
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

 Software versioning and

revision control systems

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Software versioning and

revision control systems
 Revision control (also known as version control, source

control, and source code management) is the management

of changes to documents, computer programs, large

web sites, and other collections of information.

 A system for managing changes to files

Used by individuals and teams to keep:

 History of changes,

 Share and distribute common source code.

Think of it as a file database

2

(c) Paul Fodor

Version Control System Services

 Backup and Restore

 Synchronization

 Short-term undo

 Long-term undo

 Track Changes

 Track Ownership

 Sandboxing

 Branching and merging

3

(c) Paul Fodor

Backup and Restore

Files are saved as they are edited

One can jump to any moment in time

Need that file as it was on August 23, 2014?

no problem, just ask the VCS for it

4

(c) Paul Fodor

Synchronization

Lets developers:

share files

stay up-to-date with the latest version

Even while developers are working

simultaneously.

5

(c) Paul Fodor

Short-term Undo

Editing a file and messed it up?

Throw away your changes and go back

to the “last known good” version in the

database

6

(c) Paul Fodor

Long-term Undo

For particularly bad mistakes

Suppose you made a change a year ago,

and it had a bug

Jump back to the old version, and see

what change was made that day

7

(c) Paul Fodor

Track Changes

As files are updated, you can leave messages

explaining why the change happened

stored in the VCS, not the file

This makes it easy to see how a file is

evolving over time, and why

Developers should document every change

8

(c) Paul Fodor

Track Ownership

A VCS tags every change with:

the name of the person who made it

date/time of change

Helpful for blamestorming

9

(c) Paul Fodor

Sandboxing

Insurance against yourself

Making a big change?

You can make temporary changes in an

isolated area

test and work out the kinks before

“checking in” your changes

10

(c) Paul Fodor

Branching and Merging

A larger sandbox

You can branch a copy of your code into a

separate area and modify it in isolation

tracking changes separately

Later, you can merge your work back into

the common area.

11

(c) Paul Fodor

Setup Terms

 Repository (repo): The database storing the files.

Server: The computer storing the repository

Client: The computer connecting to the repository

 Working Set/Working Copy: Your local directory of

files, where you make changes.

 Trunk/Main: The “primary” location for code in the

repository

Think of code as a family tree — the “trunk” is the

main line.

12

(c) Paul Fodor

Basic Actions

 Add: Put a file into the repository for the first time, i.e.

begin tracking it with Version Control

 Revision: What version a file is on (v1, v2, etc.)

 Head: The latest revision in the repository

 Check out: Download a file from the repository

 Check in: Upload a file to the repository (if it has

changed).

 the file gets a new revision number, and people can

“check out” the latest one

13

(c) Paul Fodor

 Checkin Message: A short message describing

what was changed

 Changelog/History: A list of changes made to a

file since it was created

 Update/Sync: Synchronize your files with the

latest from the repository

 this lets you grab the latest revisions of all files

 Revert: Throw away your local changes and

reload the latest version from the repository

14

Basic Actions

(c) Paul Fodor

Advanced Actions

 Branch: Create a separate copy of a file/folder for

private use (bug fixing, testing, etc)

Branch is both a verb (”branch the code”) and a

noun (”Which branch is it in?”)

 Diff/Change/Delta: Finding the differences

between two files

useful for seeing what changed between

revisions.

15

(c) Paul Fodor

 Merge (or patch): Apply the changes from one

file to another, to bring it up-to-date

For example, you can merge features from one

branch into another

 Conflict: When pending changes to a file

contradict each other

both changes cannot be applied

 Resolve: Fixing the changes that contradict each

other and checking in the correct version

16

Advanced Actions

(c) Paul Fodor

 Locking: “Taking control” of a file so nobody else can edit

it until you unlock it.

 some VCSs use this to avoid conflicts.

 Breaking the lock: Forcibly unlocking a file so you can

edit it.

 may be needed if someone locks a file and leaves

 Check out for edit: Checking out an “editable” version of

a file

 some VCSes have editable files by default, others

require an explicit command.

17

Advanced Actions

(c) Paul Fodor

Types of VCSs
 Revision Control System (RCS)

 dead as a stand-alone system

 Concurrent Versioning System (CVS)

 dying

 Subversion (SVN)

 killing CVS

 open source under the Apache license

 http://subversion.apache.org/

 Distributed/decentralized revision control:

 Git

 Mercurial

 GNU Bazaar

 BitKeeper

18

- keeps track of software revisions

- allows many developers to work on a given

project without requiring that they maintain a

connection to a common network.

http://subversion.apache.org/
http://subversion.apache.org/

(c) Paul Fodor

git
 Git:

 GNU license

 Free download: http://git-scm.com

 Clients: http://www.sourcetreeapp.com,

http://www.syntevo.com/smartgit

 Repositories: GitHub, BitBucket (private repos. for <=5 users)

 Used by Linux kernel (original author Linus Torvalds)

 Used by permanent software development (report

by itjobswatch.co.uk):

 20.32% git

 16.14% Subversion

 10.80% Microsoft Team Foundation Server

 1.39% Mercurial

19

http://git-scm.com/
http://git-scm.com/
http://git-scm.com/
http://www.sourcetreeapp.com/
http://www.syntevo.com/smartgit

(c) Paul Fodor

git Common operations
 Setting Up a Git Repository:

 git init: initializes a new Git repository.

 If you want to place a project under revision control, this is the first

command you need to learn.

 git clone ?location: creates a copy of an existing Git repository.

 Cloning is the most common way for developers to obtain a working copy

of a central repository.

 Example: git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

 git add ?file: moves changes from the working directory to the

staging area.

 git commit: takes the staged snapshot and commits it to the

project history.

 git pull: downloads a branch from a remote repository, then

immediately merges it into the current branch.

 git push: move a local branch to another repository.

20

(c) Paul Fodor

Apache Subversion (SVN)

 Developed by the Apache Software Foundation

 Distributed under Apache License (an open source license)

 Used by:

 Apache Software Foundation,

 Google Code,

 FreeBSD,

 GCC,

 Mono,

 SourceForge.

 Server-client model: Native SVN server or Apache HTTP

Server.

21

(c) Paul Fodor

SVN Common operations
 Import: is the act of copying a local directory tree (that is not

currently a working copy) into the repository for the first time.

 Checkout: is to create a local working copy from the repository.

A user may specify a specific revision or obtain the latest.

 Commit (check in or ci): is to write or merge the changes made

in the working copy back to the repository.

 Update (or sync): merges changes made in the repository (by

other people or by the same person on another machine) into

the local working copy.

 Merge: is an operation in which two sets of changes are applied

to a file or set of files: updates or syncs the user working copy

with changes made and checked into the repository by other

users + check in files + incorporate branches into

a unified trunk.
22

(c) Paul Fodor

Apache Subversion
How to run SVN?

Command line: svn executable
svn commit a.txt

svn update

SVN Clients: TortoiseSVN, Netbeans

SVN plugin, Eclipse Subclipse, etc.

23

(c) Paul Fodor

Homework 1 Help
Getting the Software:

NetBeans IDE

Java SE Development Kit 8.X

Git and a git client

24

