Design Review

CSE219, Computer Science III

Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse219

http://www.cs.stonybrook.edu/~cse219

4 R
Software Development Life Cycle

.| Requirements | Design & .| Evaluate »| Code o Test » Deploy >
Analysis Document Design ry L

|

Profile

Debug [*

(c) Paul Fodor /

: Evaluating a Design

® During the design of a large program, it is worthwhile to
step back periodically & attempt a comprehensive evaluation

of the design so far

® called a design review

L=

4 ™
Design Reviews are not just for Software

(c) Paul Fodor /

4 R
Who performs the design review?

® Design review committee

® Members should include:

® varied perspectives

® some from the project

* some external to the project

e All should be familiar with the design itself

@ (c) Paul Fodor /

" There is no perfect design

® [s the design adequate?

* Will do the job with adequate performance & cost?

(c) Paul Fodor

GALAXY CLASS STARSHIP

FORWARD VIEW

LAST UPDATED: 18.01.2003

™

4 L :
Critical Design Issues

® [sit correct?

* Will all implementations of the design exhibit the desired

functionality?
® s it efficient?
® Are there implementations of the design that will be
acceptably efficient?
® [sit testable & maintainable?

® Does the design describe a program structure that will make

implementations reasonably easy to build, test and maintain?

* [sit modifiable, extensible, & scalable?

e How difficult will it be to enhance the design to accommodate future

modifications?

(c) Paul Fodor

/

Other Considerations

® Are the classes independent?

® [s there redundancy?

® Do they manage & protect their own data?
® Can they be tested individually?

® Do they promote code reuse?

® |s data and control tlow clear or complex?

(c) Paul Fodor /

4 A
It all starts with a Modular Design

* Large software projects are divided up into separate modules

® i.e. groups of related classes

Soft Body Bullet Extras:
Dynamics Multi Threaded Maya Plugin
hkx2dae
.bsp, .obj,
Rigid.Body other tools
Dynamics
Collision
Detection
Linear Math
Memory, Containers

(c) Paul Fodor /

" Modular Design Methodology\

° Decompose
e large programming problems into smaller ones

® i.e. sub-problems

Project Specification
® the sub-problems independently A e [Iefacc—— B
(design) (design)

® modules solve sub-problems | |

A B

¢ Assemble (implementation) Interface (implementation)
® the modules to build tull system \ /
Integrated System

® called system integration
scariest parts of software development

serious design flaws can be exposed

@ (c) Paul Fodor /

4 A
What makes a good modular design?

* Connections between modules are explicit

 Connections between modules are minimized
—called narrow interfaces

« Modules use abstraction well

o Implementation of modules can be done

independently

—modules avoid duplication of effort

(c) Paul Fodor /

e
More on Narrow Interfaces

* A module should have access to only as much
information as it needs to work
— less chance of misuse

— less coordination needed between team members

fGWQI' meetings necessary

A «—>| Interface > B
A « > B
«—>| Interface

(c) Paul Fodor

Design is
Difficult

® Where do you begin?
® When is the design

Complete?

mini_game

ZombiquariumPanel

-game : MiniGame
-data : ZombiguariumDataModel

+ZombiquariumPanel(initGame : MiniGame, initData : ZombiquariumDataModely
+ paintComponent(g : Graphics) : void

+renderBackground(g : Grapics) : void

+renderGameSprites(g : Graphics) : void

+renderSprites(a : Graphics, spritesit: terator=Sprite=) : void
+renderGUIControls(g : Graphics) : void

+renderStats(g : Graphics) : void

+render3prite(g : Graphics, s : Sprite) : void

+renderDebuggingTexti(g : Graphics) : void

java.awt

Color Font Graphics Image

Java.util

Collection Iterator

Sprite SpriteType MiniGame
m\—
javax.swing
Zombiguarium
JPanel Z riumD: +3 GAME_WIDTH - int
+B GAME_HEIGHT : int
+§ BOUNDARY_TOP : float

+5 BOUNDARY_BOTTOM : float

+5 BOUNDARY_LEFT : float

+5 BOUNDARY_RIGHT : float

+§ STARTING_SUN : int

+5 COST_OF_TROPHY : int

+3 COST_OF_ZOMBIE : int

+8 COST_OF_BRAIN . int

+5 VALUE_OF_SUM :int

+5 STARTING_ZOMBIE_HEALTH : int

+§ ZOMBIE_HEALTH_DEC :int

+§ ZOMBIE_DYING_THRESHOLD :int

+5 DEAD_ON_DISPLAY_TIME : int

+b ZOMBIE_SUN_GEN_INTERVAL :int
+8 SUN_FALL_VELOCITY :float

+5 BRAIN_FALL_VELOCITY : float

+5 ZOMBIE_MAX_VELOCITY : float

+3 ZOMBIE_MIN_VELOCITY : float

+8 ZOMBIE_SIGHT_DISTANCE : float

+5 MAX_BRAINS : float

+5 ZOMBIE_MOUTH_AABB : Insets

+§ FRAME_RATE :int

+% APP_TITLE : String

+5 SPRITE_TYPES_SETUP_FILE String
+§ SETUP_DELIMITER : String

+8 COLOR_KEY : Color

+§ BACKGROUND_TYPE : String

+5 BRAIN_TYPE : String

+§ ZOMBIE_TYPE : String

+$ SUN_TYPE : String

+5 NORMAL_ZOMBIE_LEFT_STATE : String
+B NORMAL_ZOMBIE_RIGHT_STATE : String
+8 DYING_ZOMBIE_LEFT_STATE : String
+§ DYING_ZOMBIE_RIGHT_STATE : String
+5 DEAD_ZOMBIE_LEFT_STATE String
+3 DEAD_ZOMBIE_RIGHT_STATE : String
+§ ENABLED_STATE : String

+5 DISABLED_STATE : String

+p DEFAULT_STATE : String

+5 MOUSE_OVER_STATE . String

+5 INVISIBLE_STATE : String

+5 VISIBLE_STATE : String

+B NORTH_TQOLBAR_TYPE : String

+§ PROGRESS_TYPE : String

+5 WIN_DISPLAY_TYPE : String

+5 L0SS_DISPLAY_TYPE - String

+5 NEW_GAME_TYPE : String

+§ BUY_ZOMBIE_TYPE : String

+5 BUY_TROPHY_TYPE : String

+§ PROGRESS_METER_FONT :Font

+8 PROGRESS_METER_TEXT_COLOR : String
+5 SUN_FONT : Font

+5 SUN_TEXT_COLOR : Color

+3 DEBUGGING_TEXT_FONT : Font

+§ DEBUGGING_TEXT_COLOR : Color
+§ PROGRESS_BAR_CORNERS :Insets
+5 PROGRSS_BAR_COLOR : Color

BuyZombieHandler

HewGameHandler

BuyTrophyHandler

java awt

Color

Font

Image

Insets

Buffer

+ Zombiquarium()
+initData() : void
+initSpriteTypes() : void
+initGUIControls() : void
+initGUIHandlers() : void
+reset() : void

+ updateGUI() : void

+$ main(args : String[]) : void

4 ™
Good Design comes with Experience

e [t takes time to become an expert

Java Architect

Flease only reply with lava Architects that have created white papers that Developers
have followed.

Must have a car to get to my client in Woodbury, Long Island.

Contract will last at least 1 year.

1st is o phone screen for 30 minutes, then o foce to foce for 2 hrs with the VP, and the
other Architect.

The goal is to design for the best performaonce and create processes to be followed.

Create the white papers that will be followed by the developers.
The consultant must be on-site every day, no telecommuting.

One architect is there right now, the other is retiring.

Performance monitoring, reporting, and tuning of Oracle databases.

(c) Paul Fodor /

" How can a design be reviewed for

correctness?

. Testing is not possible

rovider()
teRequesthetaData()
taData()

® Verification is not possible

® unless it uses a formal language

° typically not practical

* Use proven, systematic procedure

® examine both local & global properties of the design

@ (c) Paul Fodor /

" Local Properties

o Studying individual modules

® Important local properties:
® consistency
everything designed was as specified
® completeness
everything specified was designed
® performance
running time

storage requirements

@ (c) Paul Fodor

" Global Properties

° Studying how modules fit together

® after examining local properties

-

e
Global Properties to Consider

e [s all the data accounted for?

® from original SRS
exists properly in a module

rules are properly enforced

® Trace paths through the design
o Walk—through

® select test data

Does control flow properly through the design?
Does data flow properly through the design?

@ (c) Paul Fodor /

: Reviewing Design Structure h

® Two key questions:

¢ |s there an abstraction that would lead to a better

modularization?

® Have we grouped together things that really do not

belong in the same module?
e Structural Considerations
® Coherence of procedures
® Coherence of types

¢ Communication between modules

o Reducing dependencies

@ (c) Paul Fodor /

4 I
Coherence of procedures

* A procedure (method) in a design should represent a

single, coherent abstraction
® Indicators of lack of coherence:

¢ if the best way to specify a procedure is to describe

how it works
®if the procedure is difficult to name
® Arbitrary restrictions:
® length of a procedure

* method calls in a procedure

@ (c) Paul Fodor /

" Coherence of Types :

® Examine each method to see how crucial it is for
the data type
edoes it need to access instance or static variables

of the class

® Move irrelevant methods out to another location

® Common with static functions

@ (c) Paul Fodor /

: _ _ I
Communication between Modules

® Careful examination can uncover important design flaws

® think of handing your HW 4 design to another student
for inspection
Do these pieces really fit together?
® to improve any design:
act like a jerk when examining your own design
ask questions that a jerk would ask

make sure your design addresses these j erky questions

(c) Paul Fodor /

" Reducing Dependencies

e A design with fewer dependencies 1S generally

better than one with more dependencies.

® What does this mean?
® Make the design of each component dependent

on as few other cornponents as necessary

® Example of bad tramework design:

Every class in your framework uses every other class

in your framework in one way or another

® This would be terribly complex to test & modify

(c) Paul Fodor

" Look for Antipatterns

® Common patterns 1n programs that use

poor design concepts

*make reuse very difficult

®source: http://www.antipatterns.com
® Fx:

*The Blob

*Spaghetti Code

(c) Paul Fodor

Developnwent AntiPattern:

The Blob

+ Symptoms \
+ Single class withmany |

attributes & operations

+ Controller class with
simple, data-object \
classes.

+ Lack of OO design.

« A migrated legacy
design

_"ZQ

ﬂ"

"l'|"|llll-

+ Consequences
+ Lost OO advantage
* Too complex to reuse or
test.

+ Expensive to load

MITRE

(c) Paul Fodor

Developanent AntiPattem:

Spaghetti Code

spa- ghet-ti code [Slang] an undocumented piece of
software source code that cannot be extended or modified

without exireme difficulty due to its convoluted structure.

Un-structured code Well structured code
is a liability is an investment.

MITRE

(c) Paul Fodor

e

So what's next?

®Design Patterns
*Implementation Strategies
®Design to Test

®Profiling

*Deployment,

eLtc.

(c) Paul Fodor

