
Paul Fodor

CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Collections Aggregates

1

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor (CS Stony Brook) & Pearson
2

Interface Hash Table Resizable Array Balanced Tree Linked List
Hash Table +

Linked List

Set HashSet TreeSet LinkedHashSet

List ArrayList LinkedList

Deque ArrayDeque LinkedList

Map HashMap TreeMap LinkedHashMap

Recap: Java Collections Framework

http://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html
http://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedHashSet.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedHashMap.html

(c) Paul Fodor (CS Stony Brook) & Pearson

Traversing Collections
 There are multiple ways to traverse collections:

 (1) by using Iterators

 (2) with the for-each construct

 (3) using aggregate operations (since JDK 1.8): obtain a stream and

perform aggregate operations on it

 Aggregate operations are often used in conjunction with lambda expressions to make

programming more expressive, using less lines of code

 The following code sequentially iterates through a collection of shapes and prints out

the red objects:

myShapesCollection.stream()

.filter(e -> e.getColor() == Color.RED)

.forEach(e -> System.out.println(e.getName()));

 (4) only lists can be traversed using indices

3

(c) Paul Fodor (CS Stony Brook) & Pearson

 Suppose that you are creating a social networking application:
public class Person {

String name;

Date birthday;

Sex gender;

String emailAddress;

int age;

public String getName() {

...

}

...

}

 Print the name of all members contained in the collection roster with

a for-each loop:
ArrayList<Person> roster = new ArrayList();

roster.stream()

.forEach(e -> System.out.println(e.getName());

4

Traversing Collections using aggregate operations/streams

(c) Paul Fodor (CS Stony Brook) & Pearson

Complete program:
import java.util.Date;

public class Person {

public enum Sex {

MALE, FEMALE

}

String name;

Date birthday;

Sex gender;

String emailAddress;

int age;

public Person(String name, Sex gender) {

this.name = name;

this.gender = gender;

}

public String getName() {

return name;

}

public int getAge() {

return age;

}

public Sex getGender() {

return gender;

}

}5

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.ArrayList;

import java.util.List;

public class TestAggregates1 {

public static void main(String[] args) {

List<Person> roster = new ArrayList<>();

roster.add(new Person("Abe", Person.Sex.MALE));

roster.add(new Person("Barbara", Person.Sex.FEMALE));

roster.add(new Person("Chris", Person.Sex.MALE));

roster.add(new Person("Dorothy", Person.Sex.FEMALE));

roster.add(new Person("Eugene", Person.Sex.MALE));

roster.add(new Person("Fabian", Person.Sex.MALE));

roster.stream()

.forEach(e -> System.out.println(e.getName()));

roster.stream()

.filter(e -> e.getGender() == Person.Sex.MALE)

.forEach(e -> System.out.println(e.getName()));

}

}

6

(c) Paul Fodor (CS Stony Brook) & Pearson

More examples
 Sum the salaries of all employees in a company:

int total = employees.stream()

.collect(Collectors.summingInt(Employee::getSalary)));

 stream() is optional, you can apply the aggregate directly on the collection

 Convert the elements of a Collection to String objects, then join

them, separated by commas:

String joined = elements.stream()

.map(Object::toString)

.collect(Collectors.joining(", "));

 A parallel stream (which might make sense if the collection is large

enough and your computer has enough cores):

myShapesCollection.parallelStream()

.filter(e -> e.getColor() == Color.RED)

.forEach(e -> System.out.println(e.getName()));

7

(c) Paul Fodor (CS Stony Brook) & Pearson

A pipeline is a sequence of aggregate operations
 For example: print the male members contained in the

collection roster with a pipeline that consists of the aggregate

operations filter and forEach:
roster.stream()

.filter(e -> e.getGender() == Person.Sex.MALE)

.forEach(e -> System.out.println(e.getName()));

is similar with the for-each loop:
for (Person p : roster) {

if (p.getGender() == Person.Sex.MALE) {

System.out.println(p.getName());

}

}

8

Pipeline

(c) Paul Fodor (CS Stony Brook) & Pearson

A pipeline contains the following components:
 A source: this could be a collection, an array, a generator function, or an

I/O channel.

 Zero or more intermediate operations, such as filter, that produces

a new stream

 A stream is a sequence of elements, but unlike a collection, it is not a data structure

that stores elements. Instead, a stream carries values from a source through a pipeline.

 A terminal operation that produces a non-stream result, such as: a

primitive value (like a double value), a collection, or in the case of

forEach, no value at all.

 the parameter of a forEach operation is the lambda expression

e->System.out.println(e.getName()), which invokes the method

getName on the object e. (The Java runtime and compiler infer that the type of the

object e is Person.)

9

Source, Intermediate and Terminal Operations

(c) Paul Fodor (CS Stony Brook) & Pearson

 Calculate the average age of all male members contained in the

collection roster with a pipeline that consists of the aggregate

operations filter, mapToInt, and average:

double average = roster.stream()

.filter(p -> p.getGender() == Person.Sex.MALE)

.mapToInt(Person::getAge)

.average()

.getAsDouble();

 The mapToInt operation returns a new stream of type IntStream (which is a

stream that contains only integer values).

 The operation applies the function specified in its parameter to each element in a

particular stream

 The function Person::getAge, is a method reference that returns the age of

the member

10

mapToInt and Method references

(c) Paul Fodor (CS Stony Brook) & Pearson

 Alternatively, we could use the lambda expression e ->

e.getAge()

double average = roster.stream()

.filter(p -> p.getGender() == Person.Sex.MALE)

.mapToInt(e -> e.getAge())

.average()

.getAsDouble();

11

mapToInt and Method references

(c) Paul Fodor (CS Stony Brook) & Pearson

 The JDK contains many terminal operations such as average that

return one value by combining the contents of a stream

 These operations are called reduction operations (more:

sum, min, max and count)
double average = roster.stream()

.filter(p -> p.getGender() == Person.Sex.MALE)

.mapToInt(Person::getAge)

.average()

.getAsDouble();

 The average operation calculates the average value of the elements contained in a

stream of type IntStream.

 It returns an object of type OptionalDouble.

 If the stream contains no elements, then the average operation returns an empty

instance of OptionalDouble, and invoking the method getAsDouble throws a

NoSuchElementException
12

Reduction operations

(c) Paul Fodor (CS Stony Brook) & Pearson

Differences Between Aggregate

Operations and Iterators
 Aggregate operations do not contain a method like next to instruct

them to process the next element of the collection

 Aggregation can more easily take advantage of parallel computing,

which involves dividing a problem into subproblems, solving those

problems simultaneously, and then combining the results of the

solutions to the subproblems

 Aggregate operations process elements from a stream, not directly

from a collection. Consequently, they are also called stream

operations.

 Aggregates support behavior as parameters: we can specify lambda

expressions as parameters for most aggregate operations

13

(c) Paul Fodor (CS Stony Brook) & Pearson

 The JDK provides us with the general-purpose reduction

operations reduce and collect: Stream.reduce

Integer totalAgeReduce = roster.stream()

.map(Person::getAge)

.reduce(

0,

(a, b) -> a + b);

similar to:

Integer totalAge = roster.stream()

.mapToInt(Person::getAge)

.sum();
14

General-purpose reduction operations reduce and collect

(c) Paul Fodor (CS Stony Brook) & Pearson

 The Stream.collect modifies an existing stream:

 Consider how to find the average of values in a stream

 We require two pieces of data: the total number of values and the sum of those values

 We can create a new data type that contains member variables that keep track of the

total number of values and the sum of those values:

class Averager implements IntConsumer{

private int total = 0;

private int count = 0;

public double average() {

return count > 0 ? ((double) total)/count : 0;

}

public void accept(int i) { total += i; count++; }

public void combine(Averager other) {

total += other.total;

count += other.count;

}

}
15

General-purpose reduction operations reduce and collect

(c) Paul Fodor (CS Stony Brook) & Pearson

 The following pipeline uses the Averager class and the collect

method to calculate the average age of all male members:
Averager averageCollect = roster.stream()

.filter(p -> p.getGender() == Person.Sex.MALE)

.map(Person::getAge)

.collect(Averager::new, Averager::accept,

Averager::combine);

System.out.println("Average age of male members: " +

averageCollect.average());

 We can use the collect operations with parallel streams

 the collect method with a parallel stream creates a new thread whenever the

combiner function creates a new object, such as an Averager object in this

example

 Consequently, we do not have to worry about synchronization

16

General-purpose reduction operations reduce and collect

(c) Paul Fodor (CS Stony Brook) & Pearson

 The collect operation in the example takes three arguments:

 supplier: is a factory function: it constructs new instances of the result

container

 In the example, it is a new instance of the Averager class

 accumulator: function that incorporates a stream element into a result

container

 In the example, it modifies the Averager result container by incrementing the

count variable by one and adding to the total member variable the value of the

stream element, which is an integer representing the age of a male member

 combiner: function that takes two result containers and merges their

contents

 In the example, it modifies an Averager result container by incrementing the

count variable by the count member variable of the other Averager instance

and adding to the total member variable the value of the other Averager

instance's total member variable

17

General-purpose reduction operations reduce and collect

(c) Paul Fodor (CS Stony Brook) & Pearson

 The collect operation is best suited for getting collections:

 The following example puts the names of the male members in a

collection with the collect operation:

List<String> namesOfMaleMembersCollect = roster.stream()

.filter(p -> p.getGender() == Person.Sex.MALE)

.map(p -> p.getName())

.collect(Collectors.toList());

 This version of the collect operation takes one parameter of type
Collector

 The Collectors class contains many useful reduction operations,

such as accumulating elements into collections and summarizing elements

according to various criteria

 Collectors.toList operation accumulates the stream elements

into a new instance of List

18

General-purpose reduction operations reduce and collect

(c) Paul Fodor (CS Stony Brook) & Pearson

 Group members of the collection roster by gender:
Map<Person.Sex, List<Person>> byGender =

roster.stream()

.collect(Collectors.groupingBy(Person::getGender));

 The groupingBy operation returns a map whose keys are the values

that result from applying the lambda expression specified as its

parameter (which is called a classification function).

 In this example, the returned map contains two keys, Person.Sex.MALE

and Person.Sex.FEMALE

 The keys' corresponding values are instances of List that contain the

stream elements that, when processed by the classification function,

correspond to the key value

19

groupingBy

(c) Paul Fodor (CS Stony Brook) & Pearson

 Retrieve the names of each member in the collection roster and group

them by gender:
Map<Person.Sex, List<String>> namesByGender =

roster.stream()

.collect(Collectors.groupingBy(

Person::getGender,

Collectors.mapping(

Person::getName,

Collectors.toList())));

 The groupingBy operation in this example takes two parameters, a

classification function and an instance of Collector that applies the

collector mapping, which applies the mapping function

Person::getName to each element of the stream

20

groupingBy

(c) Paul Fodor (CS Stony Brook) & Pearson

 Retrieve the total age of members of each gender:
Map<Person.Sex, Integer> totalAgeByGender =

roster.stream()

.collect(Collectors.groupingBy(

Person::getGender,

Collectors.reducing(

0,

Person::getAge,

Integer::sum)));

 The groupingBy operation in this example takes three parameters

 identity, like the Stream.reduce operation, is both the initial value of the reduction

and the default result if there are no elements in the stream.

 mapper: reducing operation that applies this mapper function to all stream elements

 operation function used to reduce the mapped values

21

groupingBy

