20 times

for (j = 1; j <= 10; j++) {

k = k + 4;

}

executed

10 times
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Selection

T(n) = test time + worst-case (if, else)
= O(n) + O(n)

= O(n)

if (list.contains(e)) 

System.out.println(e);

else

for (Object t: list) 

System.out.println(t);

Time Complexity

where n is 

list.size()

O(n)

21
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Logarithmic time

T(n) = k = log n = O(log n)

The algorithm takes O(log n) ( this is called a "logarithmic" 

time).

result = 1;

for (int i = 1; i <= n; i++)

result *= a;

Without loss of generality, assume n = 2k <=> k = log2 n .
result = a * a * … * a , n times

= (…((a * a) * (a * a))

* ((a * a) * (a * a)) …)

Therefore, we can improve the algorithm using the following scheme:

O(n)

22

result = a;

for (int i = 1; i <= k; i++)

result = result * result;
k times
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Analyzing Binary Search

23

public static int binarySearch(int[] list, int key) {

int low = 0;

int high = list.length - 1;

while (high >= low) {

int mid = (low + high) / 2;

if (key < list[mid])

high = mid - 1;

else if (key == list[mid])

return mid;

else

low = mid + 1;

}

return -1 - low;

}

 Binary search searches for a key in a sorted array:
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Analyzing Binary Search

24

 Each iteration in the algorithm contains a fixed number of 

operations, denoted by c

 Let T(n) denote the time complexity for a binary search on a 

list of n elements
 Without loss of generality, assume n is a power of 2 and k=log2n

 Binary search eliminates half of the input after two 

comparisons:
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Analyzing Binary Search

25

An algorithm with the O(log n) time 

complexity is called a logarithmic algorithm and 

it exhibits a logarithmic growth rate
 The base of the log is 2, but the base does not affect a 

logarithmic growth rate, so it can be omitted

 The logarithmic algorithm grows slowly as the problem size 

increases

 In the case of binary search, each time you double the array 

size, at most one more comparison will be required

 If you square the input size of any logarithmic time algorithm, 

you only double the time of execution

 So a logarithmic-time algorithm is very efficient!
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Analyzing Selection Sort

26

public static void selectionSort(double[] list) {

for (int i = 0; i < list.length; i++) {

// Find the minimum in the list[i..list.length-1]

double currentMin = list[i];

int currentMinIndex = i;

for (int j = i + 1; j < list.length; j++) {

if (currentMin > list[j]) {

currentMin = list[j];

currentMinIndex = j;

}

}

// Swap list[i] with list[currentMinIndex] if necessary;

if (currentMinIndex != i) {

list[currentMinIndex] = list[i];

list[i] = currentMin;

}

}

}
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Analyzing Selection Sort

27

 Selection sort finds the smallest element in the list and swaps it with the first 

element

 It then finds the smallest element remaining and swaps it with the first 

element in the remaining list, and so on until the remaining list contains 

only one element left to be sorted.

 The number of comparisons is n - 1 for the first iteration, n - 2 for 

the second iteration, and so on

 T(n) denote the complexity for selection sort and c denote the total 

number of other operations such as assignments and additional 

comparisons in each iteration
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Quadratic Time
An algorithm with the O(n2) time 

complexity is called a quadratic algorithm

The quadratic algorithm grows quickly as the 

problem size increases

If you double the input size, the time for the 

algorithm is quadrupled

Algorithms with a nested loop are often 

quadratic
28
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Insertion Sort
int[] myList = {2,9,5,4,8,1,6}; // Unsorted

The insertion sort
algorithm sorts a list 
of values by 
repeatedly inserting 
an unsorted element 
into a sorted sublist
until the whole list 
is sorted. 

 
2       9       5       4       8       1       6 

 

Step 1: Initially, the sorted sublist contains the 

first element in the list. Insert 9 into the sublist. 

 

2       9       5       4       8       1       6 

 

Step2: The sorted sublist is {2, 9}. Insert 5 into 

the sublist. 

 

2      5        9       4       8       1       6 

 

Step 3: The sorted sublist is {2, 5, 9}. Insert 4 

into the sublist. 

 

2      4        5        9       8       1       6 

 

Step 4:  The sorted sublist is {2, 4, 5, 9}. Insert 8 

into the sublist. 

 

2      4         5        8      9       1       6 

 

Step 5:  The sorted sublist is {2, 4, 5, 8, 9}. Insert 

1 into the sublist. 

 

1      2        4         5        8      9      6 

 

Step 6:  The sorted sublist is {1, 2, 4, 5, 8, 9}. 

Insert 6 into the sublist. 

 

1      2        4         5       6       8      9 

 
Step 7:  The entire list is now sorted. 

 

29
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How to Insert 4 in sorted order?
 

 [0]  [1]  [2]  [3]  [4]  [5]   [6]    

  2     5    9     4      list Step 1: Save 4 to a temporary variable currentElement  

 [0]  [1]  [2]  [3]  [4]  [5]   [6]    

  2     5           9      list Step 2: Move list[2] to list[3] 

 [0]  [1]  [2]  [3]  [4]  [5]   [6]    

  2            5    9      list Step 3: Move list[1] to list[2] 

 [0]  [1]  [2]  [3]  [4]  [5]   [6]    

  2     4     5    9      list Step 4: Assign currentElement to list[1]  

30
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InsertionSort - From Idea to Solution
for (int i = 1; i < list.length; i++) {

insert list[i] into a sorted sublist list[0..i-1] so that   

list[0..i] is sorted

}

Expand

int currentElement = list[i];

int k;

for (k = i - 1; k >= 0 && list[k] > currentElement; k--) {

list[k + 1] = list[k];

}

// Insert the current element into list[k + 1]

list[k + 1] = currentElement;

31



(c) Paul Fodor (CS Stony Brook) & Pearson

public static void insertionSort(int[] list) {

for (int i = 1; i < list.length; i++) {

int currentElement = list[i];

int k;

for (k = i - 1; k >= 0 && list[k] > currentElement; k--) 

list[k + 1] = list[k];

// Insert the current element into list[k + 1]

list[k + 1] = currentElement;

}

}

32

To insert the first element, we need 1 comparison and at most 1 swap
To insert the last element, we need n−1 comparisons and at most n−1 swaps

c denotes the total number of other operations such as assignments and additional 

comparisons in each iteration
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public class InsertionSort {

public static void main(String[] args) {

int size = 100000;

int[] a = new int[size];

randomInitiate(a);

long startTime = System.currentTimeMillis();

insertionSort(a);

long endTime = System.currentTimeMillis();

System.out.println((endTime - startTime) + "ms");

}

private static void randomInitiate(int[] a) {

for (int i = 0; i < a.length; i++)

a[i] = (int) (Math.random() * a.length);

}

public static void insertionSort(int[] list) {

for (int i = 1; i < list.length; i++) {

int currentElement = list[i];

int k;

for (k = i - 1; k >= 0 && list[k] > currentElement; k--)

list[k + 1] = list[k];

// Insert the current element into list[k + 1]

list[k + 1] = currentElement;

}

}

}

3641ms
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Polynomial Complexity
 An algorithm is said to be of polynomial time if its running time 

is upper bounded by a polynomial expression in the size of the 

input for the algorithm, i.e., T(n) = O(nk) for some positive 

constant k

 The concept of polynomial time leads to several complexity 

classes in computational complexity theory:

 P = The complexity class of decision problems that can be solved on a 

deterministicTuring machine in polynomial time.

 NP (nondeterministic polynomial time) = The complexity class of 

decision problems that can be solved on a non-deterministicTuring 

machine in polynomial time.

 It means that a given solution can be verified in polynomial time.

34
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NP-completeness
 Although a solution to an NP problem can be verified 

"quickly" (in polynomial time), there is no 

known way to find such a solution quickly.

 NP-hard ("non-deterministic polynomial acceptable 

problems") = the class of problems which are at least as 

hard as the hardest problems in NP.

A problem is said to be NP-hard if everything in NP 

can be transformed into it in polynomial time.

 A problem is NP-complete if it is both in NP and NP-

hard.

P=NP? Unsolved problem35
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NP-completeness
NP-complete Problems:

 Boolean satisfiability problem (SAT)

 Knapsack problem

 Hamiltonian path problem

 Traveling salesman problem

 Graph coloring problem

 Subgraph isomorphism problem

 Subset sum problem

 Clique problem

 Vertex cover problem

 Independent set problem

 Dominating set problem
36
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NP-completeness
 Boolean satisfiability problem (SAT) (sometimes 

called propositional satisfiability problem and 

abbreviated SATISFIABILITY, SAT or B-SAT) is the 

problem of determining if there exists an interpretation 

(i.e., truth assignment) that satisfies a given Boolean 

formula (built from boolean variables, operators AND 

(conjunction, ∧), OR (disjunction, ∨), NOT (negation, 

¬), and parentheses). 

A formula is said to be satisfiable if it can be made TRUE 

by assigning appropriate logical values (i.e. TRUE, FALSE) 

to its propositional variables. 
37
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NP-completeness
 3-satisfiability problem (3-SAT): determine the 

satisfiability of a formula in conjunctive normal form 

where each clause is limited to at most three literals

(l1 ∨ l2 ∨ l3) ∧ (l4 ∨ l5 ∨ x6) ∧ ⋯ ∧ (ln−2 ∨ ln−1 ∨ ln)

 It is also NP-complete

 3-SAT is one of Karp's 21 NP-complete problems

38

Richard Manning Karp                                                         Stephen Cook
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NP-completeness
 Knapsack decision problem: given a set of items, each with a 

weight and a value, determine the number of each item to 

include in a collection so that the total weight is less than or equal 

to a given limit without exceeding a given weight.

 The optimization problem is to get the total value as large as 

possible

 Graph coloring problem: is there an assignment of labels 

(traditionally called "colors") to elements of a graph subject to 

certain constraints? 

 Its simplest form, called vertex coloring, asks if there is a way 

of coloring the vertices of a graph such that no two adjacent 

vertices are of the same color.
39
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NP-completeness
 Hamiltonian path problem: determining whether a 

Hamiltonian path (i.e., a path in an undirected or 

directed graph that visits each vertex exactly once) 

or a Hamiltonian cycle exists in a given graph (whether 

directed or undirected).

Traveling salesman problem (the decision version): 

Given a list of cities and the distances between each pair of 

cities, what is the possible route that visits each city exactly 

once and returns to the origin city?

 The optimization problem is to find the shortest path:

 This is an optimization problem, and hence cannot be in NP.
40
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Exponential complexity: Analyzing 

the Towers of Hanoi

41

 There are n disks labeled 1, 2, 3,..., n, and three towers labeled A, B, and C.

 No disk can be on top of a smaller disk at any time.

 All the disks are initially placed on tower A.

 Only one disk can be moved at a time, and it must be the top disk on the 

tower.  

A B 

Original position 

C 
A B 

Step 4: Move disk 3 from A to B 

C 

A B 

Step 5: Move disk 1 from C to A 

C 
A B 

Step 1: Move disk 1 from A to B 

C 

A C B 

Step 2: Move disk 2 from A to C 

A B 

Step 3: Move disk 1 from B to C 

C 
A B 

Step 7: Mve disk 1 from A to B  

C 

A B 

Step 6: Move disk 2 from C to B 

C 
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The Towers of Hanoi problem can be decomposed into three subproblems:

 Move the first n - 1 disks from A to C with the assistance of tower B.

 Move the disk n from A to B.

 Move n - 1 disks from C to B with the assistance of tower A.
 

A B 

Original position 

C 

. 

. 

. 

A B 

Step 1: Move the first n-1 disks from A to C recursively  

C 

. 

. 

. 

A B 

Step2: Move disk n from A to C 

C 

. 

. 

. 

A B 

Step3: Move n-1 disks from C to B recursively 

C 

. 

. 

. 

n-1 disks 

n-1 disks 

n-1 disks 

n-1 disks 
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import java.util.Scanner; 

public class TowersOfHanoi {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter number of disks: ");

int n = input.nextInt(); System.out.println("The moves are:");

moveDisks(n, 'A', 'B', 'C');

}

public static void moveDisks(int n, char fromTower, char toTower, 

char auxTower) {

if (n == 1) // Stopping condition

System.out.println("Move disk " + n + " from " +

fromTower + " to " + toTower);

else {

moveDisks(n - 1, fromTower, auxTower, toTower);

System.out.println("Move disk " + n + " from " +

fromTower + " to " + toTower);

moveDisks(n - 1, auxTower, toTower, fromTower);

}

}

}
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Analyzing Towers of Hanoi

44

 Towers of Hanoi problem recursively moves n disks from tower A to tower 

B with the assistance of tower C:
 Move the first n - 1 disks from A to C with the assistance of tower B

 Move disk n from A to B

 Move n - 1 disks from C to B with the assistance of tower A

 The complexity of this algorithm is measured by the number of moves. 
 Let T(n) denote the number of moves for the algorithm to move n disks from 

tower A to tower B:
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Analyzing Towers of Hanoi

45

 An algorithm with O(2n) time complexity is called an 

exponential algorithm, and it exhibits an exponential 

growth rate (i.e., as the input size increases, the time for 

the exponential algorithm grows exponentially; e.g., adding 

each one extra disk results in double the execution time).

Exponential algorithms are not practical for large input 

sizes:

Suppose the disk is moved at a rate of 1 per second. 
To move 32 disks would take: 232/(365days*24hours*60min*60sec) = 

136 years;

To move 64 disks would take 264/(365*24*60*60sec) = 585 billion years
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Analyzing Recursive Fibonacci Numbers

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7  8  9  10 11

46

/** The recursive method for finding the Fibonacci number */
public static int fib(int index) {

if (index == 0) // Base case

return 0;

else if (index == 1) // Base case

return 1;

else  // Reduction and recursive calls

return fib(index - 1) + fib(index - 2);

}
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import java.util.Scanner;

public class Fibonacci {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter the Fibonacci index: ");

int n = input.nextInt();

System.out.println("fib(" + n + ") = " + fib(n));

}

public static int fib(int index) {

if (index == 0) // Base case

return 0;

else if (index == 1) // Base case

return 1;

else // Reduction and recursive calls

return fib(index - 1) + fib(index - 2);

}

}

47

Enter the Fibonacci index: 20
fib(20) = 6765
Enter the Fibonacci index: 30
fib(30) = 832040
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import java.util.Scanner;

public class Fibonacci2 {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter the Fibonacci index: ");

int n = input.nextInt();

System.out.println("fib(" + n + ") = " + fib(n));

System.out.println("steps: " + steps);

}

static int steps = 0;

public static int fib(int index) {

steps++;

if (index == 0) // Base case

return 0;

else if (index == 1) // Base case

return 1;

else // Reduction and recursive calls

return fib(index - 1) + fib(index - 2);

}

}

48

Enter the Fibonacci index: 20
fib(20) = 6765
steps: 21891
Enter the Fibonacci index: 30
fib(30) = 832040
steps: 2692537
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Complexity for Recursive Fibonacci Numbers
 Let T(n) denote the complexity for the algorithm that finds fib(n)

and 

Therefore, the recursive Fibonacci method takes

This algorithm is not efficient. 
➢ Is there an efficient algorithm for finding a Fibonacci 

➢ number? Yes, of course. It is a linear sequence.
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Non-recursive version of Fibonacci 

Numbers
public static int fib(int n) {
if (n == 0)

return 0;
else if (n == 1 || n == 2)

return 1;    
int f0 = 0; // For fib(0)
int f1 = 1; // For fib(1)
int f2 = 1; // For fib(2)
for (int i = 3;i <= n;i++){

f0 = f1;
f1 = f2;
f2 = f0 + f1;

}
return f2;

}

- The complexity of 
this new algorithm is 

O(n).

- This is a tremendous 
improvement over the 
recursive algorithm.

50
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f0 f1 f2

Fibonacci series: 0  1  1  2 3 5 8 13 21 34 55 89…

indices: 0  1  2  3 4 5 6 7  8  9  10 11

f0 f1 f2

Fibonacci series: 0  1  1  2  3  5  8  13  21 34 55 89…

indices: 0  1  2  3  4  5  6  7   8  9  10 11

f0 f1 f2

Fibonacci series: 0  1  1  2  3  5  8  13  21  34  55 89…

indices: 0  1  2  3  4  5  6  7   8   9   10 11

f0 f1 f2

Fibonacci series: 0  1  1  2  3  5  8  13 21 34 55 89…

indices: 0  1  2  3  4  5  6  7  8  9  10 11
51

• Variables f0, f1, and f2 store three consecutive Fibonacci numbers 

in the series:
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import java.util.Scanner;

public class Fibonacci3 {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter the Fibonacci index: ");

int n = input.nextInt();

System.out.println("fib(" + n + ") = " + fib(n));

System.out.println("steps: " + steps);

}

static int steps = 0;

public static int fib(int n) {

if (n == 0)

return 0;

else if (n == 1 || n == 2)

return f2;

int f0 = 0; // For fib(0)

int f1 = 1; // For fib(1)

int f2 = 1; // For fib(2)

steps = 3;

for (int i = 3; i <= n; i++) {

steps++;

f0 = f1;

f1 = f2;

f2 = f0 + f1;

}

return f2;

}

}

Enter the Fibonacci index: 10
fib(10) = 55
steps: 11

Enter the Fibonacci index: 30
fib(30) = 832040
steps: 31
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 Recurrence relations are a useful tool for analyzing 

algorithm complexity

Common Recurrence Relations

 
 Recurrence Relation        Result          Example 

 

)1()2/()( OnTnT +=                 )(log)( nOnT =      Binary search, Euclid’s GCD 

)1()1()( OnTnT +−=                 )()( nOnT =         Linear search 

)1()2/(2)( OnTnT +=                )()( nOnT =                

)()2/(2)( nOnTnT +=               )log()( nnOnT =     Merge sort            

)log()2/(2)( nnOnTnT +=          )log()( 2 nnOnT =               

)()1()( nOnTnT +−=                )()( 2nOnT =         Selection sort, insertion sort 

)1()1(2)( OnTnT +−=               )2()( nOnT =         Towers of Hanoi 

)1()2()1()( OnTnTnT +−+−=     )2()( nOnT =         Recursive Fibonacci algorithm      
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Comparing Common Growth Functions

)2()()()log()()(log)1( 32 nOnOnOnnOnOnOO 
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Comparing Common Growth Functions

)2()()()log()()(log)1( 32 nOnOnOnnOnOnOO 

 

O(1) 

O(logn) 

O(n) 

O(nlogn) 

O(n2) 
O(2n) 
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Algorithm Design
Typical steps in the development of algorithms:

1. Problem definition

2. Development of a model

3. Specification of the algorithm

4. Designing an algorithm

5. Checking the correctness of the algorithm

6. Analysis of algorithm

7. Implementation of algorithm

8. Program testing

9. Documentation preparation
56
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Algorithm Techniques
 Techniques for designing and implementing algorithm 

designs are called algorithm design patterns

Brute-force or exhaustive search: the naive method of 

trying every possible solution to see which is best.

Divide and conquer: repeatedly reduces an instance of a 

problem to one or more smaller instances of the same 

problem (usually recursively) until the instances are small 

enough to solve easily.

 An example of divide and conquer is merge sorting: divide the 

data into 2 halves and sort them, then the conquer phase of 

merging the segments
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Algorithm Techniques
Dynamic programming: when the same subproblems are 

used to solve many different problem instances, dynamic 

programming avoids recomputing solutions that have 

already been computed. 

 The main difference between dynamic programming and divide 

and conquer is that subproblems are more independent in divide 

and conquer, whereas subproblems overlap in dynamic 

programming. 

 The difference between dynamic programming and 

straightforward recursion is in caching or memoization of 

recursive calls.

 Non-recursive Fibonacci is an example of dynamic programming
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Algorithm Techniques
Greedy algorithms follow the problem-solving heuristic 

of making the locally optimal choice at each stage.

 Example: a greedy strategy for the traveling salesman problem 

(which is of a high computational complexity) is to follow the 

heuristic: "At each step of the journey, visit the nearest unvisited city." 

 This heuristic does not intend to find a best solution, but it 

terminates in a reasonable number of steps.

o Finding an optimal solution to such a complex problem 

typically requires unreasonably many steps.

Backtracking: multiple solutions are built incrementally 

and abandoned when it is determined that they cannot lead 

to a valid full solution.
59
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Dynamic Programming
 The non-recursive algorithm for computing Fibonacci 

numbers is an example of dynamic programming
public static long[] f; 

public static long fib(long index) {

if (index == 0)       

return 0;

if (index == 1) {      

f[1]=1;      

return 1;  

}

if(f[index]!=0)

return f[index];

else  // Reduction and recursive calls

f[index] = fib(index - 1) + f[index - 2];

return f[index];

}
60
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import java.util.Scanner;

public class Fibonacci4 {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter the Fibonacci index: ");

int n = input.nextInt();

f = new long[n+1];

System.out.println("fib(" + n + ") = " + fib(n));

}

public static long[] f;

public static long fib(int index) {

if (index == 0)

return 0;

if (index == 1) {

f[1] = 1;

return 1;

}

if (f[index] != 0)

return f[index];

else // Reduction and recursive calls

f[index] = fib(index - 1) + fib(index - 2);

return f[index];

}

}

Enter the Fibonacci index: 10
fib(10) = 55
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Dynamic Programming
 The Fibonacci algorithm solves subproblems, then combines 

the solutions of subproblems to obtain an overall solution

 This naturally leads to original recursive solution

 However, it is inefficient to use just recursion, because the 

subproblems overlap

 Recognize Dynamic programming:

 The solution of subproblems are used in many places

 The key idea behind dynamic programming is to solve each 

subprogram only once and store the results for 

subproblems for later use to avoid redundant computing of the 

subproblems
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Analyzing GCD Algorithms 

Version 1
public static int gcd(int m, int n) {

int gcd = 1;

for (int k = 2; k <= m && k <= n; k++) {

if (m % k == 0 && n % k == 0)

gcd = k;

}

return gcd;

}
The complexity of this 
algorithm is )n(O
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import java.util.Scanner;

public class GCD {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter the numbers: ");

int n1 = input.nextInt();

int n2 = input.nextInt();

System.out.println("gcd(" + n1 + "," + n2 + ") = " + gcd(n1, n2));

}

public static int gcd(int m, int n) {

int gcd = 1;

for (int k = 2; k <= m && k <= n; k++) {

if (m % k == 0 && n % k == 0)

gcd = k;

}

return gcd;

}

}

Enter the numbers: 5 40
gcd(5,40) = 5
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Analyzing GCD Algorithms 

Version 2
for (int k = n; k >= 1; k--) {

if (m % k == 0 && n % k == 0) {

gcd = k;

break;

}

}

The worst-case time complexity of this 
algorithm is )n(O
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import java.util.Scanner;

public class GCD2 {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter the numbers: ");

int n1 = input.nextInt();

int n2 = input.nextInt();

System.out.println("gcd(" + n1 + "," + n2 + ") = " + gcd(n1, n2));

}

public static int gcd(int m, int n) {

int gcd = 1;

for (int k = n; k >= 1; k--) {

if (m % k == 0 && n % k == 0) {

gcd = k;

break;

}

}

return gcd;

}

}

Enter the numbers: 5 40
gcd(5,40) = 5
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Analyzing GCD Algorithms 

Version 3
public static int gcd(int m, int n) {

int gcd = 1;

if (m == n) return m;

for (int k = n / 2; k >= 1; k--) {

if (m % k == 0 && n % k == 0) {

gcd = k;

break;

}

}

return gcd;

}

The worst-case time complexity 
of this algorithm is )n(O
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Euclid’s algorithm
A more efficient algorithm for finding the GCD 

was discovered by Euclid around 300 b.c

Let gcd(m, n) denote the gcd for integers m and n:

If m % n is 0, gcd (m, n) is n.

Otherwise, gcd(m, n) is gcd(n, m % n).

If you divide m by n:  m = n*k +  r

if p is a divisor of both m and n, it must be 

divisor of r:  m/p = n/p *k +  r/p

∈Z ∈Z     ->  ∈Z
68
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Euclid’s Algorithm Implementation

public static int gcd(int m,int n){

if (m % n == 0) 

return n;

else

return gcd(n, m % n);

}

The time complexity of this algorithm is O(log n). 
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import java.util.Scanner;

public class GCD4 {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter the numbers: ");

int n1 = input.nextInt();

int n2 = input.nextInt();

System.out.println("gcd(" + n1 + "," + n2 + ") = " + gcd(n1, n2));

}

public static int gcd(int m, int n) {

if (m % n == 0)

return n;

else

return gcd(n, m % n);

}

}

Enter the numbers: 5 40
gcd(5,40) = 5
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Euclid’s algorithm
 Time Complexity Proof:

 In the best case when m % n is 0, the algorithm takes just one step to 

find the GCD.

 The worst-case time complexity is O(log n):

 Assuming m >= n, we can show that m % n < m / 2, as 

follows: 

 If n <= m / 2, then m % n < m / 2 since the remainder 

of m divided by n is always less than n. 

 If n > m / 2, then m % n = m – n < m / 2. 

 Therefore, m % n < m / 2.

 Euclid’s algorithm recursively invokes the gcd method: it first calls 

gcd(m, n), then calls gcd(n, m % n), and gcd(m % n, 

n % (m % n)), and so on.

 Since m % n < m / 2 and n % (m % n) < n / 2, the 

argument passed to the gcd method is reduced by half after every 

two iterations. 71
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GCD algorithms
 Time Complexity 

72
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Efficient Algorithms for Finding 

Prime Numbers
 An integer greater than 1 is prime if its only positive divisors are 1 

and itself.

 A $150,000 award awaits the first individual or group 

who discovers a prime number with at least 100,000,000 

decimal digits:

http://w2.eff.org/awards/coop-prime-rules.php

 We will compare three versions of an algorithm to find all the prime 

numbers less than some number n:

 Brute-force 

 Check possible divisors up to  Math.sqrt(number)

 Check possible prime divisors up to  Math.sqrt(number)
73
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Brute-force Finding Prime Numbers
Scanner input = new Scanner(System.in);
System.out.print("Find all prime numbers <= n, enter n: ");
int n = input.nextInt();
final int NUMBER_PER_LINE = 10; // Display 10 per line
int count = 0; // Count the number of prime numbers
int number = 2; // A number to be tested for primeness
System.out.println("The prime numbers are:");
// Repeatedly find prime numbers
while (number <= n) {
// Assume the number is prime
boolean isPrime = true; // Is the current number prime?
// ClosestPair if number is prime
for (int divisor = 2; divisor <= (int)(Math.sqrt(number)); 

divisor++) {
if (number % divisor == 0) { // If true, number is not prime
isPrime = false; // Set isPrime to false          
break; // Exit the for loop

}
}
// Print the prime number and increase the count
if (isPrime) {
count++; // Increase the count
if (count % NUMBER_PER_LINE == 0) {
// Print the number and advance to the new line
System.out.printf("%7d\n", number);

}
else
System.out.printf("%7d", number);

}
// Check if the next number is prime
number++;

}
System.out.println("\n" + count + " prime(s) less than or equal to " + n);74



(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.Scanner;
public class Primes {

public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("Find all prime numbers <= n, enter n: ");
int n = input.nextInt();
final int NUMBER_PER_LINE = 10; // Display 10 per line
int count = 0; // Count the number of prime numbers
int number = 2; // A number to be tested for primeness
System.out.println("The prime numbers are:");
// Repeatedly find prime numbers
while (number <= n) {

// Assume the number is prime
boolean isPrime = true; // Is the current number prime?
// ClosestPair if number is prime
for (int divisor = 2; divisor <= (int) (Math.sqrt(number)); divisor++) {

if (number % divisor == 0) { // If true, number is not prime
isPrime = false; // Set isPrime to false
break; // Exit the for loop

}
}
// Print the prime number and increase the count
if (isPrime) {

count++; // Increase the count
if (count % NUMBER_PER_LINE == 0) {

// Print the number and advance to the new line
System.out.printf("%7d\n", number);

} else
System.out.printf("%7d", number);

}
// Check if the next number is prime
number++;

}
System.out.println("\n" + count + " prime(s) less than or equal to " + n);

}

}

75

Find all prime numbers <= n, enter n: 20
The prime numbers are:

2      3      5      7     11     13     17     19
8 prime(s) less than or equal to 20
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Brute force algorithm improvements:
The program is not efficient if you have to compute 

Math.sqrt(number) for every iteration of the for

loop.
 A good compiler should evaluate Math.sqrt(number)

only once for the entire for loop

int squareRoot =

(int)(Math.sqrt(number)); 

for (int divisor = 2; 

divisor <= squareRoot; divisor++){

76

Brute-force Finding Prime Numbers
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 In fact, there is no need to actually compute 

Math.sqrt(number) for every number
 For all the numbers between 36 and 48, inclusively, their 

(int)(Math.sqrt(number)) is 6.

 We only need to look for the perfect squares such as 4, 9, 16, 

25, 36, 49, and so on.
int squareRoot = 1;

// Repeatedly find prime numbers

while (number <= n) {

// Assume the number is prime

boolean isPrime = true; // Is the current number prime?

if (squareRoot * squareRoot < number) squareRoot++;

// Test if number is prime

for (int divisor = 2; divisor <= squareRoot; divisor++) {

if (number % divisor == 0) { // If true, number is not prime

isPrime = false; // Set isPrime to false

break; // Exit the for loop

}

}
77
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 Since it takes √i steps in the for loop to check whether 

number i is prime, the algorithm takes 

√2+√3+√4+…+√n steps to find all the prime numbers 

less than or equal to n.

 √2+√3+√4+…+√n <= n√n

 Therefore, the time complexity for this algorithm is O(n√n) 

78
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 We can prove that if i is not prime, there must exist a 

prime number p such that i = pq and p <= q.

 Let π(i) denote the number of prime numbers less 

than or equal to i. 
π(2) is 1, π(3) is 2, π(6) is 3, and π(20) is 8

 It has been proved that π(i) is approximately i/log i
 http://primes.utm.edu/howmany.html

 The number of the prime numbers less than or equal to √i is

 Moreover, prime numbers are relatively uniformly distributed

79

Actually, it is better than n√n

http://primes.utm.edu/howmany.html
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 Thus, the complexity for finding all prime numbers up 

to n is:

80

Finding Prime Numbers
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 Sieve of Eratosthenes (276–194 b.c.) for 

finding all prime numbers ≤n

 use an array named primes of n Boolean

 initially all values are true

 the multiples of 2 are not prime, set primes[2*i] to 

false for all 2≤i≤n/2

 Since the multiples of 3 are not prime, set 

primes[3*i] to false for all 3≤i≤n/3

81
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 2, 3, 5, 7, 11, 13, 17, 19, and 23 are prime numbers
82

Finding Prime Numbers
import java.util.Scanner;
public class SieveOfEratosthenes {

public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("Find all prime numbers <= n, enter n: ");
int n = input.nextInt();
boolean[] primes = new boolean[n + 1]; // Prime number sieve
for (int i = 0; i < primes.length; i++) {
primes[i] = true; 

}
for (int k = 2; k <= n / k; k++) {
if (primes[k]) {
for (int i = k; i <= n / k; i++) {
primes[k * i] = false; // k * i is not prime

}
}

}
final int NUMBER_PER_LINE = 10; // Display 10 per line
int count = 0; // Count the number of prime numbers found so far
for (int i = 2; i < primes.length; i++) {
if (primes[i]) {
count++;
if (count % 10 == 0) 
System.out.printf("%7d\n", i);

else
System.out.printf("%7d", i);          

}
}
System.out.println("\n" + count + " prime(s) less than or equal to " + n);

}
}
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 For each prime number k, the algorithm sets primes[k*i] to false

 This is performed n/k – k + 1 times in the for loop (i = k; i<=n/ k; 

i++)  primes[k * i] = false; so:

 This upper bound is very loose: The actual time complexity is 

much better 
 The Sieve of Eratosthenes algorithm is good for a small n such that the 

array primes can fit in the memory.

83

Finding Prime Numbers



(c) Paul Fodor (CS Stony Brook) & Pearson

Divide-and-Conquer
 The divide-and-conquer approach divides the problem 

into subproblems, solves the subproblems, then 

combines the solutions of subproblems to obtain the 

solution for the entire problem. 

Unlike the dynamic programming approach, the 

subproblems in the divide-and-conquer approach don’t 

overlap. 

A subproblem is like the original problem with a smaller 

size, so you can apply recursion to solve the problem. 

 In fact, all the recursive problems follow the divide-and-conquer 

approach. 

84
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Finding the Closest Pair of Points

Using Divide-and-Conquer
 Given a set of points, the closest-pair problem is to find 

the two points that are nearest to each other

A brute-force algorithm for finding the closest pair of 

points that computes the distances between all pairs of 

points and finds the one with the minimum distance takes 

O(n2)

 Divide-and-conquer divides the problem into 

subproblems, solves the subproblems, then combines the 

solutions of the subproblems to obtain the solution for 

the entire problem
85
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Finding the Closest Pair of Points 

Using Divide-and-Conquer
 Step 1: Sort the points in increasing order of x-coordinates. 

 For the points with the same x-coordinates, sort on y-coordinates. 

 This results in a sorted list S of points. 

 Step 2: Divide S into two subsets, S1 and S2, of equal size using the 

midpoint mid in the sorted list. 

 Let the midpoint mid be in S1. 

 Recursively find the closest pair in S1 and S2. 

 Let d1 and d2 denote the distance of the closest pairs in the two subsets, 

respectively. 
 Compute d = min(d1, d2)

 Step 3: Find the closest pair between a point in S1 and a point in S2 with 

y-coordinate in the range [middle point x-coordinate – d, middle point 

x-coordinate + d] and denote their distance as d3

 The closest pair is the one with the distance min(d1,d2,d3)86
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Analysis
 Step 1: can be done in O(n log n)

 it is just sorting

 Step 3: can be done in O(n)
 Let d = min(d1, d2)

 For a point in S1 and a point in S2 to form the closest pair in S, the 

left point MUST be in stripL and the right point in stripR

(sorted by Y-coordinate)
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Algorithm for Obtaining stripL and stripR
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Algorithm for Finding the Closest Pair 

in Step 3

 stripL stripR 

p 

q[r] 
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Finding the Closest Pair of Points 

Using Divide-and-Conquer
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import java.util.*;
public class ClosestPair {

// Each row in points represents a point
private double[][] points;
Point p1, p2;
public static void main(String[] args) {
double[][] points = new double[500][2];
for (int i = 0; i < points.length; i++) {
points[i][0] = Math.random() * 100;
points[i][1] = Math.random() * 100;      

}
ClosestPair closestPair = new ClosestPair(points);
System.out.println("shortest distance is " + 
closestPair.getMinimumDistance());

System.out.print("(" + closestPair.p1.x + ", " + 
closestPair.p1.y + ") to ");

System.out.println("(" + closestPair.p2.x + ", " + 
closestPair.p2.y + ")"); 

}

public ClosestPair(double[][] points) {
this.points = points;

} 

public double getMinimumDistance() {    
Point[] pointsOrderedOnX = new Point[points.length];
for (int i = 0; i < pointsOrderedOnX.length; i++)
pointsOrderedOnX[i] = new Point(points[i][0], points[i][1]);

Arrays.sort(pointsOrderedOnX);
// Locate the identical points if exists
if (checkIdentical(pointsOrderedOnX))
return 0; // The distance between the identical points is 0

Point[] pointsOrderedOnY = pointsOrderedOnX.clone();
Arrays.sort(pointsOrderedOnY);
return distance(pointsOrderedOnX, 0, 

pointsOrderedOnX.length - 1, pointsOrderedOnY);
}
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public boolean checkIdentical(Point[] pointsOrderedOnX) {
for (int i = 0; i < pointsOrderedOnX.length - 1; i++) {
if (pointsOrderedOnX[i].compareTo(pointsOrderedOnX[i + 1]) == 0) {
p1 = pointsOrderedOnX[i];
p2 = pointsOrderedOnX[i + 1];
return true;        

}
}
return false;

}
/** Compute the distance between two points p1 and p2 */
public static double distance(Point p1, Point p2) {
return distance(p1.x, p1.y, p2.x, p2.y);

}
/** Compute the distance between two points (x1, y1) and (x2, y2) */
public static double distance(

double x1, double y1, double x2, double y2) {
return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));

}
static class Point implements Comparable<Point> {
double x;
double y;
Point(double x, double y) {
this.x = x;
this.y = y;

}
public int compareTo(Point p2) {
if (this.x < p2.x)
return -1;

else if (this.x == p2.x) {
// Secondary order on y-coordinates
if (this.y < p2.y)
return -1;

else if (this.y == p2.y)
return 0;

else
return 1;

} else return 1; }  }
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public double distance(
Point[] pointsOrderedOnX, int low, int high,
Point[] pointsOrderedOnY) {

if (low >= high) // Zero or one point in the set
return Double.MAX_VALUE;

else if (low + 1 == high) {
p1 = pointsOrderedOnX[low];
p2 = pointsOrderedOnX[high];
return distance(pointsOrderedOnX[low], pointsOrderedOnX[high]);

}
int mid = (low + high) / 2;
Point[] pointsOrderedOnYL = new Point[mid - low + 1];
Point[] pointsOrderedOnYR = new Point[high - mid];
int j1 = 0; int j2 = 0;
for (int i = 0; i < pointsOrderedOnY.length; i++) {
if (pointsOrderedOnY[i].compareTo(pointsOrderedOnX[mid]) <= 0)
pointsOrderedOnYL[j1++] = pointsOrderedOnY[i];

else
pointsOrderedOnYR[j2++] = pointsOrderedOnY[i];

}
// Recursively find the distance of the closest pair in the left
// half and the right half
double d1 = distance(pointsOrderedOnX, low, mid, pointsOrderedOnYL);
double d2 = distance(pointsOrderedOnX, mid + 1, high, pointsOrderedOnYR);
double d = Math.min(d1, d2);

// stripL: the points in pointsOrderedOnYL within the strip d
int count = 0;
for (int i = 0; i < pointsOrderedOnYL.length; i++)
if (pointsOrderedOnYL[i].x >= pointsOrderedOnX[mid].x - d)
count++;

Point[] stripL = new Point[count];
count = 0;
for (int i = 0; i < pointsOrderedOnYL.length; i++)
if (pointsOrderedOnYL[i].x >= pointsOrderedOnX[mid].x - d)
stripL[count++] = pointsOrderedOnYL[i];
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// stripR: the points in pointsOrderedOnYR within the strip d
count = 0;
for (int i = 0; i < pointsOrderedOnYR.length; i++)
if (pointsOrderedOnYR[i].x <= pointsOrderedOnX[mid].x + d)
count++;

Point[] stripR = new Point[count];
count = 0;
for (int i = 0; i < pointsOrderedOnYR.length; i++)
if (pointsOrderedOnYR[i].x <= pointsOrderedOnX[mid].x + d)
stripR[count++] = pointsOrderedOnYR[i];

// Find the closest pair for a point in stripL and 
// a point in stripR
double d3 = d;
int j = 0;
for (int i = 0; i < stripL.length; i++) {
while (j < stripR.length && stripL[i].y > stripR[j].y + d)
j++;

// Compare a point in stripL with points in stripR
int k = j; // Start from r1 up in stripR
while(k < stripR.length && stripR[k].y <= stripL[i].y + d) {
if (d3 > distance(stripL[i], stripR[k])) {
d3 = distance(stripL[i], stripR[k]);
p1 = stripL[i];
p2 = stripR[k];

}
k++;

}
}

return Math.min(d, d3);
}

}
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Backtracking: Eight Queens
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 The Eight Queens problem is to find a solution to place a queen in 

each row on a chessboard such that no two queens can attack each 

other. 
 The problem can be solved using recursion
 Assign j to queens[i] to denote that a queen is placed in row i and 

column j
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Eight Queens

96

 The search starts from the first row with k = 0, where k is the 

index of the current row being considered. The algorithm checks 

whether a queen can be possibly placed in the jth column in the 

row for j = 0, 1, …, 7, in this order
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Eight Queens

97

 If successful, it continues to search for a placement 

for a queen in the next row. 
 If the current row is the last row, a solution is found

 If not successful, it backtracks to the previous row 

and continues to search for a new placement in the 

next column in the previous row. 

 If the algorithm backtracks to the first row and 

cannot find a new placement for a queen in this 

row, no solution can be found.

 This algorithm is called backtracking.
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public class NQueens {
static final int SIZE = 8;
private int[] queens = new int[SIZE];
public static void main(String[] args) {

NQueens nq = new NQueens();
nq.search();
print(nq.queens);

}
private static void print(int[] queens) {

System.out.print("[");
for(int q:queens)

System.out.print(q + " ");
System.out.println("]");

}
public NQueens() {
}

/** Search for a solution */
private boolean search() {
// k - 1 indicates the number of queens placed so far
// We are looking for a position in the kth row to place a queen
int k = 0;
while (k >= 0 && k < SIZE) {
// Find a position to place a queen in the kth row
int j = findPosition(k);
if (j < 0) {
queens[k] = -1;
k--; // back track to the previous row

} else {
queens[k] = j;
k++;

}
}
if (k == -1)
return false; // No solution

else
return true; // A solution is found

}
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public int findPosition(int k) {
int start = queens[k] + 1; // Search for a new placement
for (int j = start; j < SIZE; j++) {

if (isValid(k, j))
return j; // (k, j) is the place to put the queen now

}
return -1;

}

/** Return true if a queen can be placed at (row, column) */
public boolean isValid(int row, int column) {

for (int i = 1; i <= row; i++)
if (queens[row - i] == column // Check column
|| queens[row - i] == column - i // Check upleft diagonal
|| queens[row - i] == column + i) // Check upright diagonal
return false; // There is a conflict

return true; // No conflict
}

}
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Convex Hull
 Given a set of points, a convex hull is a smallest convex polygon 

that encloses all these points. 

 A polygon is convex if every line connecting two vertices is inside 

the polygon. 

 A convex hull has many applications in pattern recognition, 

image processing, game programming, etc. 
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The Gift-Wrapping Algorithm
 Set a list H initially empty. H will hold all points in 

the convex hull after the algorithm is finished.

Step 1: Given the set of points S, let the points in S

be labeled s0, s1, ..., sk, select the rightmost

lowest point h0 . 

 Add h0 to list H. 

 Let t0 be h0. 

Step 2: Let t1 be any point not yet seen.  For 

every point p in S, if p is on the right side of the 

direct line from t0 to t1, then let t1 be p

 After Step 2, no points lie on the right side of 

the direct line from t0 to t1
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Geometry: point position relative 

to a directed segment
 Given a directed line from point p0(x0, y0) to p1(x1, y1), 

you can use the following condition to decide whether a point 

p2(x2, y2) is on the left of the line, on the right, or on the same 

line:
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Gift-Wrapping
Step 3: If t1 is h0, done.

Step 4: Let t0 be t1, go to Step 2.

 The convex hull is expanded incrementally. 

 The correctness is supported by the fact that no 

points lie on the right side of the direct line from 

t0 to t1 after Step 2. 

 This ensures that every segment with two points in S

falls inside the polygon

 Finding the rightmost lowest point in Step 1 can be 

done in O(n) time

 Whether a point is on the left side of a line, right 

side, or on the line can be determined in O(1)

time
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Gift-Wrapping
Step 2 is repeated h times, where h is the size of 

the convex hull. 

In Step 2, we iterate over every point in S.

Therefore, the algorithm takes O(hn) time. 

In the worst-case, h is n. 

So, the complexity of this algorithm is O(n^2)
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Graham scan

Ronald Graham

Step 1: Select the rightmost lowest point and name it p0 in 

the set S.

Step 2: Sort the points in S angularly along the x-axis with 

p0 as the center.

If there is a tie and two points have the same angle, discard 

the one that is closest to p0.

The points in S are now sorted as p0, p1, p2, ..., 

pn-1.
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Graham scan
Step 3: Push p0, p1, and p2 into stack H. 

Step 4:

i = 3; 

while (i < n) { 

Let t1 and t2 be the top first and second element in stack H; 

if (pi is on the left side of the direct line from t2 to t1) { 

Push pi to H; 

i++; // Consider the next point in S. 

} else 

Pop the top element off stack H. 

}

Step 5: The points in H form a convex hull.
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Graham scan Complexity
• Finding the rightmost lowest point in Step 1 can be done in 

O(n) time. 

• The angles can be computed using trigonometry functions,

however, we can sort the points/compare the angles without 

actually computing their angles:

- Observe that a point p2 would make a greater angle than a point p1 if and 

only if p2 lies on the left side of the line from p0 to p1. 

• Sorting in Step 2 can be done in O(n log n). 

• Step 3 is done in O(1).

• Step 4 is done in O(n) time. 

• Therefore, the algorithm takes O(n logn) time.
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Practical Considerations

The big O notation provides a good 

theoretical estimate of algorithm efficiency. 

However, two algorithms of the same time 

complexity are not necessarily equally 

efficient (e.g., if an algorithm takes 100*n, 

while another takes n/2, then the second one 

should be used). 
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