Object Oriented Design using UML

CSE219, Computer Science III
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse219

http://www.cs.stonybrook.edu/~cse219

" Software Development Life Cycl@

- Using well proven, established processes
—preferably while taking advantage of good tools

»| Requirements o Design & . Evaluate » Code o Test » Deploy .
Analysis Document Design Iy [
I Profile
Debug

(c) Paul Fodor /

" Design Approaches

® Have other “similar” problems been solved?

*Do design patterns exist to help?

® What are the “easy” and “hard” parts?
® Why is this important?
work measurement
* Employ:

® data-driven design

Note: data-driven programming is a programming paradigm in which the

program statements describe the data to be matched and the processing required

rather than defining a sequence of steps to be taken.

* top-down design

A top-down approach is the breaking down of a system to gain insight into its

composrcional sub—systemstc) oaul Fodor

/

" Data-driven Design

o

® From the problem specitication, extract:
*nouns (they are objects, attributes of objects)
*verbs (they are methods)

® Divide data into separate logical, manageable

groupings

e these will form your objects

® Note needs for data structures or algorithms

Odesign your data management classes early on

(c) Paul Fodor /

- Data-driven Design gives the

Class relationships
® Think data flow:

® What HAS what?

® What IS what?

® What USES what?

® Where should data go?

® How will event handler X change data in classY?

® Static or non-static?
® Design patterns will help us make these decisions

¢ Bottom line: think modular

® no 1000 line classes or 100 line methods

(c) Paul Fodor /

" Modula

rity

® How reusable are your classes?

®can they be used in a future project?

® Think of programmers, not just users

® Can indivic

ual classes be easily separated

and re-used:

I¢

eSeparate Data from Mechanics

*Separate Functionality from Presentation

-,

(c) Paul Fodor

: Functionality vs. Presentation

The state manager:

® manages the state of one or more user interface controls such as text fields,
OK buttons, radio buttons, etc. in a graphical user interface.

In this user interface programming technique, the state of one Ul control depends on
the state of other Ul controls.

® classes that do the work of managing data & enforcing rules on that data

® Why separate the state management and the UI?
® so we can design several different Uls for a state manager
® so we can change the state management without changing the Ul
® so we can change the Ul without changing the state manager
® reuse code that is proven to work

® This is a common principle throughout GUl design

even for Web sites (separate content)

different programmers for each task
K (c) Paul Fodor /

/Choosing Data Structures

® Internal data structures

e What is the natural representation of the

given data?
®[rade-ofts: Setup vs. access speeds

*Keep data ordered?

Which access algorithms?

Ordered by what?

@ (c) Paul Fodor

" UML Diagrams
® UML - Unified Modeling Language
® UML diagrams are used to design object-oriented
software systems
® represent systems visually = Client-friendly!
® provides a system architecture
® makes coding more efficient and system more reliable
® diagrams show relationships among classes and objects
* Can software engineering be automated?
® Visual programming
® Patterns & frameworks

@ ® Computer-Aided Softwarer Engineering (CASE) tools /

" Types of UML Diagrams

* Types of UML diagrams that we will make in

CSE219:

® Use Case Diagram
® Class Diagram

° Sequence Diagram

® Other types of UML diagrams (you will make in

our CSE308):
*State, Activity, Col

aboration, Communication,

Component, & De;

_aloyment Diagrams

@ (c) Paul Fodor /

" UML Class Diagrams

e A UML class diagram consists of one or more

classes, each with sections for:
® class name
®instance variables

*methods

® Lines between classes represent associations
® [Ises
® Aggregation (HAS-A)
Containment

@ ® Inheritance (IS-A)orairom

4 ™
UML Class Responsibilities Diagrams

Class Name > Die

State Info: number of faces \> State infO tO be
____—— translated into
Instance variables

value facing up

Responsibilities:
access instance wvariables

roll die

PairOfDice
State Info: diel: Die
die2: Die
—
Responsibilities:

Responsibilities to
be translated into
methods

access instance variables
roll dice

calculate total

N
k (c) Paul Fodor /

" UML Class Diagrams

® Derived from class responsibilities diagrams

e Show relationships between classes

® (Class associations denoted by lines connecting classes

® A feathered arrow denotes a one-directional association

ClassA

—Connecting line means ClassA and
ClassB have a relationship

v ClassB

Instance variable info

Method header info

Instance variable info

Method header info

&
<

v

ClassC

Instance variable info

Method header info

Feathered arrow means
ClassA knows of and uses
ClassC, but ClassC has no
knowledge of ClassA

(c) Paul Fodor /

" Method and Instance Variable
Descriptions

® Instance Variables Format
variableName : variableType
® For example: upValue : int

® Method Header Format

methodName (argumentName : argumentType)
:returnType
* For example: setDiel (newDiel:Die) :void

® [Underlined or $ denotes a static method or variable

For example: myStaticMethod (x:int) :void

@ (c) Paul Fodor /

s R
UML Class Diagrams & Aggregation

e UML class diagram for PairOfDice & Die:

Diamond denotes aggregation
PairOfDice HAS-ADie

PairOfDice /n<{// Die

numFaces: int

diel: Die 1 2| upValue : int
die2: Die
getDiel () : Die getUpValue() : int
getDie2 () : Die getNumFaces () : int
getTotal() : int roll() : wvoid
rollDice() : wvoid
setDiel (newDiel: Die) : wvoid L
setDie2 (newDie2: Die) : void Denote mU|t|p||C|ty,

2 Die object for

each PairOfDice
(c) Paul Fodor Obj eCt /

4 N
UML Class Diagrams & Inheritance

public class Student extends Person

Person

name: String
age : int

getAge () : int
getName () : String

setAge (newAge: int) : wvoid
Triangle denotes inheritance AN
Student IS-A Person
Student
gpa: double

getGPA () : double
setGPA (newGPA: double) : void

(c) Paul Fodor /

" Encapsulation

® We can take one of two views of an object:

®internal - the variables the object holds and the
methods that make the object usetful

ecxternal - the services that an object provides

and how the object interacts

® From the external view, an object is an encapsulated

entity, providing a set of specific services

® These services define the interface to the object

® abstraction hides details from the rest of the

@ SYStem (c) Paul Fodor /

e

Class Diagrams and Encapsulation

® [In a UML class diagram:

® public members can be preceded by +

® private members are preceded by -

® protected members are preceded by #

™

Die

PairOfDice
- diel: Die
- die2: Die
+ getDiel () : Die
+ getDie2 () : Die
+ getTotal() : int
+ rollDice() : wvoid
+ setDiel (newDiel: Die) : void
+ setDie2 (newDie2: Die) : void

numFaces: int

upValue :

int

getUpValue ()
getNumFaces ()

roll ()

: void

: int
: int

(c) Paul Fodor

" Interfaces in UML

®2 ways to denote an interface

o <Jintertace>> (standard), OR
o <[>>

interface»
Transaction
| interface Transaction
+ execute() {
| public void execute() ;
1 ®» }
Transaction
+ execute()

@ http://www.informit.com/articles/article.asp?p=336264&seqNum=3

(c) Paul Fodor

http://www.informit.com/articles/article.asp?p=336264&seqNum=3

" Abstract Classes in UML

® 2 ways to denote a class or method is abstract:

(-

® class or method name in italics, OR

® {abstract} notation

Shape

- itsAnchorPaoint

+ drawy()

Shape
{abstract}

- itsAnchorPoint

+ draw() {abstract}

public abstract class Shape

{

private Point itsAnchorPoint;

public abstract void draw() ;

)

(c) Paul Fodor

™

" UML Sequence Diagrams

® Demonstrate the behavior of objects in program
®describe the objects and the messages they pass

Odiagrams are read left to right and descending

listener: data :
HuyTrophyHan Fombigquarium

buyTrophy

endGameAsWin

S eum |

(c) Paul Fodor /

4 R
What will we use UML Diagrams for?

o Use Case Diagrams

edescribe all the Ways Uusers will interact

with the program
® Class Diagrams
°describe all of our classes tor our app
®Sequence Diagrams

edescribe all event handling

@ (c) Paul Fodor /

" Top-down class design

* Top-down class design strategy:

® Decompose the problem into sub-problems (large

chunks).
® Write skeletal classes tor sub-problems.
® Write skeletal methods for sub-problems.
® Repeat for each sub-problem.

® It necessary, go back and redesign higher-level classes to
improve:
® modularity,

® information hiding, and

@ ¢ information flow ©raireo Y

" Designing Methods

(-

® Decide method signatures
enumbers and types of parameters and
return values

® Write down what a method should do

oyuse top—down design

decompose methods into helper methods

® Use javadoc comments to describe methods

® [Use method specs for implementation

(c) Paul Fodor

/

4 N
Results of Top-down class design

UML Class Diagrams

Skeletal Classes
* Instance variables
e static variables
» class diagrams
« method headers

« DOCUMENTATION

(c) Paul Fodor /

4 .
Software Longevity
® The FORTRAN & COBOL programming

languages are ~50 years old

®many mainframes still use code written in the

1960s
® software maintenance is more than 2 a project
® Moral of the story:

*the code you write may outlive you, so make it:
Easy to understand

Easy to modify & maintain

@ ®software must be veady to accommodate change’

®1NnCor]
®1nCor]
®1ncor]
®1NnCor]

®NCOT]

" Software Maintenance

® What is software maintenance?

o Improving or extending existing software

borate new functionality
borate new data to be managed
porate new technologies
porate new algorithms

yorate use with new tools

®NCOor

(c) Paul Fodor

™

borate things we cannot think of now ©

/

" Summary

(-

* Always use data driven & top-down design:

® identity and group system data

® identity classes, their methods and method signatures

® determine what methods should do

® identity helper methods
Write down step by step algorithms inside methods to help you

® document each class, method and field

® specity all conditions that need to be enforced or checked
decide where to generate exceptions
add to documentation

® cvaluate design, and repeat above process

until implementation instructions are well-defined

(c) Paul Fodor /

® —a

