
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Multithreading Issues and

Parallel Programming

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor & Pearson Inc.

Multi-threaded Applications
 Provide performance advantages:

minimize IDLE time,

 line balancing (think of Diner Dash)

2

(c) Paul Fodor & Pearson Inc.

Example: Let's make a CAR
 Sequential Approach:

Step 1: make 4 tires

Step 2: make a windshield

…

Step X: Assemble door

…

Step 1,000,000,000: Assemble Car

3

1.

Make 4
Tires

2.

Make a
windshield

1,000,000,000.

Assemble Car …

(c) Paul Fodor & Pearson Inc.

Example: Let's make a CAR

 Parallel Approach:

Step 1: Simultaneously have different workers

& suppliers make tires, windshield, door, etc.

Step 2: Assemble car as parts are available

4

1a. Make 4 Tires 1b. Make a windshield

2. Assemble Car

…

(c) Paul Fodor & Pearson Inc.

What could possibly go wrong?

Lots:

race conditions (shared memory)

deadlocks

slower software production

Why?

threads can interfere with one another

threads require complex logic to avoid

errors

5

(c) Paul Fodor & Pearson Inc.

Threads share data
How?

instance variables, static variables, data structures

 So?

Thread A may corrupt data Thread B is using

6

(c) Paul Fodor & Pearson Inc.

Consumers & Producers
 Some threads are Consumers

read shared data

 Some threads are Producers

write to shared data

 Some threads are both

read and write to shared data

Danger for a variable when:

one thread is a Consumer for a data that was not

yet produced by another thread that is a Producer

7

(c) Paul Fodor & Pearson Inc.

Race Conditions
 When do race conditions happen? What is a race condition?

When one thread corrupts another thread's data!

When transactions lack atomicity!

 Real example: What caused the 2003 Blackout problem?

 Race Conditions in software:

http://www.securityfocus.com/news/8412

“About eight weeks after the blackout, the bug was unmasked as

a particularly subtle incarnation of a common programming

error called a "race condition," triggered on August 14th by a

perfect storm of events and alarm conditions on the equipment

being monitored.”

 8

http://www.securityfocus.com/news/8412
http://www.securityfocus.com/news/8412

(c) Paul Fodor & Pearson Inc.

Atomicity
 Atomicity is a property of a transaction

 An atomic transaction runs to completion or not at all

 What’s a transaction?

execution of a method that changes stored data

(databases)

 A method is a sequence of multiple instructions.

 Ever heard of backing out a transaction?

 If one cannot execute the entire method, then one

should undo all effects of that method = rollback.

9

(c) Paul Fodor & Pearson Inc.

Example: A Corruptible Bank

We will create a single BadBank and make

random transfers, each in separate threads:

10

BuggedTransferer

-bank:BadBank

-fromAccount:int

+$MAX:double

+$DELAY:int

+run():void

BadBank

-account: double[]

+$INIT_BALANCE:double

+$NUM_ACCOUNTS:int

+transfer(from:int,

 to:int,

 double:amount):void

+getTotalBalance():double

<<interface>>

Runnable

0..* 1..1

(c) Paul Fodor & Pearson Inc.
11

public class BadBank {

 public static int INIT_BALANCE = 1000, NUM_ACCOUNTS = 100;

 private double[] accounts = new double[NUM_ACCOUNTS];

 public BadBank() {

 for (int i = 0; i < NUM_ACCOUNTS; i++) {

 accounts[i] = INIT_BALANCE;

 }

 }

 public void transfer(int from, int to, double amount) {

 if (accounts[from] < amount) {

 return;

 }

 accounts[from] -= amount;

 System.out.print(Thread.currentThread());

 System.out.printf("%10.2f from %d to %d", amount, from, to);

 accounts[to] += amount;

 double total = getTotalBalance();

 System.out.printf(" Total Balance: %10.2f%n", total);

 }

 public double getTotalBalance() {

 double sum = 0;

 for (double a : accounts) {

 sum += a;

 }

 return sum;

 }

}

BadBank.java

(c) Paul Fodor & Pearson Inc.
12

public class BuggedTransferer implements Runnable {

 private BadBank bank;

 private int fromAccount;

 public static final double MAX = 1000;

 public static final int DELAY = 100;

 public BuggedTransferer(BadBank b, int from) {

 bank = b;

 fromAccount = from;

 }

 public void run() {

 try {

 while (true) {

 int toAccount = (int) (bank.NUM_ACCOUNTS *

 Math.random());

 double amount = MAX * Math.random();

 bank.transfer(fromAccount, toAccount, amount);

 Thread.sleep((int) (DELAY * Math.random()));

 }

 } catch (InterruptedException e) {/*SQUELCH*/

 }

 }

}

BuggedTransferer.java

(c) Paul Fodor & Pearson Inc.
13

public class AtomiclessDriver {

 public static void main(String[] args) {

 BadBank b = new BadBank();

 for (int i = 0; i < BadBank.NUM_ACCOUNTS; i++) {

 BuggedTransferer bT =

 new BuggedTransferer(b,i);

 Thread t = new Thread(bT);

 t.start();

 }

 }

}
AtomiclessDriver.java

(c) Paul Fodor & Pearson Inc.

What results might we get?
Why might we get invalid

balance totals?

race conditions!

operations on shared data

lack atomicity

14

…Total Balance: 100000.00

…Total Balance: 100000.00

…Total Balance: 100000.00

…Total Balance: 100000.00

…Total Balance: 100000.00

…Total Balance: 100000.00

…Total Balance: 100000.00

…Total Balance: 100000.00

…Total Balance: 99431.55

…Total Balance: 99367.34

…

 Bottom line:

a method or even a single statement is not an atomic

operation

 this means that the statement can be interrupted

during its operation

(c) Paul Fodor & Pearson Inc.

Is a single statement atomic?
 A single Java statement is compiled into multiple low-level

statements.

 javap –c –v BadBank

 E.g., accounts[from] -= amount; // is compiled into JVM:

 …

 21 aload_0

 22 getfield #3 <Field double accounts[]>

 25 iload_1

 26 dup2

 27 daload

 28 dload_3

 29 dsub

 30 dastore

 …

15

Note: The javap command

disassembles one or more class files.

(c) Paul Fodor & Pearson Inc.

Race Condition Example

16

Threads 1 & 2 are in transfer at the same time.

Thread 1 Thread 2

aload_0

getfield #3

iload_1

dup2

daload

dload_3

aload_0

getfield #3

iload_1

dup2

daload

dload_3

dsub

dastore

dsub

dastore

What’s the problem?

This might store

corrupted data

(c) Paul Fodor & Pearson Inc.

How do we guarantee atomicity?

By locking methods or code blocks!

What is a lock?

Locks other threads out!

How do we do it?

One Way: java.util.concurrent.

locks.ReentrantLock class

Many other ways.

17

(c) Paul Fodor & Pearson Inc.

ReentrantLock
 Basic structure to lock critical code:
ReentrantLock myLock = new ReentrantLock();

…

myLock.lock();

try {

// CRITICAL AREA TO BE ATOMICIZED

} finally {

 myLock.unLock();

}

 When a thread enters this code:

 if no other lock exists, it will execute the critical code;

 otherwise, it will wait until previous locks are unlocked.

18

(c) Paul Fodor & Pearson Inc.

ReentrantLock

19

Same as ReentrantLock(false).

Creates a lock with the given fairness policy. When the
fairness is true, the longest-waiting thread will get the

lock. Otherwise, there is no particular access order.

«interface»
java.util.concurrent.locks.Lock

+lock(): void

+unlock(): void

+newCondition(): Condition

Acquires the lock.

Releases the lock.

Returns a new Condition instance that is bound to this
Lock instance.

java.util.concurrent.locks.ReentrantLock

+ReentrantLock()

+ReentrantLock(fair: boolean)

True fairness policies guarantee the longest-wait thread to obtain the lock first.

False fairness policies grant a lock to a waiting thread without any access order.

 Programs using fair locks accessed by many threads may have poor overall
 performance than those using the default setting, but have smaller variances
 in times to obtain locks and guarantee lack of starvation.

(c) Paul Fodor & Pearson Inc.

Updated transfer method
import java.util.concurrent.locks.ReentrantLock;

public class GoodBank {

 private ReentrantLock bankLock = new ReentrantLock();

 private double[] accounts = new double[NUM_ACCOUNTS];

 …

 public void transfer(int from, int to, double amount) {

 bankLock.lock();

 try {

 if (accounts[from] < amount) {

 return;

 }

 accounts[from] -= amount;

 System.out.print(Thread.currentThread());

 System.out.printf("%10.2f from %d to%d", amount, from, to);

 accounts[to] += amount;

 double total = getTotalBalance();

 System.out.printf(" Total Balance: %10.2f%n", total);

 } finally {

 bankLock.unlock();

 }

 }

 …

}

20

/* NOTE: This works because transfer is the only mutator method for accounts.
What if there were more than one? Then we’d have to lock the accounts object. */

(c) Paul Fodor & Pearson Inc.

GoodBank.java
import java.util.concurrent.locks.ReentrantLock;
public class GoodBank {
 private ReentrantLock bankLock = new ReentrantLock();
 public static int INIT_BALANCE = 100, NUM_ACCOUNTS = 100;
 private double[] accounts = new double[NUM_ACCOUNTS];
 public GoodBank() {
 for (int i = 0; i < NUM_ACCOUNTS; i++) {
 accounts[i] = INIT_BALANCE;
 }
 }
 public void transfer(int from, int to, double amount) {
 bankLock.lock();
 try {
 if (accounts[from] < amount) {
 return;
 }
 accounts[from] -= amount;
 System.out.print(Thread.currentThread());
 System.out.printf("%10.2f from %d to%d", amount, from, to);
 accounts[to] += amount;
 double total = getTotalBalance();
 System.out.printf(" Total Balance: %10.2f%n", total);
 } finally {
 bankLock.unlock();
 }
 }
 public double getTotalBalance() {
 double sum = 0;
 for (double a : accounts) {
 sum += a;
 }
 return sum;
 }
}

21

(c) Paul Fodor & Pearson Inc.

GoodTransferer.java
public class GoodTransferer implements Runnable {

 private GoodBank bank;

 private int fromAccount;

 public static final double MAX = 1000;

 public static final int DELAY = 100;

 public GoodTransferer(GoodBank b, int from) {

 bank = b;

 fromAccount = from;

 }

 public void run() {

 try {

 while (true) {

 int toAccount = (int)

 (bank.NUM_ACCOUNTS * Math.random());

 double amount = MAX * Math.random();

 bank.transfer(fromAccount, toAccount, amount);

 Thread.sleep((int) (DELAY * Math.random()));

 }

 } catch (InterruptedException e) {/*SQUELCH*/

 }

 }

} 22

(c) Paul Fodor & Pearson Inc.

AtomicDriver.java

public class AtomicDriver {

 public static void main(String[] args) {

 GoodBank b = new GoodBank();

 for (int i = 0; i < BadBank.NUM_ACCOUNTS; i++) {

 GoodTransferer bT = new GoodTransferer(b, i);

 Thread t = new Thread(bT);

 t.start();

 }

 }

}

23

(c) Paul Fodor & Pearson Inc.

The synchronized keyword

 To avoid race conditions, more than one thread must be

prevented from simultaneously entering certain part of the

program, known as the critical region.

 The critical region in the bank example is the entire

transfer method.

 You can use the synchronized keyword to synchronize the

method so that only one thread can access the method at a time.

public synchronized void transfer(

int from, int to, double amount) { … }

24

(c) Paul Fodor & Pearson Inc.

Synchronizing Instance

Methods and Static Methods
 Internally, a synchronized method acquires a lock

before it executes.

 In the case of an instance method, the lock is on the

object for which the method was invoked.

 In the case of a static method, the lock is on the class.

 If one thread invokes a synchronized instance method

(respectively, static method) on an object, the lock of that

object (respectively, class) is acquired first, then the method

is executed, and finally the lock is released.

 Another thread invoking the same method of that object

(respectively, class) is blocked until the lock is released.

 25

(c) Paul Fodor & Pearson Inc.

Synchronizing Instance

Methods and Static Methods
 With the transfer method synchronized, the race

scenario cannot happen.
 If Task 2 starts to enter the method, and Task 1 is already in the

method, Task 2 is blocked until Task 1 finishes the method.

26

Acquire a lock on the object account

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Execute the transfer method

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Release the lock

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Task 1

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Acqurie a lock on the object account

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Execute the transfer method

-char token

+getToken

+setToken

+paintComponet

Release the lock

Task 2

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

 Wait to acquire the lock

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

(c) Paul Fodor & Pearson Inc.

Synchronizing Statements

 A synchronized statement can be used to acquire a lock on
any object, not just this object, when executing a block of the
code in a method:
synchronized (expr) {

 statements;

}

 The expression expr must evaluate to an object reference.
 If the object is already locked by another thread, the thread is

blocked until the lock is released.
 When a lock is obtained on the object, the statements in the

synchronized block are executed, and then the lock is released.

27

(c) Paul Fodor & Pearson Inc.

What’s the worst kind of race condition?

 A deadlock is a situation in which two or more competing

actions are each waiting for the other to finish, and thus neither

ever does.

 Devastating race conditions that rarely occur

 even during extensive testing

 Can be hard to simulate

 or deliberately produce

 Note: We don't control the thread scheduler!

 Moral: don’t rely on thread scheduler, but make sure your

program is thread-safe.

 should be proven logically, before testing

28

(c) Paul Fodor & Pearson Inc.

Dining Philosopher’s Problem

 5 philosophers

 5 forks

 1 plate of spaghetti

29

Five silent philosophers sit at a table around a bowl

of spaghetti. A fork is placed between each pair of

adjacent philosophers.

Each philosopher must alternately think and eat.

A philosopher can only eat spaghetti when he has

both left and right forks.

A philosopher can grab the fork on his right or the

one on his left as they become available, but can't

start eating before getting both of them.

The possibility of a deadlock: if all five philosophers

pick up the left fork at the same time and wait until

the right fork is available, then no progress is possible

again (starvation).

(c) Paul Fodor & Pearson Inc.

Deadlocks
 Deadlock:

a thread T1 holds a lock on L1 and wants lock L2

 AND

a thread T2 holds a lock on L2 and wants lock L1.

 How do we resolve this?

Deadlock Resolution

 One technique: don’t let waiting threads lock other data!

 Release all their locks before making them wait.

 There are all sorts of proper algorithms for thread lock

ordering (you’ll see if you take CSE 306).

30

(c) Paul Fodor & Pearson Inc.

Thread Pools
 Starting a new thread for each task could limit throughput

and cause poor performance.

 A thread pool is ideal to manage the number of tasks

executing concurrently.

 The Executor interface executes tasks in a thread pool.

 The ExecutorService interface manages and controls tasks.

31

Shuts down the executor, but allows the tasks in the executor to

complete. Once shutdown, it cannot accept new tasks.

Shuts down the executor immediately even though there are

unfinished threads in the pool. Returns a list of unfinished

tasks.

Returns true if the executor has been shutdown.

Returns true if all tasks in the pool are terminated.

«interface»
java.util.concurrent.Executor

+execute(Runnable object): void

Executes the runnable task.

\

«interface»
java.util.concurrent.ExecutorService

+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean

+isTerminated(): boolean

(c) Paul Fodor & Pearson Inc.

Thread Pools
To create an Executor object, use the static

methods in the Executors class.

32

Creates a thread pool with a fixed number of threads executing
concurrently. A thread may be reused to execute another task

after its current task is finished.

Creates a thread pool that creates new threads as needed, but
will reuse previously constructed threads when they are

available.

java.util.concurrent.Executors

+newFixedThreadPool(numberOfThreads:

int): ExecutorService

+newCachedThreadPool():

ExecutorService

(c) Paul Fodor & Pearson Inc.

import java.util.concurrent.*;

public class ExecutorDemo {

 public static void main(String[] args) {

 // Create a fixed thread pool with maximum three threads

 ExecutorService executor = Executors.newFixedThreadPool(3);

 // Submit runnable tasks to the executor

 executor.execute(new PrintChar('a', 100));

 executor.execute(new PrintChar('b', 100));

 executor.execute(new PrintNum(100));

 // Shut down the executor

 executor.shutdown();

 }

}

33

ExecutorDemo.java

(c) Paul Fodor & Pearson Inc.

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

public class DiningPhilosophersDeadlock {

 static ReentrantLock[] forkLock = {

 new ReentrantLock(),

 new ReentrantLock(),

 new ReentrantLock(),

 new ReentrantLock(),

 new ReentrantLock()

 };

 public static void main(String[] args) {

 // Create a thread pool with two threads

 ExecutorService executor = Executors.newFixedThreadPool(5);

 executor.execute(new PhilosopherTask(0));

 executor.execute(new PhilosopherTask(1));

 executor.execute(new PhilosopherTask(2));

 executor.execute(new PhilosopherTask(3));

 executor.execute(new PhilosopherTask(4));

 executor.shutdown();

 }

 public static class PhilosopherTask implements Runnable {

 int philosopher, leftFork, rightFork;

 PhilosopherTask(int n) {

 philosopher = n;

 leftFork = n;

 if (philosopher > 0) {

 rightFork = philosopher - 1;

 } else {

 rightFork = 4;

 }

 }

34

DiningPhilosophersDeadlock.java

(c) Paul Fodor & Pearson Inc.

 public void run() {

 try {

 while (true) {

 // take the left fork

 forkLock[leftFork].lock();

 System.out.println("The philosopher " + philosopher

 + " took his left fork " + leftFork);

 Thread.sleep(1000);

 // take the right fork

 System.out.println("The philosopher " + philosopher

 + " tries to take his right fork " + rightFork);

 forkLock[rightFork].lock();

 System.out.println("The philosopher " + philosopher

 + " took his right fork " + rightFork);

 System.out.println("The philosopher " + philosopher + " eats.");

 System.out.println("The philosopher " + philosopher

 + " releases his right fork " + rightFork);

 forkLock[rightFork].unlock();

 System.out.println("The philosopher " + philosopher

 + " releases his left fork " + leftFork);

 forkLock[leftFork].unlock();

 }

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

 }

}

35

DiningPhilosophersDeadlock.java

(c) Paul Fodor & Pearson Inc.

javac DiningPhilosophersDeadlock.java

Java DiningPhilosophersDeadlock

run:

The philosopher 0 took the left fork 0

The philosopher 1 took the left fork 1

The philosopher 2 took the left fork 2

The philosopher 3 took the left fork 3

The philosopher 4 took the left fork 4

The philosopher 0 tries to take the right fork 4

The philosopher 2 tries to take the right fork 1

The philosopher 4 tries to take the right fork 3

The philosopher 3 tries to take the right fork 2

The philosopher 1 tries to take the right fork 0

 NOTHING ELSE

 DEADLOCK

36

(c) Paul Fodor & Pearson Inc.

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

public class DiningPhilosophersResolution {

 static ReentrantLock[] forkLock = {

 new ReentrantLock(),

 new ReentrantLock(),

 new ReentrantLock(),

 new ReentrantLock(),

 new ReentrantLock()

 };

 public static void main(String[] args) {

 // Create a thread pool with two threads

 ExecutorService executor = Executors.newFixedThreadPool(5);

 executor.execute(new PhilosopherTask(0));

 executor.execute(new PhilosopherTask(1));

 executor.execute(new PhilosopherTask(2));

 executor.execute(new PhilosopherTask(3));

 executor.execute(new PhilosopherTask(4));

 executor.shutdown();

 }

 public static class PhilosopherTask implements Runnable {

 int philosopher, leftFork, rightFork;

 PhilosopherTask(int n) {

 philosopher = n;

 leftFork = n;

 if (philosopher > 0) {

 rightFork = philosopher - 1;

 } else {

 rightFork = 4;

 }

 }

37

DiningPhilosophersResolution.java

(c) Paul Fodor & Pearson Inc.

 public void run() {

 try {

 while (true) {

 // take the left fork

 forkLock[leftFork].lock();

 System.out.println("The philosopher " + philosopher

 + " took his left fork " + leftFork);

 Thread.sleep(1000);

 // take the right fork

 System.out.println("The philosopher " + philosopher

 + " tries to take his right fork " + rightFork);

 if (forkLock[rightFork].isLocked()) {

 // release the left spoon and wait a random time

 System.out.println("The philosopher " + philosopher

 + " cannot take the right fork " + rightFork

 + ", so he releases the left spoon " + leftFork

 + " and waits a random time");

 forkLock[leftFork].unlock();

 Thread.sleep((int) (1000 * Math.random()));

 } else {

 forkLock[rightFork].lock();

 System.out.println("The philosopher " + philosopher

 + " took his right fork " + rightFork);

 System.out.println("The philosopher " + philosopher + " eats.");

 System.out.println("The philosopher " + philosopher

 + " releases his right fork " + rightFork);

 forkLock[rightFork].unlock();

 System.out.println("The philosopher " + philosopher

 + " releases his left fork " + leftFork);

 forkLock[leftFork].unlock();

 }

 }

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 } }}

38

DiningPhilosophersResolution.java

(c) Paul Fodor & Pearson Inc.

javac DiningPhilosophersResolution.java

Java DiningPhilosophersResolution

run:

The philosopher 0 took his left fork 0

The philosopher 2 took his left fork 2

The philosopher 1 took his left fork 1

The philosopher 3 took his left fork 3

The philosopher 4 took his left fork 4

The philosopher 2 tries to take his right fork 1

The philosopher 3 tries to take his right fork 2

The philosopher 0 tries to take his right fork 4

The philosopher 0 cannot take the right fork 4, so he releases the left spoon 0

and waits a random time

The philosopher 1 tries to take his right fork 0

The philosopher 1 took his right fork 0

The philosopher 4 tries to take his right fork 3

The philosopher 1 eats.

The philosopher 3 cannot take the right fork 2, so he releases the left spoon 3

and waits a random time

The philosopher 2 cannot take the right fork 1, so he releases the left spoon 2

and waits a random time

The philosopher 1 releases his right fork 0

The philosopher 1 releases his left fork 1

...

39

(c) Paul Fodor & Pearson Inc.

Communication between threads

The Thread join()

 forces one thread to wait for another thread to finish

40

printChar.join()

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Thread

printNum

-char token

+getToken

+setToken

+paintCompo

net

+mouseClicke

d

Wait for

printChar
to finish

+getToken

+setToken

Thread

printChar

-char token

+getToken

+setToken

+paintCompo

net

+mouseClicke

d

 printChar finished

-char token

public void run() {

 Thread thread4 = new Thread(

new PrintChar('c', 40));

 thread4.start();

 try {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 if (i == 50) thread4.join();

 }

 }

 catch (InterruptedException ex) { }

}

(c) Paul Fodor & Pearson Inc.

// The task class for printing number from 1 to n for a given n

class PrintNum implements Runnable {

 private int lastNum;

 public PrintNum(int n) {

 lastNum = n;

 }

 public void run() {

 Thread thread4 = new Thread(new PrintChar('c', 40));

 thread4.start();

 try {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 if (i == 50) thread4.join();

 }

 } catch (InterruptedException ex) {}

 }

}

41

TaskThreadDemo.java

(c) Paul Fodor & Pearson Inc.

public class TaskThreadDemo {

 public static void main(String[] args) {

 // Create tasks

 Runnable printA = new PrintChar('a', 100);

 Runnable printB = new PrintChar('b', 100);

 Runnable print100 = new PrintNum(100);

 // Create threads

 Thread thread1 = new Thread(printA);

 Thread thread2 = new Thread(printB);

 Thread thread3 = new Thread(print100);

 // Start threads

 thread1.start();

 thread2.start();

 thread3.start();

 }

}

42

TaskThreadDemo.java

(c) Paul Fodor & Pearson Inc.

// The task for printing a specified character in specified times

class PrintChar implements Runnable {

 private char charToPrint; // The character to print

 private int times; // The times to repeat

 /**

 * Construct a task with specified character and number of times

 * to print the character

 */

 public PrintChar(char c, int t) {

 charToPrint = c;

 times = t;

 }

 /**

 * Override the run() method to tell the system what the task to perform

 */

 public void run() {

 for (int i = 0; i < times; i++) {

 System.out.print(charToPrint);

 }

 }

}
43

TaskThreadDemo.java

(c) Paul Fodor & Pearson Inc.

Cooperation Among Threads
 The conditions can be used to facilitate communications

among threads: a thread can specify what to do under a

certain condition.

 Conditions are objects created by invoking the new Condition()

method on a Lock object.

 Once a condition is created, you can use its await(), signal(),

and signalAll() methods for thread communications.

 The await() method causes the current thread to wait until the condition

is signaled.

 The signal() method wakes up one waiting thread.

 The signalAll() method wakes all waiting threads.

44

«interface»

java.util.concurrent.Condition

+await(): void

+signal(): void

+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.

Wakes up one waiting thread.

Wakes up all waiting threads.

(c) Paul Fodor & Pearson Inc.

 Example: to synchronize two operations, deposit and
withdraw, use a lock with a condition: if the balance is
less than the amount to be withdrawn, the withdraw
task will wait for the condition newDeposit
 when the deposit task adds money to the account, the task

signals the waiting withdraw task to try again.

45

while (balance < withdrawAmount)

 newDeposit.await();

Withdraw Task

-char token

+getToken
+setToken

+paintComponet
+mouseClicked

balance -= withdrawAmount

-char token

+getToken

+setToken

lock.unlock();

Deposit Task

-char token

+getToken
+setToken

+paintComponet
+mouseClicked

lock.lock();

-char token

+getToken
+setToken

+paintComponet
+mouseClicked

newDeposit.signalAll();

balance += depositAmount

-char token

+getToken
+setToken

+paintComponet

+mouseClicked

lock.unlock();

-char token

lock.lock();

-char token

+getToken
+setToken

+paintComponet

+mouseClicked

Cooperation Among Threads

(c) Paul Fodor & Pearson Inc.

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

public class ThreadCooperation {

 private static Account account = new Account();

 public static void main(String[] args) {

 // Create a thread pool with two threads

 ExecutorService executor = Executors.newFixedThreadPool(2);

 executor.execute(new DepositTask());

 executor.execute(new WithdrawTask());

 executor.shutdown();

 System.out.println("Thread 1\t\tThread 2\t\tBalance");

 }

 private static class Account {

 // Create a new lock

 private static Lock lock = new ReentrantLock();

 // Create a condition

 private static Condition newDeposit = lock.newCondition();

 private int balance = 0;

 public int getBalance() {

 return balance;

 }

46

ThreadCooperation.java

(c) Paul Fodor & Pearson Inc.

 public void withdraw(int amount) {

 lock.lock(); // Acquire the lock

 try {

 while (balance < amount) {

 System.out.println("\t\t\tWait for a deposit");

 newDeposit.await();

 }

 balance -= amount;

 System.out.println("\t\t\tWithdraw " + amount

 + "\t\t" + getBalance());

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 } finally {

 lock.unlock(); // Release the lock

 }

 }

 public void deposit(int amount) {

 lock.lock(); // Acquire the lock

 try {

 balance += amount;

 System.out.println("Deposit " + amount

 + "\t\t\t\t\t" + getBalance());

 // Signal thread waiting on the condition

 newDeposit.signalAll();

 } finally {

 lock.unlock(); // Release the lock

 }

 }

 }
47

ThreadCooperation.java

(c) Paul Fodor & Pearson Inc.

 // A task for adding an amount to the account

 public static class DepositTask implements Runnable {

 public void run() {

 try {

 // Purposely delay it to let the withdraw method proceed

 while (true) {

 account.deposit((int) (Math.random() * 10) + 1);

 Thread.sleep(1000);

 }

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

 }

 // A task for subtracting an amount from the account

 public static class WithdrawTask implements Runnable {

 public void run() {

 while (true) {

 account.withdraw((int) (Math.random() * 10) + 1);

 }

 }

 }

}

48

ThreadCooperation.java

(c) Paul Fodor & Pearson Inc.

javac ThreadCooperation.java

java ThreadCooperation

Thread 1 Thread 2 Balance

Deposit 3 3

 Wait for a deposit

Deposit 4 7

 Wait for a deposit

Deposit 3 10

 Withdraw 9 1

 Wait for a deposit

Deposit 10 11

 Withdraw 3 8

 Withdraw 6 2

 Wait for a deposit

Deposit 6 8

 Withdraw 5 3

 Wait for a deposit

Deposit 6 9

 Withdraw 4 5

 Withdraw 4 1

 Wait for a deposit

Deposit 5 6

 Wait for a deposit

Deposit 8 14

 Withdraw 8 6

 Wait for a deposit

49

(c) Paul Fodor & Pearson Inc.

GUIs and Multithreading
 We need to run the code in the GUI event dispatcher thread to avoid

possible deadlocks.
 For for quick and simple operations, we can use the static method runLater() in the

Platform class to run the code in the event dispatcher thread, i.e., any modifications of

the scene graph occur on the FX Application Thread.

 Example: a background thread which just counts from 0 to 10000 and update progress

bar in UI:

final ProgressBar bar = new ProgressBar();

new Thread(new Runnable() {

 @Override public void run() {

 for (int i=1; i<=10000; i++) {

 final int counter = i;

 Platform.runLater(new Runnable() {

 @Override public void run() {

 bar.setProgress(counter/1000000.0);

 }});}}

}).start();

50

(c) Paul Fodor & Pearson Inc.

 A better solution is to code using javafx.concurrent.Task<V>:
Task<Integer> task = new Task<Integer>() {

 @Override

 protected Integer call() throws Exception {

 int iterations;

 for (iterations = 0; iterations < 10000000;

 iterations++) {

 updateProgress(iterations, 10000000);

 }

 return iterations;

 }

 };

ProgressBar bar = new ProgressBar();

bar.progressProperty().bind(task.progressProperty());

new Thread(task).start();

 Task implements the Worker interface which is used when you

need to run a long task outside the GUI thread (to avoid

freezing your application) but still need to interact with the GUI

at some stage.
51

GUIs and Multithreading

(c) Paul Fodor & Pearson Inc.

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.application.Platform;

import javafx.concurrent.Task;

import javafx.scene.control.Button;

import javafx.scene.control.Label;

import javafx.scene.control.ProgressBar;

import javafx.scene.control.ProgressIndicator;

import javafx.scene.layout.HBox;

import javafx.scene.layout.VBox;

import javafx.scene.text.Font;

public class ProgressTest extends Application {

 ProgressBar bar;

 ProgressIndicator indicator;

 Button button;

 Label processLabel;

 int numTasks = 0;

 @Override

 public void start(Stage primaryStage) throws Exception {

 VBox box = new VBox();

 HBox toolbar = new HBox();

 bar = new ProgressBar(0);

52

GUIs and Multithreading

(c) Paul Fodor & Pearson Inc.

 indicator = new ProgressIndicator(0);

 indicator.setStyle("font-size: 36pt");

 toolbar.getChildren().add(bar);

 toolbar.getChildren().add(indicator);

 button = new Button("Restart");

 processLabel = new Label();

 processLabel.setFont(new Font("Serif", 36));

 box.getChildren().add(toolbar);

 box.getChildren().add(button);

 box.getChildren().add(processLabel);

 Scene scene = new Scene(box);

 primaryStage.setScene(scene);

 button.setOnAction(e -> {

 Task<Void> task = new Task<Void>() {

 int task = numTasks++;

 double max = 200;

 double perc;

 @Override

 protected Void call() throws Exception {

 for (int i = 0; i < 200; i++) {

 System.out.println(i);

 perc = i/max;

 Platform.runLater(new Runnable() {

 @Override

 public void run() {

 bar.setProgress(perc);

 indicator.setProgress(perc); 53

(c) Paul Fodor & Pearson Inc.

 processLabel.setText("Task #" + task);

 }

 });

 // SLEEP EACH FRAME

 try {

 Thread.sleep(10);

 } catch (InterruptedException ie) {

 ie.printStackTrace();

 }

 }

 return null;

 }

 };

 // THIS GETS THE THREAD ROLLING

 Thread thread = new Thread(task);

 thread.start();

 });

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

// IF YOU CLICK MANY TIMES ON THE BUTTON, THEN ALL THE THREADS WILL

MODIFY THE PROGRESS AT THE SAME TIME – NOT GOOD

54

(c) Paul Fodor & Pearson Inc.

import java.util.concurrent.locks.ReentrantLock;

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Scene;

import static javafx.application.Application.launch;

import javafx.application.Platform;

import javafx.concurrent.Task;

import javafx.scene.control.Button;

import javafx.scene.control.Label;

import javafx.scene.control.ProgressBar;

import javafx.scene.control.ProgressIndicator;

import javafx.scene.layout.HBox;

import javafx.scene.layout.VBox;

import javafx.scene.text.Font;

public class BetterProgressTest extends Application {

 ProgressBar bar;

 ProgressIndicator indicator;

 Button button;

 Label processLabel;

 int numTasks = 0;

 ReentrantLock progressLock;

 @Override

 public void start(Stage primaryStage) throws Exception {

 progressLock = new ReentrantLock();

 VBox box = new VBox();

 HBox toolbar = new HBox();

 bar = new ProgressBar(0);

55

(c) Paul Fodor & Pearson Inc.

 indicator = new ProgressIndicator(0);

 toolbar.getChildren().add(bar);

 toolbar.getChildren().add(indicator);

 button = new Button("Restart");

 processLabel = new Label();

 processLabel.setFont(new Font("Serif", 36));

 box.getChildren().add(toolbar);

 box.getChildren().add(button);

 box.getChildren().add(processLabel);

 Scene scene = new Scene(box);

 primaryStage.setScene(scene);

 button.setOnAction(e -> {

 Task<Void> task = new Task<Void>() {

 int task = numTasks++;

 double max = 200;

 double perc;

 @Override

 protected Void call() throws Exception {

 try {

 progressLock.lock();

 for (int i = 0; i < 200; i++) {

 System.out.println(i);

 perc = i/max;

 Platform.runLater(new Runnable() {

 @Override

 public void run() {

 56

(c) Paul Fodor & Pearson Inc.

 bar.setProgress(perc);

 indicator.setProgress(perc);

 processLabel.setText("Task #" + task);

 }

 });

 Thread.sleep(10);

 }}

 finally {

 progressLock.unlock();

 }

 return null;

 }

 };

 // THIS GETS THE THREAD ROLLING

 Thread thread = new Thread(task);

 thread.start();

 });

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

57

