
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Design Review

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Software Development Life Cycle

2

Requirements

Analysis

Design &

Document
Code Test

Debug

Profile

Deploy Evaluate

Design

(c) Paul Fodor

Evaluating a Design
 During the design of a large program, it is worthwhile to

step back periodically & attempt a comprehensive evaluation

of the design so far

 called a design review

3

(c) Paul Fodor

Design Reviews are not just for Software

4

(c) Paul Fodor

Who performs the design review?

 Design review committee

 Members should include:

varied perspectives

some from the project

some external to the project

 All should be familiar with the design itself

 5

(c) Paul Fodor

There is no perfect design
 Is the design adequate?

 Will do the job with adequate performance & cost?

6

(c) Paul Fodor

Critical Design Issues
 Is it correct?

 Will all implementations of the design exhibit the desired

functionality?

 Is it efficient?

 Are there implementations of the design that will be

acceptably efficient?

 Is it testable & maintainable?

 Does the design describe a program structure that will make

implementations reasonably easy to build, test and maintain?

 Is it modifiable, extensible, & scalable?

 How difficult will it be to enhance the design to accommodate future

modifications?

7

(c) Paul Fodor

Other Considerations

 Are the classes independent?

 Is there redundancy?

 Do they manage & protect their own data?

 Can they be tested individually?

 Do they promote code reuse?

 Is data and control flow clear or complex?

8

(c) Paul Fodor

It all starts with a Modular Design
 Large software projects are divided up into separate modules

 i.e. groups of related classes

9

(c) Paul Fodor

Modular Design Methodology

 Decompose

 large programming problems into smaller ones

 i.e. sub-problems

 Solve

 the sub-problems independently

 modules solve sub-problems

 Assemble

 the modules to build full system

 called system integration

 scariest parts of software development

 serious design flaws can be exposed

10

(c) Paul Fodor

What makes a good modular design?

• Connections between modules are explicit

• Connections between modules are minimized

– called narrow interfaces

• Modules use abstraction well

• Implementation of modules can be done
independently

–modules avoid duplication of effort

11

(c) Paul Fodor

More on Narrow Interfaces
• A module should have access to only as much

information as it needs to work

– less chance of misuse

– less coordination needed between team members

• fewer meetings necessary

12

A B Interface

A B

Interface

(c) Paul Fodor

Design is

Difficult
 Where do you begin?

 When is the design

 complete?

13

(c) Paul Fodor

Good Design comes with Experience

 It takes time to become an expert

14

(c) Paul Fodor

?

How can a design be reviewed for

correctness?
 Testing is not possible

 Verification is not possible

 unless it uses a formal language

 typically not practical

 Use proven, systematic procedure

 examine both local & global properties of the design

 15

(c) Paul Fodor

Local Properties
 Studying individual modules

 Important local properties:

consistency

 everything designed was as specified

completeness

 everything specified was designed

performance

 running time

 storage requirements

16

(c) Paul Fodor

Global Properties
 Studying how modules fit together

after examining local properties

17

(c) Paul Fodor

Global Properties to Consider

 Is all the data accounted for?

 from original SRS

 exists properly in a module

 rules are properly enforced

 Trace paths through the design

walk-through

select test data

 Does control flow properly through the design?

 Does data flow properly through the design?

18

(c) Paul Fodor

Reviewing Design Structure
 Two key questions:

 Is there an abstraction that would lead to a better

modularization?

Have we grouped together things that really do not

belong in the same module?

 Structural Considerations

Coherence of procedures

Coherence of types

Communication between modules

Reducing dependencies

19

(c) Paul Fodor

Coherence of procedures

 A procedure (method) in a design should represent a

single, coherent abstraction

 Indicators of lack of coherence:

 if the best way to specify a procedure is to describe

how it works

 if the procedure is difficult to name

 Arbitrary restrictions:

 length of a procedure

method calls in a procedure

 20

(c) Paul Fodor

Coherence of Types

Examine each method to see how crucial it is for

the data type

does it need to access instance or static variables

of the class

Move irrelevant methods out to another location

Common with static functions

21

(c) Paul Fodor

Communication between Modules

 Careful examination can uncover important design flaws

 think of handing your HW 4 design to another student

for inspection

 Do these pieces really fit together?

 to improve any design:

 act like a jerk when examining your own design

 ask questions that a jerk would ask

 make sure your design addresses these jerky questions

22

(c) Paul Fodor

Reducing Dependencies

 A design with fewer dependencies is generally

better than one with more dependencies.

 What does this mean?

Make the design of each component dependent

on as few other components as necessary

Example of bad framework design:

 Every class in your framework uses every other class

in your framework in one way or another

 This would be terribly complex to test & modify

23

(c) Paul Fodor

Look for Antipatterns

Common patterns in programs that use

poor design concepts

make reuse very difficult

source: http://www.antipatterns.com

Ex:

The Blob

Spaghetti Code

24

(c) Paul Fodor
25

(c) Paul Fodor
26

(c) Paul Fodor

So what's next?

Design Patterns

Implementation Strategies

Design to Test

Profiling

Deployment,

Etc.

27

