
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Test-Driven Development

(a.k.a. Design to Test)

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Man-hours

Labor is sometimes measured in man-hours,

man-months, or man-years.

Example: Doom3 took 5 years and more

than 100 man-years of labor to develop

Company Spokesman: "It will be ready when

it's done"

Why not double the size of the team and

halve the lead time (concept date to release

date)?
2

http://www.spectrum.ieee.org/sep05/1685

(c) Paul Fodor

Man-hours: The Mythical Man-Month

  Assume that a software program might take one expert

programmer a year to develop = 12 man-months

 Market pressures might be such that we want to get the

program finished in a month, rather than a year

 1 programmer * 12 months = 12 programmers * 1

month?

When you throw additional programmers at a project

that is late, you are likely to make it more late!

Remove promised-but-not-yet-completed features,

rather than multiplying workers bees.

Also, at least one team member must have detailed

knowledge of the entire system (all the modules).
3

http://www.spectrum.ieee.org/sep05/1685

(c) Paul Fodor

Design to Implementation
 Assume a modular design has been completed

Can all the modules be developed in parallel?

most likely not - due to dependencies

division of work within a module may also be necessary

can classes within a module be developed in parallel?

most likely not - due to dependencies

division of work within a class may also be necessary

ocan methods within a class be developed in

parallel?

oAgain most likely not - due to dependencies

4

(c) Paul Fodor

Bottom-Up Development
Traditional approach:

All modules used by module M are implemented

and tested before M is implemented.

Requires the use of drivers (i.e., testers).

 Example of Module dependencies:

 Bottom-up development can place less of a

 load on system resources.

 Bottom-up development can lead to earlier

 completion of useful subsystems.

 5

A

B C

D E

(c) Paul Fodor

Top-Down Development
 All modules that use module M are implemented and

tested before M is implemented.

 Modules themselves will probably use bottom-up

development

Requires the use of stubs.

Testing procedures are important

Example of module dependencies:
 If the design contains a type hierarchy, top-

 down development is required.

6

A

B C

D E

(c) Paul Fodor

The Development Strategy
 Should be defined explicitly before implementation begins

 Should be primarily top-down, with bottom-up used mainly

for modules that are easier to implement than to simulate

 Advantages of top-down outweigh bottom-up

 simplifies system integration & test

makes it possible to produce useful partial versions of the

system

 allows critical high-level design errors to be caught early

 Bottom-up development may be used for each module

we’ll see this with module testing as well

 7

(c) Paul Fodor

What is design to test?
 Approach to implementation

design modular classes and methods

before coding:

 determine what needs to be tested

 design test cases for those important methods

 test incrementally, as you implement your solution

8

(c) Paul Fodor

Don't Design to Fail

 1

Design to Test = --------------------

 Design to Fail

• Things to avoid:

– coding without a design

– not planning on how a design will be tested

– creating large amounts of untested code

– coding very large methods

– lack of modularity can doom an implementation

 9

(c) Paul Fodor
10

Testing vs. Debugging
Testing

Debugging

Does the code

work properly

YES

NO

Coding

(c) Paul Fodor

Important Definitions
 Testing

 a process of running a program on a set of test cases and

comparing the actual results with expected results

 Verification

 a formal or informal argument that a program works as intended

for all possible inputs

 Validation

 a process designed to increase confidence that a program works

as intended

 performed through verification or testing

 Defensive Programming

 writing programs in a way designed to ease the process of

validation and debugging

11

(c) Paul Fodor

Kinds of Testing
 Unit Testing

Test each module in a program separately.

 Integration Testing

Test interfaces between modules.

Much more difficult than unit testing

 Regression Testing

Test programs after modifications to ensure

correct behavior of the original program is

preserved.

 System Testing

Test overall system behavior.

12

(c) Paul Fodor

Aspects of Testing
 How do we generate test cases?

Exhaustive

 Consider all possible combinations of inputs.

 Often infeasible – why?

 Is it feasible with your project?

Sampled

 A small but representative subset of all input combinations.

 Black-box testing - Test cases generated from program

specifications and not dependent on the implementation

 Glass-box testing - Test cases generated from program’s

code

13

(c) Paul Fodor

Black-box testing
 It is the best place to start when attempting to test a program

thoroughly

 Test cases based on program’s specification, not on its

implementation (see the homework grading sheets)

 Test cases are not affected by:

 Invalid assumptions made by the programmer

 Implementation changes

 Use same test cases even after program structures has changed

 Test cases can be generated by an “independent” agent,

unfamiliar with the implementation.

 Test cases should cover all paths (not all cases) through the

specification, including exceptions.

14

(c) Paul Fodor

Boundary Conditions
A boundary condition is an input that is “one away”

from producing a different behavior in the program

code

 Such checks catch 2 common types of errors:

Logical errors, in which a path to handle a special

case presented by a boundary condition is

omitted

Failure to check for conditionals that may cause

the underlying language or hardware system to

raise an exception (ex: arithmetic overflow)

15

(c) Paul Fodor

Glass-box testing
Black-box testing is generally not enough.

For Glass-box testing, the code of a program

being tested is taken into account

Path-completeness:

Test cases are generated to exercise each path

through a program.

May be insufficient to catch all errors.

Can be used effectively only for a program

fragment that contains a reasonable number of

paths to test.

16

(c) Paul Fodor

Testing paths through specification
• Examine the method specifications (preconditions) & all paths

through method to generate unique test cases for testing.
/* REQUIRES: x >= 0 && y >= 10 */

public static int calc(int x, int y) { ... }

• Translate paths to test cases:
x = 0, y = 10 (x == 0 && y == 10)

x = 5, y = 10 (x > 0 && y == 10)

x = 0, y = 15 (x == 0 && y > 10)

x = 5, y = 15 (x > 0 && y > 10)

x = -1, y = 10 (x < 0 && y == 10)

x = -1, y = 15 (x < 0 && y > 10)

x = -1, y = 9 (x < 0 && y < 10)

x = 0, y = 9 (x == 0 && y < 10)

x = 1, y = 9 (x > 0 && y < 10)

17

(c) Paul Fodor

JUnit
 Unit-test framework for Java programs

open source software

hosted on SourceForge:

http://junit.sourceforge.net/javadoc

Moved to http://junit.org (for JUnit 4 and later)

not in the standard JDK:

import junit.framework.*;

 //for JUnit 3.8 and earlier

import org.junit.*; //for JUnit 4 and later

 Associate a Test class with each unit

one or more classes
18

http://blog.takipi.com/we-

analyzed-30000-github-

projects-here-are-the-top-

100-libraries-in-java-js-and-

ruby research survey

performed in 2013 across

30,000 GitHub projects

found that 40-50% of all

projects use an automatic

testing framework (JUnit in

Java and RSpec in Ruby)

http://junit.sourceforge.net/javadoc
http://junit.org/
http://junit.sourceforge.net/javadoc/

(c) Paul Fodor

JUnit
The test class has a set of test methods

 public void testX()

where X is the method to be tested

The test methods use “assertions” to perform the

tests, ex:

 Assert.assertTrue(c)

 Assert.assertEquals(x,y)

 Assert.assertSame(obj1, obj2)

19

(c) Paul Fodor

(c) Paul Fodor

JUnit

21

Calculator.java
public class Calculator {

 public int evaluate(String expression) {

 int sum = 0;

 for (String summand: expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

(c) Paul Fodor

JUnit

22

CalculatorTest.java
import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class CalculatorTest {

 @Test

 public void evaluatesExpression() {

 Calculator calculator = new Calculator();

 int sum = calculator.evaluate("1+2+3");

 assertEquals(6, sum);

 }

}

(c) Paul Fodor

JUnit

23

java -cp .:junit-4.12.jar:hamcrest-core-
 1.3.jar org.junit.runner.JUnitCore
 CalculatorTest

JUnit version 4.12

Time: 0,006

OK (1 test)

(c) Paul Fodor

JUnit

24

Calculator.java
public class Calculator {

 public int evaluate(String expression) {

 int sum = 0;

 for (String summand: expression.split("\\+"))

 sum -= Integer.valueOf(summand);

 return sum;

 }

}

(c) Paul Fodor

JUnit

25

java -cp .:junit-4.12.jar:hamcrest-core-
 1.3.jar org.junit.runner.JUnitCore
 CalculatorTest
JUnit version 4.12
.E
Time: 0,007
There was 1 failure:
1) evaluatesExpression(CalculatorTest)
java.lang.AssertionError: expected:<6> but was:<-6>
 at org.junit.Assert.fail(Assert.java:88)
 ...
FAILURES!!!
Tests run: 1, Failures: 1

(c) Paul Fodor
26

Netbeans IDE Right-click Calculator.java and choose Tools > Create Tests.

In the project Properties -> Add

Library JUnit

(c) Paul Fodor
27

Eclipse IDE Open the New wizard (File > New > JUnit Test Case).

(c) Paul Fodor

Building unit tests with JUnit

Initialize any instance variables

necessary for testing in the test object

Define tests for emptiness, equality,

boundary conditions, ...

Define test suites, if necessary, to group

tests.

Use Assert methods to perform tests

28

(c) Paul Fodor

JUnit 3.8 vs. 4
 JUnit 4: all test methods are annotated with

@Test.

Unlike JUnit3 tests, you do not need to prefix the

method name with "test“.

 JUnit 4 does not have the test classes extend

junit.framework.TestCase (directly or indirectly).

Usually, tests with JUnit4 do not need to extend

anything (which is good, since Java does not

support multiple inheritance).

29

(c) Paul Fodor

JUnit Example – StatCompiler.java

public class StatCompiler {

 /**

 * a, b, & c must all be positive

 **/

 public static int averageOfPosInts(int a, int b, int c)

 throws IllegalArgumentException{

 if ((a < 0) || (b <0) || (c < 0))

 throw new IllegalArgumentException("No neg values");

 int sum = a + b + c;

 return sum/3;

 }

 public static int median(int a, int b, int c){

 if ((a >=b) && (a <=c)) return a;

 else if ((a >= b) && (a >=c)) return b;

 else return c;

 }

} 30

(c) Paul Fodor

StatCompilerTest_3_8.java import junit.framework.*;

 // JUnit 3.8

public class StatCompilerTest extends TestCase {

 public StatCompilerTest(java.lang.String testName) {

 super(testName);

 }

 public void testAverageOfPosInts() {

 System.out.println("testAverageOfPosInts");

 Assert.assertEquals(StatCompiler.averageOfPosInts (1, 2, 3), 2);

 try{

 StatCompiler.averageOfPosInts(-1, 2, 3);

 fail("Exception should have been thrown");

 } catch (IllegalArgumentException iae) {}

 }

 public void testMedian() {

 System.out.println("testMedian");

 Assert.assertEquals(2, StatCompiler.median(1, 2, 3));

 Assert.assertEquals(2, StatCompiler.median(3, 2, 1));

 }

}

31

(c) Paul Fodor

Run JUnit version 3.8

Junit version 3.8

testAverageOfPosInts

testMedian

===

Errors logged for the StatCompilerTest test:

 No errors.

===

Failures logged for the StatCompilerTest test:

 Total failures: 1

Test case testMedian(StatCompilerTest) failed with "expected:<2>
but was:<3>“ at
StatCompilerTest.testMedian(StatCompilerTest.java:42)

===

Summary of StatCompilerTest test:

 Result: Failed

 Run: 2

 Failures: 1

 Errors: 0

 Elapsed time: 0.01

32

(c) Paul Fodor

StatCompilerTest_4.java import org.junit.Test;

import static org.junit.Assert.*;

public class StatCompilerTest {

 @Test

 public void testAverageOfPosInts() {

 System.out.println("averageOfPosInts");

 int a = 1;

 int b = 2;

 int c = 3;

 int expResult = 2;

 int result = StatCompiler.averageOfPosInts(a, b, c);

 assertEquals(expResult, result);

 }

 @Test

 public void testMedian() {

 System.out.println("median");

 int a = 3;

 int b = 2;

 int c = 1;

 int expResult = 2;

 int result = StatCompiler.median(a, b, c);

 assertEquals(expResult, result);

 }

} 33

(c) Paul Fodor
34

NetBeans and Junit: Download the Junit library and add it in the path. The

Junit plugin is installed.

(c) Paul Fodor

Run JUnit version 4
Run: java org.junit.runner.JUnitCore [test class name]

JUnit version 4.11

.testAverageOfPosInts

.testMedian

Time: 0.005

There was 1 failure:

1) testMedian(JUnit_test_01)

java.lang.AssertionError: expected:<2> but was:<3>

FAILURES!!!

Tests run: 2, Failures: 1

35

(c) Paul Fodor

Notes on Static import
 Static import is a feature introduced in the Java

programming language that allows members (fields and

methods) defined in a class as public static to be used in

Java code without specifying the class in which the field is

defined.

 The mechanism can be used to reference individual

members of a class:
import static java.lang.Math.PI;

import static java.lang.Math.pow;

 or all the static members of a class:
import static java.lang.Math.*;

 36

(c) Paul Fodor

Static import example
import static java.lang.Math.*;

// OR

// import static java.lang.Math.PI;

// import static java.lang.Math.pow;

import static java.lang.System.out;

public class HelloWorld {

 public static void main(String[] args) {

 out.println("Hello World!");

 out.println("A circle with a diameter of 5 cm has:");

 out.println("A circumference of " + (PI * 5) + " cm");

 out.println("And an area of " + (PI * pow(2.5,2))

 + " sq. cm");

 }

}
37

(c) Paul Fodor

Notes on Assertions
An assertion is a Java statement that enables

you to assert an assumption about your

program.

An assertion contains a Boolean expression

that should be true during program

execution.

Assertions can be used to assure program

correctness and avoid logic errors.

38

(c) Paul Fodor

Declaring Assertions
An assertion is declared using the Java keyword

assert in JDK 1.5 as follows:

assert assertion; //OR

assert assertion : detailMessage;

where assertion is a Boolean expression and

detailMessage is a primitive-type or an Object

value.

39

(c) Paul Fodor

Executing Assertions Example
public class AssertionDemo {

 public static void main(String[] args) {

 int i; int sum = 0;

 for (i = 0; i < 10; i++) {

 sum += i;

 }

 assert i==10;

 assert sum>10 && sum<5*10 : "sum is " + sum;

 }

}

40

(c) Paul Fodor

Executing Assertions
 When an assertion statement is executed, Java evaluates the

assertion.

 If it is false, an AssertionError will be thrown.

 The AssertionError class has a no-arg constructor and seven

overloaded single-argument constructors of type int, long, float,

double, boolean, char, and Object.

 For the first assert statement with no detail message, the no-arg

constructor of AssertionError is used.

 For the second assert statement with a detail message, an appropriate

AssertionError constructor is used to match the data type of the

message.

 Since AssertionError is a subclass of Error, when an assertion becomes

false, the program displays a message on the console and exits.

 41

(c) Paul Fodor

Running Programs with Assertions
 By default, the assertions are disabled at runtime. To enable it,

use the switch –enableassertions, or –ea for short, as follows:

 java –ea AssertionDemo
public class AssertionDemo {

 public static void main(String[] args){

 int i; int sum = 0;

 for (i = 0; i < 10; i++) {

 sum += i;

 }

 assert i!=10;

 }

}

Exception in thread "main" java.lang.AssertionError

at AssertionDemo.main(AssertionDemo.java:7)

42

(c) Paul Fodor

Assertions can be selectively enabled or disabled at

class level or package level.

The disable switch is –disableassertions or –da

for short.

For example, the following command enables

assertions in package package1 and disables

assertions in class Class1.
java –ea:package1 –da:Class1 AssertionDemo

43

Running Programs with Assertions

(c) Paul Fodor

Using Exception Handling or Assertions?

 Assertion should not be used to replace exception

handling.

 Exception handling deals with unusual circumstances during

program execution.

 Assertions are to assure the correctness of the program.

 Exception handling addresses robustness and assertion

addresses correctness.

 Assertions are used for internal consistency and validity

checks.

 Assertions are checked at runtime and can be turned on or off

at startup time.

 44

(c) Paul Fodor

Do not use assertions for argument checking in

public methods:

Valid arguments that may be passed to a public method

are considered to be part of the method’s contract.

The contract must always be obeyed whether assertions

are enabled or disabled.

For example, the following code in the Circle class

should be rewritten using exception handling:
public void setRadius(double newRadius) {

 assert newRadius >= 0;

 radius = newRadius;

}

45

Using Exception Handling or Assertions?

(c) Paul Fodor

Use assertions to reaffirm assumptions.

This gives you more confidence to assure correctness

of the program.

A common use of assertions is to replace assumptions

with assertions in the code.

A good use of assertions is place assertions in a switch

statement without a default case. For example:
switch (month) {

 case 1: ... ; break;

 case 2: ... ; break;

 ...

 case 12: ... ; break;

 default: assert false : "Invalid month: " + month;

}

46

Using Exception Handling or Assertions?

