
CSE219, Computer Science III 

Stony Brook University 

http://www.cs.stonybrook.edu/~cse219   

Design Review 

http://www.cs.stonybrook.edu/~cse219


(c) Paul Fodor 

Software Development Life Cycle 

2 

Requirements 

Analysis 

Design & 

Document 
Code Test 

Debug 

Profile 

Deploy Evaluate 

Design 



(c) Paul Fodor 

Evaluating a Design 
 During the design of a large program, it is worthwhile to 

step back periodically & attempt a comprehensive evaluation 

of the design so far 

 called a design review 

 

 

3 



(c) Paul Fodor 

Design Reviews are not just for Software 

4 



(c) Paul Fodor 

Who performs the design review?  

 Design review committee 

 

 Members should include: 

varied perspectives 

some from the project 

some external to the project 

 

 All should be familiar with the design itself 

 

 5 



(c) Paul Fodor 

There is no perfect design 
 Is the design adequate? 

 Will do the job with adequate performance & cost? 

6 



(c) Paul Fodor 

Critical Design Issues 
  Is it correct? 

 Will all implementations of the design exhibit the desired 

functionality? 

  Is it efficient? 

 Are there implementations of the design that will be 

acceptably efficient? 

  Is it testable & maintainable?  

 Does the design describe a program structure that will make 

implementations reasonably easy to build, test and maintain? 

  Is it modifiable, extensible, & scalable? 

 How difficult will it be to enhance the design to accommodate future 

modifications? 

 

 

7 



(c) Paul Fodor 

Other Considerations 

 Are the classes independent? 

 Is there redundancy? 

 Do they manage & protect their own data? 

 Can they be tested individually? 

 Do they promote code reuse? 

 Is data and control flow clear or complex? 

 

8 



(c) Paul Fodor 

It all starts with a Modular Design 
 Large software projects are divided up into separate modules 

 i.e. groups of related classes 

 

9 

  



(c) Paul Fodor 

Modular Design Methodology 

 Decompose  

 large programming problems into smaller ones  

 i.e. sub-problems 

 Solve  

 the sub-problems independently 

 modules solve sub-problems 

 Assemble  

 the modules to build full system 

 called system integration 

 scariest parts of software development 

 serious design flaws can be exposed 

 
10 



(c) Paul Fodor 

What makes a good modular design? 

• Connections between modules are explicit 

• Connections between modules are minimized 

– called narrow interfaces 

•    Modules use abstraction well 

•    Implementation of modules can be done 
independently 

–modules avoid duplication of effort 

 

11 



(c) Paul Fodor 

More on Narrow Interfaces 
• A module should have access to only as much 

information as it needs to work 

– less chance of misuse 

– less coordination needed between team members 

• fewer meetings necessary 

 

12 

A B Interface 

A B  

Interface 



(c) Paul Fodor 

Design is  

Difficult 
 Where do you begin? 

 When is the design  

     complete? 

 

13 



(c) Paul Fodor 

Good Design comes with Experience 

 It takes time to become an expert 

 

14 



(c) Paul Fodor 

? 

How can a design be reviewed for 

correctness? 
 Testing is not possible 

 

 

 

 Verification is not possible 

 unless it uses a formal language 

 typically not practical 

 

 Use proven, systematic procedure 

 examine both local & global properties of the design 

 15 



(c) Paul Fodor 

Local Properties 
 Studying individual modules 

 

 Important local properties: 

consistency 

 everything designed was as specified 

completeness 

 everything specified was designed 

performance 

 running time 

 storage requirements 

 

 

16 



(c) Paul Fodor 

Global Properties 
 Studying how modules fit together 

after examining local properties 

 

 

17 



(c) Paul Fodor 

Global Properties to Consider 

 Is all the data accounted for? 

 from original SRS 

 exists properly in a module 

 rules are properly enforced 

   Trace paths through the design 

walk-through 

select test data 

 Does control flow properly through the design? 

 Does data flow properly through the design? 

 
18 



(c) Paul Fodor 

Reviewing Design Structure 
 Two key questions: 

 Is there an abstraction that would lead to a better 

modularization? 

Have we grouped together things that really do not 

belong in the same module? 

 Structural Considerations 

Coherence of procedures 

Coherence of types 

Communication between modules 

Reducing dependencies 

 
19 



(c) Paul Fodor 

Coherence of procedures 

 A procedure (method) in a design should represent a 

single, coherent abstraction 

 Indicators of lack of coherence: 

 if the best way to specify a procedure is to describe 

how it works 

 if the procedure is difficult to name 

 Arbitrary restrictions: 

 length of a procedure 

method calls in a procedure 

 20 



(c) Paul Fodor 

Coherence of Types 

Examine each method to see how crucial it is for 

the data type 

does it need to access instance or static variables 

of the class 

Move irrelevant methods out to another location 

Common with static functions 

 

21 



(c) Paul Fodor 

Communication between Modules 

 Careful examination can uncover important design flaws 

 think of handing your HW 4 design to another student 

for inspection 

 Do these pieces really fit together? 

 to improve any design: 

 act like a jerk when examining your own design 

 ask questions that a jerk would ask 

 make sure your design addresses these jerky questions 

 

22 



(c) Paul Fodor 

Reducing Dependencies 

 A design with fewer dependencies is generally 

better than one with more dependencies. 

 What does this mean? 

Make the design of each component dependent 

on as few other components as necessary 

Example of bad framework design: 

 Every class in your framework uses every other class 

in your framework in one way or another 

 This would be terribly complex to test & modify 

 
23 



(c) Paul Fodor 

Look for Antipatterns 

Common patterns in programs that use 

poor design concepts 

make reuse very difficult 

source: http://www.antipatterns.com 

Ex: 

The Blob 

Spaghetti Code 

 

24 



(c) Paul Fodor 
25 



(c) Paul Fodor 
26 



(c) Paul Fodor 

So what's next? 

Design Patterns 

Implementation Strategies 

Design to Test 

Profiling 

Deployment, 

Etc. 

 
27 


