
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Annotations & Reflection

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Annotations and Reflection?

Features of some languages

Programmer conveniences

Useful in checking inheritance

Alternate development modes

2

(c) Paul Fodor

Annotations
Remember @Override

Remember JUnit?

@Before, @After, @Test

@ is Java’s notation for the start of an annotation

like @author for javadoc

What are they?

metadata

provide data about a program

3

(c) Paul Fodor

What are annotations used for?

 Information for the compiler

detect errors

suppress warnings.

Compile-time and deployment-time processing

for IDEs and other tools

generate code, XML files, etc.

Runtime processing

some annotations are used at runtime.

 4

(c) Paul Fodor

Annotations can have field names and data

@Author(

 name = "Benjamin Franklin",

 date = "3/27/2003"

)

class MyClass()

@SuppressWarnings(value = "unchecked")

void myMethod() { ... }

5

(c) Paul Fodor

Where can annotations be used?

6

• Declarations of classes, fields, methods, etc.

• Java SE 8 also has type annotations:

• Class instance creation expression:

 new @Interned MyObject();

• Type cast:

 myString = (@NonNull String) str;

• implements clause:

 class UnmodifiableList<T> implements

 @Readonly List<@Readonly T> { ... }

• Thrown exception declaration:

 void monitorTemperature() throws

 @Critical TemperatureException { ... }

(c) Paul Fodor

Why do we care about annotations?

• Tools love to use them

• JUnit

• Javadoc

• Web-related Tools:

• Java Persistence API (JPA)

• describes the management of relational

data in applications

• Application Servers

7

(c) Paul Fodor

Annotations Look-Up
 Scattered in the Java API. Examples:

http://docs.oracle.com/javaee/8/api/javax/annotation/package-summary.html

http://docs.oracle.com/javaee/8/api/javax/faces/bean/package-summary.html

 Via cheat sheets:

8

http://docs.oracle.com/javaee/8/api/javax/annotation/package-summary.html
http://docs.oracle.com/javaee/8/api/javax/annotation/package-summary.html
http://docs.oracle.com/javaee/8/api/javax/annotation/package-summary.html
http://docs.oracle.com/javaee/8/api/javax/annotation/package-summary.html
http://docs.oracle.com/javaee/8/api/javax/faces/bean/package-summary.html
http://docs.oracle.com/javaee/8/api/javax/faces/bean/package-summary.html
http://docs.oracle.com/javaee/8/api/javax/faces/bean/package-summary.html
http://docs.oracle.com/javaee/8/api/javax/faces/bean/package-summary.html

(c) Paul Fodor

Annotations
 Annotation Types Used by the Java Language

 The predefined annotation types defined in java.lang are

@Deprecated, @Override, and @SuppressWarnings.

 @Deprecated annotation indicates that the marked element is

deprecated and should no longer be used.

 The compiler generates a warning whenever a program uses a

method, class, or field with the @Deprecated annotation.

 // Javadoc comment

 /**

 * @deprecated

 * explanation of why it was deprecated

 */

 @Deprecated

 static void deprecatedMethod() { ... }
9

(c) Paul Fodor

Annotations
 @Override annotation informs the compiler that the element is

meant to override an element declared in a superclass.

 // mark method as a superclass method

 // that has been overridden

 @Override

 int overriddenMethod() { ... }

 @SuppressWarnings annotation tells the compiler to suppress specific

warnings that it would otherwise generate.

 // use a deprecated method and tell

 // compiler not to generate a warning

 @SuppressWarnings("deprecation")

 void useDeprecatedMethod() {

 // deprecation warning

 // - suppressed

 objectOne.deprecatedMethod();

 }

10

(c) Paul Fodor

Declaring an Annotation Type
 Define the annotation type:

@interface ClassPreamble {

 String author();

 String date();

 int currentRevision() default 1;

 String lastModified() default "N/A";

 String lastModifiedBy() default "N/A";

 // Note use of array

 String[] reviewers();

}

11

(c) Paul Fodor

 After the annotation type is defined, you can use annotations of

that type:

@ClassPreamble (

 author = "John Doe",

 date = "3/17/2002",

 currentRevision = 6,

 lastModified = "4/12/2004",

 lastModifiedBy = "Jane Doe",

 // Note array notation

 reviewers = {"Alice", "Bob", "Cindy"}

)

public class Generation3List extends List2{

 // class code goes here

}
12

Declaring an Annotation Type

(c) Paul Fodor

 To make the information in @ClassPreamble appear in

Javadoc-generated documentation, when you define the

annotation:

// import this to use @Documented

import java.lang.annotation.*;

@Documented

@interface ClassPreamble {

 // Annotation element definitions

}
13

Declaring an Annotation Type

(c) Paul Fodor

Reflection
A powerful programming feature

requires the ability to examine or modify the

runtime behavior of applications running in the

Java virtual machine.

 i.e. dynamically examine classes and objects

 Should be used only by developers who have a

strong grasp of the fundamentals of the language.

Can enable applications to perform operations

which would otherwise be impossible.

 14

(c) Paul Fodor

Reflection
Call methods at runtime that you didn’t

know existed at compile time.

Isn’t that polymorphism?

No, polymorphism uses inheritance and

knows the overridden method signatures

At runtime:

ask a Class what methods it has

call one of those methods
15

(c) Paul Fodor

Reflection Uses
Extensibility Features

dynamically use classes not known at compile time

plug-ins, add-ons, etc.

complete flexibility

Class Browsers and Visual Development

Environments

i.e. display class properties

 think the visual debugger

Debuggers and Test Tools

Watch class values change
16

(c) Paul Fodor

Reflection
 It all starts with the Class class:

o Every object in Java is a member of a class.

o How do we get an object’s Class?

• getClass() method inherited from Object. Ex:

Class c = "Hello".getClass();

• Using Class.forName and a string. Ex:

 Class c2 = Class.forName("java.lang.String");

• can throw ClassNotFoundException

• Other methods:

• getSuperclass

• getDeclaredClasses
• returns an array of Class object members declared by the class, but excludes inherited classes

Class cls = Class.forName("ClassDemo");

Class[] classes = cls.getDeclaredClasses();

• getEnclosingClass
• Returns the outer class of an inner class (or null if none)

17

(c) Paul Fodor
18

The Class class has useful methods

(c) Paul Fodor

Fields
Has a type and value

Type is a Class

Get/Set data via get/set methods

Other useful classes
Method

Constructor

19

(c) Paul Fodor

Drawbacks of Reflection
 Performance Overhead

 dynamic type resolution is expensive

 certain Java virtual machine optimizations skipped

 should be avoided in hot spots

 Security Restrictions

 requires a runtime permission which may not be present when

running under a security manager.

 can’t be used with Applets

 Exposure of Internals

 allows code to perform operations that would be illegal in non-

reflective code

 accessing private fields and methods

 can result in unexpected side-effects 20

