
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Build automation

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Build Automation
Build automation is the act of scripting or

automating a wide variety of tasks that

software developers do in their day-to-day

activities. Includes tasks to:

compile computer source code into binary code

package binary code

 check-out from version control

run automated tests

deploy to production systems

create documentation and/or release notes 2

(c) Paul Fodor

make, GNU make, nmake
 make is a classic Unix build tool created

by Stuart Feldman in April 1976 at Bell Labs

(2003 ACM Software System Award for

make)

GNU make is the standard implementation of

make for Linux and OS X

Microsoft nmake, a command-line tool which

normally is part of Visual Studio

3

(c) Paul Fodor

make and GNU make
make is typically used to build executable

programs and libraries from source code:

make [TARGET ...]

make searches the current directory for the

makefile to use: GNUmakefile, makefile,

Makefile

without arguments, make builds the first target

that appears in its makefile, which is traditionally

a symbolic "phony" target named all

4

(c) Paul Fodor

make and GNU make
 A makefile consists of rules. E.g., GNU Make:

targets : prerequisites ; command

 For example:

hello: ; @echo "hello“

 A makefile can contain definitions of macros: usually referred to

as variables when they hold simple string definitions:

CC = clang

 A macro is used by expanding it: $() or ${} in BSD:

NEW_MACRO = $(CC)

 Line continuation is indicated with a backslash \ character at the

end of a line

target: component \

 component
5

(c) Paul Fodor

make and GNU make
 Macros can be composed of shell commands by using the

command substitution operator `:

YYYYMMDD = ` date `

 Lazy evaluation: macros are normally expanded only when

their expansions are actually required:

PACKAGE = package

VERSION = ` date +"%Y.%m%d" `

ARCHIVE = $(PACKAGE)-$(VERSION)

dist:

 # Notice that only now macros are expanded for shell to interpret:

 # tar -cf package-`date +"%Y%m%d"`.tar

 tar -cf $(ARCHIVE).tar .

6

(c) Paul Fodor

make and GNU make
 Overriding macros on the command line:

make MACRO="value" [MACRO="value" ...] TARGET [TARGET ...]

 Suffix rules have "targets" with names in the form .FROM.TO and

are used to launch actions based on file extension: the internal

macro $< refers to the first prerequisite and $@ refers to the target

 Example: convert any HTML file to txt:

.SUFFIXES: .txt .html

 # From .html to .txt

 .html.txt:

 lynx -dump $< > $@

 Pattern rules:

%.txt : %.html

 lynx -dump $< > $@
7

(c) Paul Fodor

Example
 PACKAGE = package

 VERSION = ` date "+%Y.%m%d%" `

 RELEASE_DIR = ..

 RELEASE_FILE = $(PACKAGE)-$(VERSION)

 # Notice that the variable LOGNAME comes from the environment in

 # POSIX shells.

 # target: all - Default target. Does nothing.

 all:

 echo "Hello $(LOGNAME), nothing to do by default"

 # sometimes: echo "Hello ${LOGNAME}, nothing to do by default"

 echo "Try 'make help'"

 # target: help - Display callable targets.

 help:

 egrep "^# target:" [Mm]akefile

 # target: list - List source files

 list:

 # Won't work. Each command is in separate shell

 cd src

 ls

 # Correct, continuation of the same shell

 cd src; \

 ls

 # target: dist - Make a release.

 dist:

 tar -cf $(RELEASE_DIR)/$(RELEASE_FILE) && \

 gzip -9 $(RELEASE_DIR)/$(RELEASE_FILE).tar 8

(c) Paul Fodor

Example
#include <iostream.h>

#include "functions.h"

int main(){

 print_hello();

 cout << endl;

 cout << "The factorial of 5 is " << factorial(5) << endl;

 return 0;

}

#include <iostream.h>

#include "functions.h"

void print_hello(){

 cout << "Hello World!";

}

#include "functions.h"

int factorial(int n){

 if(n!=1){

 return(n * factorial(n-1));

 }

 else return 1;

}

void print_hello();

int factorial(int n);

9

main.cpp

hello.cpp

factorial.cpp

functions.h

(c) Paul Fodor

Example

10

Obtain an executable

A basic Makefile

make -f Makefile

Using dependencies

g++ main.cpp hello.cpp factorial.cpp -o hello

all:

 g++ main.cpp hello.cpp factorial.cpp -o hello

all: hello

hello: main.o factorial.o hello.o

 g++ main.o factorial.o hello.o -o hello

main.o: main.cpp

 g++ -c main.cpp

factorial.o: factorial.cpp

 g++ -c factorial.cpp

hello.o: hello.cpp

 g++ -c hello.cpp

clean:

 rm -rf *o hello

(c) Paul Fodor

A comment: the variable CC will be the compiler to use.

CC=g++

CFLAGS=-c -Wall

all: hello

hello: main.o factorial.o hello.o

 $(CC) main.o factorial.o hello.o -o hello

main.o: main.cpp

 $(CC) $(CFLAGS) main.cpp

factorial.o: factorial.cpp

 $(CC) $(CFLAGS) factorial.cpp

hello.o: hello.cpp

 $(CC) $(CFLAGS) hello.cpp

clean:

 rm -rf *o hello

11

Using variables and comments

(c) Paul Fodor

CC=g++

CFLAGS=-c -Wall

LDFLAGS=

SOURCES=main.cpp hello.cpp factorial.cpp

OBJECTS=$(SOURCES:.cpp=.o)

EXECUTABLE=hello

all: $(SOURCES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)

 $(CC) $(LDFLAGS) $(OBJECTS) -o $@

.cpp.o:

 $(CC) $(CFLAGS) $< -o $@

12

More

More:

make man: http://unixhelp.ed.ac.uk/CGI/man-cgi?make

(c) Paul Fodor

Example
 PACKAGE = package

 VERSION = ` date "+%Y.%m%d%" `

 RELEASE_DIR = ..

 RELEASE_FILE = $(PACKAGE)-$(VERSION)

 # Notice that the variable LOGNAME comes from the environment in

 # POSIX shells.

 # target: all - Default target. Does nothing.

 all:

 echo "Hello $(LOGNAME), nothing to do by default"

 # sometimes: echo "Hello ${LOGNAME}, nothing to do by default"

 echo "Try 'make help'"

 # target: help - Display callable targets.

 help:

 egrep "^# target:" [Mm]akefile

 # target: list - List source files

 list:

 # Won't work. Each command is in separate shell

 cd src

 ls

 # Correct, continuation of the same shell

 cd src; \

 ls

 # target: dist - Make a release.

 dist:

 tar -cf $(RELEASE_DIR)/$(RELEASE_FILE) && \

 gzip -9 $(RELEASE_DIR)/$(RELEASE_FILE).tar 13

(c) Paul Fodor

Example
 PROGRAM = foo

 C_FILES := $(wildcard *.c)

 OBJS := $(patsubst %.c, %.o, $(C_FILES))

 CC = cc

 CFLAGS = -Wall -pedantic

 LDFLAGS =

 all: $(PROGRAM)

 $(PROGRAM): .depend $(OBJS)

 $(CC) $(CFLAGS) $(OBJS) $(LDFLAGS) -o $(PROGRAM)

 depend: .depend

 .depend: cmd = gcc -MM -MF depend $(var); cat depend >> .depend;

 .depend:

 @echo "Generating dependencies..."

 @$(foreach var, $(C_FILES), $(cmd))

 @rm -f depend

 -include .depend

 # These are the pattern matching rules. In addition to the automatic

 # variables used here, the variable $* that matches whatever % stands for

 # can be useful in special cases.

 %.o: %.c

 $(CC) $(CFLAGS) -c $< -o $@

 %: %.c

 $(CC) $(CFLAGS) -o $@ $<

 clean:

 rm -f .depend *.o

14

(c) Paul Fodor

configure script
 configure script is an executable script designed to aid in developing a

program to be run on a wide number of different computers

 It matches the libraries on the user's computer (Operating System),

with those required by the program, just before compiling it from its

source code

 Usage:

./configure

make

make install

 Other:

./configure --help

./configure --libs="-lmpfr -lgmp"

./configure --prefix=/home/myname/apps
15

(c) Paul Fodor

configure script
 configure script is an executable script designed to aid in developing a

program to be run on a wide number of different computers

 It matches the libraries on the user's computer (Operating System),

with those required by the program, just before compiling it from its

source code

 Usage:

./configure

make

make install

 Other:

./configure --help

./configure --libs="-lmpfr -lgmp"

./configure --prefix=/home/myname/apps
16

(c) Paul Fodor

GNU build system (Autotools)
 A suite of programming tools designed to assist in making source

code packages portable to many Unix-like systems. Parts: Autoconf,

Autoheader, Automake, Libtool.

 It is part of GNU toolchain:

 GNU make: Automation tool for compilation and build;

 GNU Compiler Collection (GCC): Suite of compilers for several

programming languages;

 GNU Binutils: Suite of tools including linker, assembler and other tools;

 GNU Bison: Parser generator

 GNU m4: m4 macro processor

 GNU Debugger (GDB): Code debugging tool;

 GNU build system (autotools)

17

(c) Paul Fodor

GNU build system (Autotools)
 Autoconf generates a configure script based on the contents of a

configure.ac file in GNU m4 macro preprocessor

 https://www.gnu.org/software/autoconf/

 Example configure.ac:

AC_INIT(myconfig, version-0.1)

AC_MSG_NOTICE([Hello, world.])

 Now do:

autoconf configure.ac > configure

chmod +x configure

./configure

 and you get:

configure: Hello, world.

http://www.edwardrosten.com/code/autoconf/
18

https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/autoconf/
http://www.edwardrosten.com/code/autoconf/
http://www.edwardrosten.com/code/autoconf/

(c) Paul Fodor

GNU build system (Autotools)
AC_INIT(myconfig, version-0.1)

echo " Testing for a C compiler"

AC_PROG_CC

echo " Testing for a C++ compiler"

AC_PROG_CXX

echo " Testing for a FORTRAN compiler"

AC_PROG_F77

AC_LANG(C++)

AC_CHECK_LIB(m, cos)

19

(c) Paul Fodor

Apache Ant
 Apache Ant is a popular for Java platform development and uses an

XML file format: by default the XML file is named build.xml
<?xml version="1.0"?>

<project name="Hello" default="compile">

 <target name="clean" description="remove intermediate files">

 <delete dir="classes"/>

 </target>

 <target name="clobber" depends="clean" description="remove all artifact files">

 <delete file="hello.jar"/>

 </target>

 <target name="compile" description="compile the Java source code to class files">

 <mkdir dir="classes"/>

 <javac srcdir="." destdir="classes"/>

 </target>

 <target name="jar" depends="compile" description="create a Jar file for the application">

 <jar destfile="hello.jar">

 <fileset dir="classes" includes="**/*.class"/>

 <manifest>

 <attribute name="Main-Class" value="HelloProgram"/>

 </manifest>

 </jar>

 </target>

</project>

20

(c) Paul Fodor

Apache Maven
 A build automation tool used primarily for Java projects, but also

other languages: C#, Ruby, Scala, and other languages.

 Maven projects are configured using a Project Object Model, which

is stored in a pom.xml-file:
<project>

 <!-- model version is always 4.0.0 for Maven 2.x POMs -->

 <modelVersion>4.0.0</modelVersion>

 <!-- project coordinates, i.e. a group of values which uniquely identify this project -->

 <groupId>com.mycompany.app</groupId>

 <artifactId>my-app</artifactId>

 <version>1.0</version>

 <!-- library dependencies -->

 <dependencies>

 <dependency>

 <!-- coordinates of the required library -->

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <!-- this dependency is only used for running and compiling tests -->

 <scope>test</scope>

 </dependency>

 </dependencies>

</project>

 Then the command: mvn package
 21

(c) Paul Fodor

Extreme programming (XP)

22

Planning and feedback loops in extreme programming.

Responsiveness to changing customer requirements

Advocates frequent "releases" in short development cycles.

(c) Paul Fodor

Agile software development
 The Agile Manifesto

 promotes adaptive planning, evolutionary development, early delivery, continuous

improvement and encourages rapid and flexible response to change.

1. Customer satisfaction by rapid delivery of useful software

2. Welcome changing requirements, even late in development

3. Working software is delivered frequently (weeks rather than months)

4. Close, daily cooperation between business people and developers

5. Projects are built around motivated individuals, who should be trusted

6. Face-to-face conversation is the best form of communication (co-location)

7. Working software is the principal measure of progress

8. Sustainable development, able to maintain a constant pace

9. Continuous attention to technical excellence and good design

10. Simplicity—the art of maximizing the amount of work not done—is essential

11. Self-organizing teams

12. Regular adaptation to changing circumstances

23

