Test-Driven Development

(a.k.a. Design to Test)

CSE219, Computer Science III

Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse219

http://www.cs.stonybrook.edu/~cse219

e

Man-hours

® Labor is sometimes measured in man-hours,
man-months, or man-years.
*Example: Doom3 took 5 years and more
than 100 man-years of labor to develop
Company Spokesman: "It will be ready when
it's done"
® Why not double the size of the team and

halve the Jead time (concept date to release
date)?

(c) Paul Fodor

http://www.spectrum.ieee.org/sep05/1685

" Man-hours: The Mythical Man-Month A

® Assume that a software program might take one expert

programmer a year to develop = 12 man-months

® Market pressures might be such that we want to get the

program finished in a month, rather than a year

°] programmer * 12 months = 12 programmers * 1

month?

e When you throw additional programmers at a project
that is late, you are likely to make it more late!

e Remove promised-but-not-yet-completed features,
rather than multiplying workers bees.

e Also, at least one team member must have detalled
° knowledge of the entire system (all the modules).
N

(c) Paul Fodor

/

http://www.spectrum.ieee.org/sep05/1685

" Design to Implementation

® Assume a modular design has been Completed

® Can all the modules be developed in parallel?

most likely not - due to dependencies

® division of work within a module may also be necessary
can classes within a module be developed in parallel?
* most likely not - due to dependencies
* division of work within a class may also be necessary

o can methods within a class be developed in

parallel?

0 Again most likely not - due to dependencies

@ (c) Paul Fodor /

" Bottom-Up Development

® Traditional approach:

® All modules used by module M are implemented

and tested before M is implemented.
® Requires the use of drivers (i.e., testers).

® Example of Module dependencies:

Bottom-up development can place less of a

A
load on system resources.
B C Bottom-up development can lead to earlier
D E completion of useful subsystems.

(c) Paul Fodor /

" Top-Down Development

® All modules that use module M are implemented and
tested before M is implemented.
Modules themselves will probably use bottom—up

development
® Requires the use of stubs.

o Testing procedures are important

* Example of module dependencies:

A If the design contains a type hierarchy, top-

down development is required.

(c) Paul Fodor

" The

¢ Should |
¢ Should |

Development Strategy

be defined explicitly before implementation begins

be primarily top-down, with bottom-up used mainly

for mod

lules that are easier to implement than to simulate

o Advantages of top-down outweigh bottom-up

o simplifies system integration & test

® makes it possible to produce useful partial versions of the

system

® allows critical high—level design errors to be caught early

® Bottom-up development may be used for each module

e we’ll see this with module testing as well

{

(c) Paul Fodor /

" What is design to test?

® Approach to implementation
O design modular classes and methods

® before coding:

determine what needs to be tested

design test cases for those important methods

® test incrementally, as you implement your solution

" Don't Design to Fail

(-

Design to Test = —----mmmmmmemmmme

Design to Fall

- Things to avold:
—coding without a design
—not planning on how a design will be tested
— creating large amounts of untested code
—coding very large methods
— lack of modularity can doom an implementation

(c) Paul Fodor

" Testing vs. Debugging

Testing

Does the code YES
work properly]

{ Coding -

NO

Debuéging

" Important Definitions A

® Testing
® a process of running a program on a set of test cases and
comparing the actual results with expected results
® Verification
® a formal or informal argument that a program works as intended
for all possible inputs
® Validation

® a process designed to increase confidence that a program works
as intended
performed through verification or testing

® Defensive Pro gramming

® writing programs in a way designed to ease the process of

@ validation and debugging —_— y

" Kinds of Testing

(-

® Unit Testing

® Test each module in a program separately.
® Integration Testing

® Test interfaces between modules.

® Much more ditficult than unit testing
® Regression Testing

® Test programs after modifications to ensure
correct behavior of the original program is

preserved.

° System Testing

® Test overall system behavior.

(c) Paul Fodor

" Aspects of Testing

e How do we generate test cases’

e Exhaustive

Consider all possible combinations of inputs.
Often infeasible — why?

Is it feasible with your project?

® Sampled

A small but representative subset of all input combinations.

e Black-box testing - Test cases generated from program

specifications and not dependent on the implementation

* (Glass-box testing - Test cases generated from program’s

code

(c) Paul Fodor

/

" Black-box testing :

® |t is the best place to start when attempting to test a program
thoroughly

® Test cases based on program’s specification, not on its

implementation (see the homework grading sheets)
® Test cases are not affected by:
® Invalid assumptions made by the programmer

° Implementation changes

Use same test cases even after program structures has Changed

® Test cases can be generated by an “independent” agent,

unfamiliar with the implementation.

® Test cases should cover all paths (not all cases) through the

specification, including exceptions.
@ (c) Paul Fodor /

" Boundary Conditions

* A boundary condition is an input that is “one away”

(-

™

from producing a different behavior in the program

code

® Such checks catch 2 common types of errors:

® Logical errors, in which a path to handle a special

case presented by a boundary condition is

omitted

® Failure to check for conditionals that may cause
the underlying language or hardware system to

raise an exception (ex: arithmetic overtlow)

(c) Paul Fodor

" Glass-box testing

® Black-box testing is generally not enough.

® For Glass-box testing, the code of a program

being tested is taken into account

o Path—completeness:

®Test cases are generated to exercise each path

through a program.
® May be insufficient to catch all errors.

® Can be used effectively only for a program

fragment that contains a reasonable number of

@ paths to test. N

- Testing paths through specificatio

- Examine the method specifications (preconditions) & all paths
through method to generate unique test cases for testing.
/* REQUIRES: x >= 0 && y >= 10 */

public static int calc(int x, int y) { ...

- Translate paths to test cases:

X

XX X X X X X X

R KK KKKKKK

10
10
15
15
10
15

o O O

>

>
<
<
<

>

(c) Paul Fodor

O O O O O O O O O

&&
&&
&&
&&
&&
&&
&&
&&
&&

R KKKKKKKK

}

10)
10)
10)
10)
10)
10)
10)
10)
10)

™~

N

4 : http://blog.takipi.com/we-
n I analyzed-30000-github-
projects-here-are-the-top-

® Unit-test framework for Java programs | 100-libraries-in-java-js-and-
ruby research survey

® Qpen source SOftware performe(_:I in 2013 across
30,000 GitHub projects
found that 40-50% of all
projects use an automatic
testing framework (JUnit in
Java and RSpec in Ruby)

® hosted on SourceForge:

Moved to (for JUnit 4 and later)

® not in the standard JDK:

import junit.framework.*;
/ /for JUnit 3.8 and earlier

import org.junit.*; //for JUnit4 and later

® Associate a Test class with each unit

@ ® one or more classes

K (c) Paul Fodor /

http://junit.sourceforge.net/javadoc
http://junit.org/
http://junit.sourceforge.net/javadoc/

e .
JUnit
® The test class has a set of test methods
public void testX()

where X is the method to be tested

® The test methods use “assertions” to perform the
tests, ex:
Assert.assertTrue (c)
Assert.assertEquals (x,vy)
Assert.assertSame (objl, obj2)

@ (c) Paul Fodor

et

method name / parameters

™~

description

assertTrue(test)
assertTrue("message", test)

Causes this test method to fail if the given boolean test 1s
not true.

assertFalse(test)
assertFalse("message", test)

Causes this test method to fail if the given boolean test is
not false.

assertEquals(expectedValue, value)
assertEquals("message”, expectedValue, value)

Causes this test method to fail if the given two values
are not equal to each other. (For objects. 1t uses the
equals method to compare them.) The first of the two
values 1s considered to be the result that you expect: the
second 1s the actual result produced by the class under
test.

assertNotEquals(valuel, value2)
assertNotEquals("message", valuel, value2)

Causes this test method to fail if the given two values
are equal to each other. (For objects, it uses the equals
method to compare them.)

assertNull(value)
assertNull("message", value)

Causes this test method to fail if the given value 1s not
null.

assertNotNull(value)
assertNotNull("message"”, value)

Causes this test method to fail if the given value is null.

assertSame(expectedValue, value)
assertSame("message”, expectedValue, value)
assertNotSame(value1, value2)
assertNotSame("message”, valuel, value2)

Identical to assertEquals and assertNotEquals
respectively. except that for objects. 1t uses the ==
operator rather than the equals method to compare them.
(The difference 1s that two objects that have the same
state might be equals to each other, but not == to each
other. An object 1s only == to 1tself.)

fail()

Causes this test method to fail.

!Cail("message")

" JUnit

Calculator. java

public class Calculator {
public int evaluate(String expression) {
int sum = 0;
for (String summand: expression.split("\\+"))
sum += Integer.valueOf(summand);
return sum;

(c) Paul Fodor

" JUnit

CalculatorTest. java

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class CalculatorTest {
@Test
public void evaluatesExpression() {
Calculator calculator = new Calculator();
int sum = calculator.evaluate("1+2+3");
assertEquals(6, sum);

}
¥

@ (c) Paul Fodor

" JUnit

java -cp .:junit-4.12.jar:hamcrest-core-
1.3.jar org.junit.runner.JuUnitCore
CalculatorTest

JuUunit version 4.12
Time: 0,006
OK (1 test)

@ (c) Paul Fodor

" JUnit

Calculator. java

public class Calculator {
public int evaluate(String expression) {
int sum = 0;
for (String summand: expression.split("\\+"))
sum(::)Integer.valueOf(summand);
return sum;

}
¥

@ (c) Paul Fodor

4 ' N
Junit
java -cp .:junit-4.12.jar:hamcrest-core-

1.3.jar org.junit.runner.JUnitCore
CalculatorTest

Junit version 4.12

.E

Time: 0,007

There was 1 failure:

1) evaluatesExpression(CalculatorTest)

java.lang.AssertionError: expected:<6> but was:<-6>
at org.junit.Assert.fail(Assert.java:88)

FAILURES!!!
Tests run: 1, Failures: 1

@ (c) Paul Fodor /

/ N etbeans I D E Right-click Calculator.java and choose Tools > Create Tests. \

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help Q.- Search (Ctrl+1T)
FEES D oy v @ T W DB G-

Projects |Fi|es X|5n.=.rl.ri.oes | = @Calculatnr.java X|@I CalculatorTest. java X|
=) cse219_JUnit_test

build
lib 1 package c=sellf junit test;

-l nbproject

L sre

=) cse219_junit_test
“-[& calculator.java

) test

1)) cse219_junit_test
& CcalculatorTest.java
build.xml
manifest.mf

public class Calculator {

public int evalumate (String expression) {
int sum = 0;
for (String summand : expression.splitc("“\W+")) {
sum —= Integer.valus=s0f (summand) ;

W Ch -] & LA e La kg

[
[=]

return sum;

=
[N

1o

£ >
[cse219_junit_test.Calculator » @ evaluate 3 for (String summand : expression.split(™\+")} 3 X

In the project Properties -> Add

lerafy Junit Test Results X | Output- cse219_JUnit_test (test) | Git- [public_html] - master | Notifications | —

cse219_junit_test.CalculatorTest X

PR e —

[{g Mo test passed, 1 test failed.(0.054 s)
o El;, cse219_junit_test.CalculatorTest Failed

es =- &

¥y evaluatesExpression Failed: expected:<6> but was:<-6>

expected:<6> but was: <-6>

é-----junit.framewn rk.AssertionFailedError
“-at cse219_junit_test.CalculatorTest.evaluatesExpression(Cz

/ EC I I pse I D E Open the New wizard (File > New > JUnit Test Case). \

File Edit Source Refactor MNavigate Search Project Run Emmet Window Help

O~E~ =240~ = N ENE 2R RPYAgcEN O -R-ZT-E-ES S
PRABW Y ~vHFH o ov Quick Access || B ‘ #Debug &£° Team Synchronizing
[Project Exp.. 32| = B || 4] Calculatorjava [J] CalculatorTestjava i = B8
D&|e < 1 package cse219 junit_test; ~
4 = c5e219 junit_test 2
4 38 siC 3= import static org.junit.Assert.®;
4

4 1 cse219_junit_tes s) e Teets
- [1 Calculatorja 5 import org.junit.Test;
» [1] CalculatorTe:

- B4 JRE System Library

public class CalculatorTest {

W00 =l

- B JUnit 4 = @Test
10 public void testEvaluate() {
11 Calculator calculator = new Calculator();
12 int sum = calculator.evaluate("1+2+3");
13 assertEquals(6, sum);
14 }
15
16 v
(2! Markers | [0 Properties | 4 Servers | ¥ Data Source Explorer | &2 Snippets | B Console |gv JUnit 2 = 0
&ﬁ}ﬂmm|%% LEEJv =
Finished after 0.013 seconds
Runs: 1/1 8 Errors: 0 B Failures: 1 |
4 i cse219_junit_test.CalculatorTest [Runner: JUnit 4] (0.00; = Failure Trace 3F
g testEvaluate (0.002 s) Y0 java.lang.AssertionError: expected: <6 but was:<-6>
= at cse219 junit_test.CalculatorTest.testEvaluate(Calculato
< > || < > < >

k (c) Paul Fodor /

Building unit tests with JUnit

e |nitialize any instance variables

necessary for testing in the test object

® Define tests for emptiness, equality,

boundary conditions, ...

® Define test suites, if necessary, to group

tests.

® [se Assert methods to perform tests

(c) Paul Fodor /

" JUnit 3.8 vs. 4 :

® JUnit 4: all test methods are annotated with

(@ Test.

® Unlike JUnit3 tests, you do not need to prefix the

method name with "test".
® JUnit 4 does not have the test classes extend
junit.framework.TestCase (directly or indirectly).

® Usually, tests with JUnit4 do not need to extend
anything (which is good, since Java does not

support multiple inheritance).

@ (c) Paul Fodor /

~ JUnit Example — StatCompiler.java

public class StatCompiler {

/**
* a, b, & ¢c must all be positive
**/
public static int averageOfPosInts(int a, int b, int c)
throws IllegalArgumentException{
if ((a<0) || (b<0) || (¢ <0))
throw new IllegalArgumentException('"No neg values");
int sum = a + b + ¢c;
return sum/3;

public static int median(int a, int b, int c) {

if ((a >=b) && (a <=c)) return a;
else 1f ((a >= b) && (a >=c)) return b;
else return c;

@ (c) Paul Fodor /

/ import junit.framework.*; StatCom p| Ie rTeSt_S_S J ava\

// JUnit 3.8
public class StatCompilerTest extends TestCase {

public StatCompilerTest (java.lang.String testName) ({
super (testName) ;

public void testAverageOfPosInts () ({
System.out.println ("testAverageOfPosInts") ;
Assert.assertEquals (StatCompiler.averageOfPosInts (1, 2, 3), 2);
try{
StatCompiler.averageOfPosInts (-1, 2, 3);
fail ("Exception should have been thrown") ;
} catch (IllegalArgumentException iae) ({}

public void testMedian() {
System.out.println ("testMedian") ;
Assert.assertEquals (2, StatCompiler.median(l, 2, 3));
Assert.assertEquals (2, StatCompiler.median(3, 2, 1)),

}

@ (c) Paul Fodor /

Run JUnit version 3.8

Junit version 3.8
testAverageOfPosInts
testMedian

Errors logged for the StatCompilerTest test:
No errors.

Failures logged for the StatCompilerTest test:
Total failures: 1

Test case testMedian (StatCompilerTest) failed with "expected:<2>
but was:<3>“ at
StatCompilerTest.testMedian (StatCompilerTest. java:42)

Summary of StatCompilerTest test:
Result: Failed

Run:
Failures:
Errors:
Elapsed time:

O ORrN

(c) Paul Fodor

(" import org.junit.Test; StatCompilerTest_4.java h

import static org.junit.Assert.*;
public class StatCompilerTest ({
@Test
public void testAverageOfPosInts () ({

}

@Test
public void testMedian() {

System.out.println ("averageOfPosInts") ;

int a =1;

int b = 2;

int ¢ = 3;

int expResult = 2;

int result = StatCompiler.averageOfPosInts(a, b, c);
assertEquals (expResult, result);

System.out.println("median") ;

int a = 3;

int b = 2;

int ¢ = 1;

int expResult = 2;

int result = StatCompiler.median(a, b, c);
assertEquals (expResult, result);

(c) Paul Fodor /

Junit plugin is installed. & smansan
-y StartTest
=) Eﬁﬂﬁﬂﬁé

-8 StaticExar
-|& StaticExar
-|&] stillClock.
-84 Student.jz
-|&% student_1
@ SuperWile
-[# TaskThre
-5 TestArray
-|& TestDatas
|8 TestFilest
-8 TestObjec
-[& ThreadCo
@ TimerDern
@ TwoThrez
- |84 wildCardr
-[& wildCardr
-8 wildcardr
-|& wildcardr
| javafxapplica
est Packages

| <default pac
- @&StatComp
braries

est Libraries
artiesManager
ban_final
banLevelEditor
Ttilities

Open

Cut

Copy

Paste
Compile File

Run File

Debug File
Profile File
Test File
Debug Test File
Profile Test File

Add
Delete

Save As Template...

Find Usages
Refactor

Beanlnfo Editor...

File Members
File Hierarchy

History

Ctrl+X
Ctrl+C
Ctrl+V
F9

Shift+F6
Ctrl+Shift+F5

Ctrl+F6
Ctrl+Shift+F6

Delete

Alt+F7

Ctrl+F12
Alt+F12

/N etBeans and Junit: Download the Junit library and add it in the path. The

Apply Diff Patch...
Diff To...
Add to Favorites

Create/Update Tests

Tools

Properties

Analyze Javadoc
Add to Palette...

™

Run JUnit version 4 A

Run: java org.junit.runner.JUnitCore [test class name]

JUnit version 4.11

. testAverageOfPosInts

. testMedian

Time: 0.005

There was 1 failure:

1) testMedian(JUnit test 01)
java.lang.AssertionError: expected:<2> but was:<3>

FAILURES! !!
Tests run: 2, Failures: 1

(c) Paul Fodor /

" Notes on Static import :

® Static import is a feature introduced in the Java
programming language that allows members (fields and

methods) defined in a class as public static to be used in

Java code without specitying the class in which the field is

defined.

® The mechanism can be used to reference individual
members of a class:
import static java.lang.Math.PI;
import static java.lang.Math.pow;

® or all the static members of a class:

import static java.lang.Math.*;

@ (c) Paul Fodor /

" Static Import example :

import static java.lang.Math.*;

// OR
// import static java.lang.Math.PI;
// import static java.lang.Math.pow;

import static java.lang.System.out;

public class HelloWorld {
public static void main(String[] args) ({
out.println("Hello World!") ;
out.println("A circle with a diameter of 5 cm has:");
out.println("A circumference of " + (PI * 5) + " cm")
out.println("And an area of " + (PI * pow(2.5,2))
+ " sq. cm");

@ (c) Paul Fodor /

e

Notes on Assertions

® An assertion is a Java statement that enables
you to assert an assumption about your

pl‘O gram .

® An assertion contains a Boolean expression
that should be true during program

execution.

® Assertions can bG llSGd to assure program

correctness and avoid logic errors.

@ (c) Paul Fodor

™

e

Declaring Assertions

® An assertion is declared using the Java keyword
assert in JDK 1.5 as follows:

assert assertion; //OR
assert assertion : detailMessage;

where assertion is a Boolean expression and
detailMessage is a primitive-type or an Object

value.

(c) Paul Fodor /

e

Executing Assertions Example

public class AssertionDemo ({
public static void main(String[] args) {
int i; int sum = 0;
for (1 = 0; i < 10; i++) {
sum += 1i;
}
assert i==10;
assert sum>10 && sum<5*10 : "sum is " + sum;

(c) Paul Fodor

™

e

Executing Assertions

® When an assertion statement is executed, Java evaluates the
assertion.
e [f it is false, an AssertionError will be thrown.

® The AssertionError class has a no-arg constructor and seven
overloaded single-argument constructors of type int, long, float,

double, boolean, char, and Object.

® For the first assert statement with no detail message, the no-arg

constructor of AssertionError is used.

® For the second assert statement with a detail message, an appropriate
AssertionError constructor is used to match the data type of the

message.

® Since AssertionError is a subclass of Error, when an assertion becomes

false, the program displays a message on the console and exits.

@ (c) Paul Fodor /

e

™

Running Programs with Assertions

® By default, the assertions are disabled at runtime. To enable it,

use the switch —enableassertions, or —ea for short, as follows:

java —ea AssertionDemo
public class AssertionDemo ({
public static void main(String[] args) {
int i; int sum = 0;
for (i = 0; 1 < 10; i++) {
sum += 1i;
}

assert i'=10;

}

Exception in thread "main" java.lang.AssertionError

at AssertionDemo.main (AssertionDemo. java:7)

(c) Paul Fodor /

e

Running Programs with Assertions

™

® Assertions can be selectively enabled or disabled at

class level or package level.

e The disable switch is —disableassertions or —da

for short.

*For example, the following command enables
assertions in package packagel and disables

assertions in class Class]1.

java —ea:packagel -da:Classl AssertionDemo

(-

(c) Paul Fodor

/

4 ™
Using Exception Handling or Assertions?

* Assertion should not be used to replace exception
handling.

® Exception handling deals with unusual circumstances during

program execution.
® Assertions are to assure the correctness of the program.

® Exception handling addresses robustness and assertion

addresses correctness.

® Assertions are used for internal consistency and Validity

checks.

® Assertions are checked at runtime and can be turned on or off

at startup time.

(c) Paul Fodor /

e

™
Using Exception Handling or Assertions?

® Do not use assertions for argument checking in
public methods:
¢ Valid arguments that may be passed to a public method

are considered to be part of the method’s contract.

® The contract must always be obeyed whether assertions

are enabled or disabled.

® For example, the following code in the Circle class

should be rewritten using exception handling:

public void setRadius (double newRadius) ({
assert newRadius >= 0;
radius = newRadius;

@ } (c) Paul Fodor /

4 ™
Using Exception Handling or Assertions?

® Use assertions to reaffirm assumptions.
® This gives you more confidence to assure correctness
of the program.
® A common use of assertions is to replace assumptions
with assertions in the code.

oA good use of assertions is place assertions in a switch

statement without a default case. For example:
switch (month) {

case 1: ... ; break;

case 2: ... ; break;

case 12: ... ; break;

default: assert false : "Invalid month: " + month;

@ } (c) Paul Fodor /

