
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Object Oriented Design using UML

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Software Development Life Cycle

• Using well proven, established processes

–preferably while taking advantage of good tools

2

Requirements

Analysis

Design &

Document
Code Test

Debug

Profile

Deploy Evaluate

Design

(c) Paul Fodor

Design Approaches
 Have other “similar” problems been solved?

Do design patterns exist to help?

 What are the “easy” and “hard” parts?

Why is this important?

 work measurement

 Employ:

 data-driven design

 Note: data-driven programming is a programming paradigm in which the

program statements describe the data to be matched and the processing required

rather than defining a sequence of steps to be taken.

 top-down design

 A top-down approach is the breaking down of a system to gain insight into its

compositional sub-systems.

3

(c) Paul Fodor

Data-driven Design

From the problem specification, extract:

nouns (they are objects, attributes of objects)

verbs (they are methods)

Divide data into separate logical, manageable

groupings

these will form your objects

Note needs for data structures or algorithms

design your data management classes early on

 4

(c) Paul Fodor

Data-driven Design gives the

Class relationships
 Think data flow:

What HAS what?

What IS what?

What USES what?

Where should data go?

How will event handler X change data in class Y?

 Static or non-static?

 Design patterns will help us make these decisions

 Bottom line: think modular

no 1000 line classes or 100 line methods

5

(c) Paul Fodor

Modularity

How reusable are your classes?

can they be used in a future project?

Think of programmers, not just users

Can individual classes be easily separated

and re-used?

Separate Data from Mechanics

Separate Functionality from Presentation

6

(c) Paul Fodor

Functionality vs. Presentation
The state manager:

 manages the state of one or more user interface controls such as text fields,

OK buttons, radio buttons, etc. in a graphical user interface.

 In this user interface programming technique, the state of one UI control depends on

the state of other UI controls.

 classes that do the work of managing data & enforcing rules on that data

 Why separate the state management and the UI?

 so we can design several different UIs for a state manager

 so we can change the state management without changing the UI

 so we can change the UI without changing the state manager

 reuse code that is proven to work

 This is a common principle throughout GUI design
 even for Web sites (separate content)

 different programmers for each task

7

(c) Paul Fodor

Choosing Data Structures

Internal data structures

What is the natural representation of the

given data?

Trade-offs: Setup vs. access speeds

Keep data ordered?

Which access algorithms?

Ordered by what?

8

(c) Paul Fodor

UML Diagrams
 UML - Unified Modeling Language

 UML diagrams are used to design object-oriented

software systems

represent systems visually = Client-friendly!

provides a system architecture

makes coding more efficient and system more reliable

diagrams show relationships among classes and objects

 Can software engineering be automated?

Visual programming

Patterns & frameworks

Computer-Aided Software Engineering (CASE) tools

9

(c) Paul Fodor

Types of UML Diagrams
Types of UML diagrams that we will make in

CSE219:

Use Case Diagram

Class Diagram

Sequence Diagram

Other types of UML diagrams (you will make in

our CSE308):

State, Activity, Collaboration, Communication,

Component, & Deployment Diagrams

10

(c) Paul Fodor

UML Class Diagrams
A UML class diagram consists of one or more

classes, each with sections for:

class name

instance variables

methods

Lines between classes represent associations

Uses

Aggregation (HAS-A)

Containment

Inheritance (IS-A)

11

(c) Paul Fodor

UML Class Responsibilities Diagrams

12

PairOfDice

State Info: die1: Die

 die2: Die

Responsibilities:

 access instance variables

 roll dice

 calculate total

Die

State Info: number of faces

 value facing up

Responsibilities:

 access instance variables

 roll die

Class Name

Responsibilities to
be translated into

methods

State info to be
translated into

instance variables

(c) Paul Fodor

UML Class Diagrams
 Derived from class responsibilities diagrams

 Show relationships between classes

 Class associations denoted by lines connecting classes

 A feathered arrow denotes a one-directional association

13

ClassA

Instance variable info

Method header info

ClassB

Instance variable info

Method header info

 Feathered arrow means
ClassA knows of and uses
ClassC, but ClassC has no
knowledge of ClassA

ClassC

Instance variable info

Method header info

 Connecting line means ClassA and
ClassB have a relationship

(c) Paul Fodor

Method and Instance Variable

Descriptions
 Instance Variables Format
variableName : variableType

 For example: upValue : int

Method Header Format
methodName(argumentName:argumentType)

 :returnType

 For example: setDie1(newDie1:Die):void

Underlined or $ denotes a static method or variable
 For example: myStaticMethod(x:int):void

14

(c) Paul Fodor

UML Class Diagrams & Aggregation
 UML class diagram for PairOfDice & Die:

15

Die

numFaces: int

upValue : int

getUpValue() : int

getNumFaces() : int

roll() : void

PairOfDice

die1: Die

die2: Die

getDie1() : Die

getDie2() : Die

getTotal() : int

rollDice() : void

setDie1(newDie1: Die) : void

setDie2(newDie2: Die) : void

1 2

Denote multiplicity,
2 Die object for

each PairOfDice
object

Diamond denotes aggregation

PairOfDice HAS-A Die

(c) Paul Fodor

UML Class Diagrams & Inheritance

16

public class Student extends Person

Person

name: String

age : int

getAge() : int

getName() : String

setAge(newAge: int) : void

Triangle denotes inheritance

Student IS-A Person

Student

gpa: double

getGPA() : double

setGPA(newGPA: double) : void

(c) Paul Fodor

Encapsulation
We can take one of two views of an object:

internal - the variables the object holds and the

methods that make the object useful

external - the services that an object provides

and how the object interacts

From the external view, an object is an encapsulated

entity, providing a set of specific services

These services define the interface to the object

abstraction hides details from the rest of the

system

17

(c) Paul Fodor

Class Diagrams and Encapsulation
 In a UML class diagram:

public members can be preceded by +

private members are preceded by -
protected members are preceded by #

18

Die

- numFaces: int

- upValue : int

+ getUpValue() : int

+ getNumFaces() : int

+ roll() : void

PairOfDice

- die1: Die

- die2: Die

+ getDie1() : Die

+ getDie2() : Die

+ getTotal() : int

+ rollDice() : void

+ setDie1(newDie1: Die) : void

+ setDie2(newDie2: Die) : void

(c) Paul Fodor

Interfaces in UML
2 ways to denote an interface

<<interface>> (standard), OR

<<I>>

19
http://www.informit.com/articles/article.asp?p=336264&seqNum=3

http://www.informit.com/articles/article.asp?p=336264&seqNum=3

(c) Paul Fodor

Abstract Classes in UML
2 ways to denote a class or method is abstract:

class or method name in italics, OR

{abstract} notation

20

(c) Paul Fodor

UML Sequence Diagrams
Demonstrate the behavior of objects in program

describe the objects and the messages they pass

diagrams are read left to right and descending

21

(c) Paul Fodor

What will we use UML Diagrams for?

Use Case Diagrams

describe all the ways users will interact

with the program

Class Diagrams

describe all of our classes for our app

Sequence Diagrams

describe all event handling

 22

(c) Paul Fodor

Top-down class design
 Top-down class design strategy:

Decompose the problem into sub-problems (large

chunks).

Write skeletal classes for sub-problems.

Write skeletal methods for sub-problems.

Repeat for each sub-problem.

 If necessary, go back and redesign higher-level classes to

improve:

modularity,

 information hiding, and

 information flow

23

(c) Paul Fodor

Designing Methods
Decide method signatures

numbers and types of parameters and

return values

Write down what a method should do

use top-down design

decompose methods into helper methods

Use javadoc comments to describe methods

Use method specs for implementation

 24

(c) Paul Fodor

Results of Top-down class design

25

UML Class Diagrams

Skeletal Classes

• instance variables

• static variables

• class diagrams

• method headers

• DOCUMENTATION

(c) Paul Fodor

Software Longevity
The FORTRAN & COBOL programming

languages are ~50 years old

many mainframes still use code written in the

1960s

software maintenance is more than ½ a project

Moral of the story:

the code you write may outlive you, so make it:

Easy to understand

Easy to modify & maintain

software must be ready to accommodate change

26

(c) Paul Fodor

Software Maintenance
What is software maintenance?

 Improving or extending existing software

incorporate new functionality

incorporate new data to be managed

incorporate new technologies

incorporate new algorithms

incorporate use with new tools

incorporate things we cannot think of now 

 27

(c) Paul Fodor

Summary
 Always use data driven & top-down design:

 identify and group system data

 identify classes, their methods and method signatures

 determine what methods should do

 identify helper methods

 Write down step by step algorithms inside methods to help you!!!

 document each class, method and field

 specify all conditions that need to be enforced or checked

 decide where to generate exceptions

 add to documentation

 evaluate design, and repeat above process

 until implementation instructions are well-defined

 28

