Relations

CSE 215, Foundations of Computer Science
Stony Brook University

http://www.cs.stonybrook.edu/~cse215
Relations on Sets

- A relation is a collection ordered pairs.
- The Less-than Relation for Real Numbers: a relation L from \mathbb{R} to \mathbb{R}: for all real numbers x and y,
 $$ x \ L \ y \iff x < y $$

 $(-17) \ L \ (-14), \quad (-17) \ L \ (-10), \quad (-35) \ L \ 1, \ldots$

- The graph of L as a subset of the Cartesian plane $\mathbb{R} \times \mathbb{R}$:
 - All the points (x, y) with $y > x$ are on the graph. I.e., all the points above the line $x = y$.

(c) Paul Fodor (CS Stony Brook)
Relations on Sets

- The Congruence Modulo 2 Relation: a relation E from \mathbb{Z} to \mathbb{Z}:

 - for all $(m, n) \in \mathbb{Z} \times \mathbb{Z}$

 $$m \ E \ n \iff m - n \text{ is even}.$$

 4 $\ E \ 0$ because $4 - 0 = 4$ and 4 is even.

 2 $\ E \ 6$ because $2 - 6 = -4$ and -4 is even.

 3 $\ E \ (-3)$ because $3 - (-3) = 6$ and 6 is even.

 - If n is any odd integer, then $n \ E \ 1$.

Proof: Suppose n is any odd integer.
Then $n = 2k + 1$ for some integer k.
By definition of E, $n \ E \ 1$ if, and only if, $n - 1$ is even.
By substitution, $n - 1 = (2k + 1) - 1 = 2k$, and since k is an integer, $2k$ is even. Hence $n \ E \ 1$.
Relations on Sets

• A Relation on a Power Set:

\[P(\{a, b, c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \} \]

relation \(S \) from \(P(\{a, b, c\}) \): for all sets \(A \) and \(B \) in \(P(\{a, b, c\}) \)

\[A \ S \ B \iff A \ has \ at \ least \ as \ many \ elements \ as \ B. \]

\[\{a, b\} \ S \ \{b, c\} \]

\[\{a\} \ S \ \emptyset \ \text{because} \ \{a\} \ \text{has one element and} \ \emptyset \ \text{has zero elements,} \]

and \(1 \geq 0 \).

\[\{c\} \ S \ \{a\} \]
Relations on Sets

- **The Inverse of a Relation**: let \(R \) be a relation from \(A \) to \(B \).

The inverse relation \(R^{-1} \) from \(B \) to \(A \):

\[
R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R\}.
\]

For all \(x \in A \) and \(y \in B \), \((y, x) \in R^{-1} \iff (x, y) \in R \).

Example: Let \(A = \{2, 3, 4\} \) and \(B = \{2, 6, 8\} \) and let \(R \) be the “divides” relation from \(A \) to \(B \): for all \((x, y) \in A \times B\),

\[
x R y \iff x \mid y \quad (x \text{ divides } y).
\]

\[
R = \{(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)\} \quad R^{-1} = \{(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)\}
\]

For all \((y, x) \in B \times A\), \(y R^{-1} x \iff y \text{ is a multiple of } x \).
The Inverse of an Infinite Relation: A relation R from \mathbb{R} to \mathbb{R} as follows: for all $(x, y) \in \mathbb{R} \times \mathbb{R}$,

$$x \, R \, y \iff y = 2 \cdot |x|.$$

R and R^{-1} in the Cartesian plane:

$R = \{(x, y) \mid y = 2 |x|\}$

$R^{-1} = \{(y, x) \mid y = 2 |x|\}$

R^{-1} is not a function because, for instance, both $(2, 1)$ and $(2, -1)$ are in R^{-1}.
Relations on Sets

- A relation on a set A is a relation from A to A:
 - the arrow diagram of the relation becomes a **directed graph**
 - For all points x and y in A, there is an arrow from x to y $\iff xRy \iff (x,y) \in R$

Example: let $A = \{3, 4, 5, 6, 7, 8\}$ and define a relation R on A:

for all $x, y \in A$, $xRy \iff 2 \mid (x-y)$
N-ary Relations and Relational Databases

- Given sets A_1, A_2, \ldots, A_n, an \textit{n-ary relation} R on $A_1 \times A_2 \times \cdots A_n$ is a subset of $A_1 \times A_2 \times \cdots A_n$.
- The special cases of 2-ary, 3-ary, and 4-ary relations are called binary, ternary, and quaternary relations, respectively.
- A Simple Database: $(a_1, a_2, a_3, a_4) \in R \iff$ a patient with patient ID number a_1, named a_2, was admitted on date a_3, with primary diagnosis a_4

 (011985, John Schmidt, 120111, asthma)
 (244388, Sarah Wu, 010310, broken leg)
 (574329, Tak Kurosawa, 120111, pneumonia)

- In the database language SQL:

  ```sql
  SELECT Patient-ID#, Name FROM S WHERE Admission-Date = 120111
  ```

 011985 John Schmidt, 574329 Tak Kurosawa
Let $A = \{2, 3, 4, 6, 7, 9\}$ and define a relation R on A as follows:

for all $x, y \in A$, $x R y \iff 3 \mid (x - y)$.

R is reflexive, symmetric and transitive.
Let R be a relation on a set A.

1. R is reflexive if, and only if, for all \(x \in A \), \(xRx \) \((x,x) \in R \).
2. R is symmetric if, and only if, for all \(x, y \in A \), if \(xRy \) then \(yRx \).
3. R is transitive if, and only if, for all \(x, y, z \in A \), if \(xRy \) and \(yRz \) then \(xRz \).

Direct graph properties:

1. Reflexive: each point of the graph has an arrow looping around from it back to itself.
2. Symmetric: in each case where there is an arrow going from one point to a second, there is an arrow going from the second point back to the first.
3. Transitive: in each case where there is an arrow going from one point to a second and from the second point to a third, there is an arrow going from the first point to the third.
Reflexivity, Symmetry, and Transitivity

- R is not reflexive \iff there is an element x in A such that $x \not\sim x$ [that is, such that $(x, x) \notin R$].
- R is not symmetric \iff there are elements x and y in A such that $x R y$ but $y \not\sim x$ [that is, such that $(x, y) \in R$ but $(y, x) \notin R$].
- R is not transitive \iff there are elements x, y and z in A such that $x R y$ and $y R z$ but $x \not\sim z$ [that is, such that $(x,y) \in R$ and $(y,z) \in R$ but $(x,z) \notin R$].
Relations on Sets

Let $A = \{0, 1, 2, 3\}$.

$R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}$

R is reflexive: There is a loop at each point of the directed graph.

R is symmetric: In each case where there is an arrow going from one point of the graph to a second, there is an arrow going from the second point back to the first.

R is not transitive: There is an arrow going from 1 to 0 and an arrow going from 0 to 3, but there is no arrow going from 1 to 3.
Let \(A = \{0, 1, 2, 3\} \).

\[S = \{(0, 0), (0, 2), (0, 3), (2, 3)\} \]

\(S \) is not reflexive: There is no loop at 1.

\(S \) is not symmetric: There is an arrow from 0 to 2 but not from 2 to 0.

\(S \) is transitive!
Relations on Sets

• Let $A = \{0, 1, 2, 3\}$.

$T = \{(0, 1), (2, 3)\}$

T is not reflexive: There is no loop at 0.

T is not symmetric: There is an arrow from 0 to 1 but not from 1 to 0.

T is transitive: The transitivity condition is vacuously true for T.
Properties of Relations on Infinite Sets:

Suppose a relation R is defined on an infinite set A:

- Reflexivity: \(\forall x \in A, x R x. \)
- Symmetry: \(\forall x, y \in A, \text{ if } x R y \text{ then } y R x. \)
- Transitivity: \(\forall x, y, z \in A, \text{ if } x R y \text{ and } y R z \text{ then } x R z. \)

Example: property of equality

- R is a relation on \(\mathbb{R} \), for all real numbers x and y:
 \[x R y \iff x = y \]
- R is reflexive: For all \(x \in \mathbb{R} \), \(x R x \) (\(x = x \)).
- R is symmetric: For all \(x, y \in \mathbb{R} \), if \(x R y \) then \(y R x \).
 \[\text{if } x = y \text{ then } y = x. \]
- R is transitive: For all \(x, y, z \in \mathbb{R} \), if \(x R y \) and \(y R z \) then \(x R z \)
 \[\text{if } x = y \text{ and } y = z \text{ then } x = z. \]
Relations on Sets

- Example: properties of “Less Than”

For all \(x, y \in \mathbb{R} \), \(x \leq y \) \iff \(x < y \).

R is not reflexive: \(R \) is reflexive if, and only if, \(\forall x \in \mathbb{R}, x \leq x \). By definition of \(R \), this means that \(\forall x \in \mathbb{R}, x < x \).

This is false: \(\exists x=0 \in \mathbb{R} \) such that \(x \not< x \).

R is not symmetric: \(R \) is symmetric if, and only if, \(\forall x, y \in \mathbb{R}, if x \leq y then y \leq x \).

By definition of \(R \), this means that \(\forall x, y \in \mathbb{R}, if x < y then y < x \)

This is false: \(\exists x=0, y=1 \in \mathbb{R} \) such that \(x < y \) and \(y \not< x \).

R is transitive: \(R \) is transitive if, and only if, for all \(x, y, z \in \mathbb{R} \), if \(x \leq y \) and \(y \leq z \), then \(x \leq z \).

By definition of \(R \), this means that for all \(x, y, z \in \mathbb{R} \), if \(x < y \) and \(y < z \), then \(x < z \).
Relations on Sets

• Example: congruence modulo 3

For all $m, n \in \mathbb{Z}$, $m \equiv n \mod 3$ if $3 | (m - n)$.

T is reflexive: Suppose m is a particular but arbitrarily chosen integer. [We must show that $m \equiv m \mod 3$.] Now $m - m = 0$. But $3 | 0$ since $0 = 3 \cdot 0$. Hence $3 | (m - m)$. Thus, by definition of T, $m \equiv m \mod 3$.

T is symmetric: Suppose m and n are particular but arbitrarily chosen integers that satisfy the condition $m \equiv n \mod 3$. [We must show that $n \equiv m \mod 3$.] By definition of T, since $m \equiv n \mod 3$ then $3 | (m - n)$. By definition of “divides,” this means that $m - n = 3k$, for some integer k. Multiplying both sides by -1 gives $n - m = 3(-k)$. Since $-k$ is an integer, this equation shows that $3 | (n - m)$. Hence, by definition of T, $n \equiv m \mod 3$.

(c) Paul Fodor (CS Stony Brook)
Relations on Sets

- Example: congruence modulo 3

For all $x, y \in \mathbb{Z}$, $m \sim n \iff 3 \mid (m - n)$.

T is transitive: Suppose $m, n,$ and p are particular but arbitrarily chosen integers that satisfy the condition $m \sim n$ and $n \sim p$. [We must show that $m \sim p$.] By definition of \sim, since $m \sim n$ and $n \sim p$, then $3 \mid (m - n)$ and $3 \mid (n - p)$. By definition of “divides,” this means that $m - n = 3r$ and $n - p = 3s$, for some integers r and s. Adding the two equations gives $(m - n) + (n - p) = 3r + 3s$, and simplifying gives that $m - p = 3(r + s)$. Since $r + s$ is an integer, this equation shows that $3 \mid (m - p)$. Hence, by definition of \sim, $m \sim p$.

(c) Paul Fodor (CS Stony Brook)
The Transitive Closure of a Relation

- Let A be a set and R a relation on A. The transitive closure of R is the relation R^t on A that satisfies the following three properties:
 1. R^t is transitive
 2. $R \subseteq R^t$
 3. If S is any other transitive relation that contains R, then $R^t \subseteq S$

Example: Let $A = \{0, 1, 2, 3\}$
$R = \{(0, 1), (1, 2), (2, 3)\}$
$R^t = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}$
Equivalence Relation

Let A be a set and R a relation on A.

R is an equivalence relation \(\iff \) R is reflexive, symmetric, and transitive

Example: \(X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} \)

A relation R on X: \(A R B \iff \) the least element of A equals the least element of B

R is an equivalence relation on X:

R is reflexive: Suppose A is a nonempty subset of \(\{1, 2, 3\} \) [We must show that \(A RA \)]

By definition of R, \(A RA \): the least element of A equals the least element of A.

R is symmetric: Suppose A and B are nonempty subsets of \(\{1, 2, 3\} \) and \(A RB \).

[We must show that \(B RA \)] By \(A RB \), the least element of A equals the least element of B. Thus, by symmetry of equality, \(B RA \).

R is transitive: Suppose A, B, and C are nonempty subsets of \(\{1, 2, 3\} \), \(A RB \), and \(B RC \).

[We must show that \(A RC \)] By \(A RB \), the least element of A equals the least element of B

By \(B RC \), the least element of B equals the least element of C.

By transitivity of equality, the least element of A equals the least element of C: \(A RC \).
The Relation Induced by a Partition

- Example: The Relation Induced by a Partition: given a partition of a set \(A \), the relation induced by the partition, \(R \), is defined on \(A \) as follows: for all \(x, y \in A \), \(x \ R \ y \) \iff there is a subset \(A_i \) of the partition such that both \(x \) and \(y \) are in \(A_i \).

- Example: Let \(A = \{0, 1, 2, 3, 4\} \) and consider the following partition of \(A \): \(\{0, 3, 4\}, \{1\}, \{2\} \).

\[
\begin{align*}
0 & \ R \ 3 \text{ because both 0 and 3 are in } \{0, 3, 4\} \\
3 & \ R \ 0 \text{ because both 3 and 0 are in } \{0, 3, 4\} \\
0 & \ R \ 4 \text{ because both 0 and 4 are in } \{0, 3, 4\} \\
4 & \ R \ 0 \text{ because both 4 and 0 are in } \{0, 3, 4\} \\
3 & \ R \ 4 \text{ because both 3 and 4 are in } \{0, 3, 4\} \\
4 & \ R \ 3 \text{ because both 4 and 3 are in } \{0, 3, 4\} \\
0 & \ R \ 0 \text{ because both 0 and 0 are in } \{0, 3, 4\} \\
3 & \ R \ 3 \text{ because both 3 and 3 are in } \{0, 3, 4\} \\
4 & \ R \ 4 \text{ because both 4 and 4 are in } \{0, 3, 4\} \\
1 & \ R \ 1 \text{ because both 1 and 1 are in } \{1\} \\
2 & \ R \ 2 \text{ because both 2 and 2 are in } \{2\} \\
R & = \{(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)\}.
\end{align*}
\]
The Relation Induced by a Partition

Let A be a set with a partition and let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive.

Proof: Suppose A is a set with a partition (finite): A_1, A_2, \ldots, A_n. $A_i \cap A_j \neq \emptyset$ whenever $i \neq j$ and $A_1 \cup A_2 \cup \cdots \cup A_n = A$.

For all $x, y \in A$, $x \mathrel{R} y \iff$ there is a set A_i of the partition such that $x \in A_i$ and $y \in A_i$.

Proof that R is reflexive: Suppose $x \in A$. Since A_1, A_2, \ldots, A_n is a partition of A, $A_1 \cup A_2 \cup \cdots \cup A_n = A$, it follows that $x \in A_i$ for some i.

There is a set A_i of the partition such that $x \in A_i$.

By definition of R, $x \mathrel{R} x$.
The Relation Induced by a Partition

Proof that \(R \) is symmetric: Suppose \(x \) and \(y \) are elements of \(A \) such that \(x \ R \ y \). Then there is a subset \(A_i \) of the partition such that \(x \in A_i \) and \(y \in A_i \) by definition of \(R \). It follows that the statement there is a subset \(A_i \) of the partition such that \(y \in A_i \) and \(x \in A_i \) is also true. By definition of \(R \), \(y \ R \ x \).
Proof that \(R \) is transitive: Suppose \(x, y, \) and \(z \) are in \(A \) and \(xRy \) and \(yRz \). By definition of \(R \), there are subsets \(A_i \) and \(A_j \) of the partition such that \(x \) and \(y \) are in \(A_i \) and \(y \) and \(z \) are in \(A_j \).

Suppose \(A_i \neq A_j \). [We will deduce a contradiction.] Then \(A_i \cap A_j = \emptyset \) since \(\{A_1, A_2, A_3, \ldots, A_n\} \) is a partition of \(A \). But \(y \) is in \(A_i \) and \(y \) is in \(A_j \) also. Hence \(A_i \cap A_j \neq \emptyset \). [This contradicts the fact that \(A_i \cap A_j = \emptyset \).] Thus \(A_i = A_j \). It follows that \(x, y, \) and \(z \) are all in \(A_i \), and so in particular, \(x \) and \(z \) are in \(A_i \).

Thus, by definition of \(R \), \(x R z \).
Equivalence Classes

- Let A be a set and R an equivalence relation on A. For each element a in A, the equivalence class of a (the class of a) is the set of all elements x in A such that x is related to a by R.

 $$[a] = \{x \in A \mid x R a\}$$

- Example: Let $A = \{0, 1, 2, 3, 4\}$ and R be a relation on A:

 $$R = \{(0, 0),(0, 4),(1, 1),(1, 3),(2, 2),(3, 1),(3, 3),(4,0),(4,4)\}$$

 R is an equivalence relation

 $[0] = \{x \in A \mid x R 0\} = \{0, 4\} = [4]$

 $[1] = \{x \in A \mid x R 1\} = \{1, 3\} = [3]$

 $[2] = \{x \in A \mid x R 2\} = \{2\}$

 $\{0, 4\}$, $\{1, 3\}$ and $\{2\}$ are distinct equivalence classes
Equivalence Classes of a Relation on a Set of Subsets

- \(X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} \)

- \(A \sim B \iff \) the least element of \(A \) equals the least element of \(B \)

- \([\{1\}] = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\} = [\{1, 2\}] = [\{1, 3\}] = [\{1, 2, 3\}]\)

- \([\{2\}] = \{\{2\}, \{2, 3\}\} = [\{2, 3\}]\)

- \([\{3\}] = \{\{3\}\}\)
Equivalence Classes of the Identity Relation

- Let A be any set and R a relation on A: For all x and y in A,
 \[x \sim y \iff x = y \]
 Given any a in A, the class of a is:
 \[[a] = \{ x \in A \mid x \sim a \} = \{a\} \]
 since the only element of A that equals a is a.

Equivalence Classes

- Let A be a set and R an equivalence relation on A. For any a and b elements of A, if $a R b$, then $[a] = [b]$.

Proof: $[a] = [b] \iff [a] \subseteq [b]$ and $[b] \subseteq [a]$.

1. $[a] \subseteq [b]$
 - Let $x \in [a]$ iff then $x R a$.
 - $a R b$ by hypothesis \implies by transitivity of R, $x R b \implies x \in [b]$

2. $[b] \subseteq [a]$
 - Let $x \in [b]$ iff then $x R b$.
 - $b R a$ by hypothesis and symmetry \implies by transitivity of R, $xRa \implies x \in [a]$

(c) Paul Fodor (CS Stony Brook)
If A is a set, R is an equivalence relation on A, and a and b are elements of A, then either $[a] \cap [b] = \emptyset$ or $[a] = [b]$.

Proof:

Suppose A is a set, R is an equivalence relation on A, a and b are elements of A:

Case 1: $a \mathrel{R} b$: by the previous theorem, $[a] = [b]$. Therefore, $[a] \cap [b] = \emptyset$ or $[a] = [b]$ is true.

Case 2: $a \not\mathrel{R} b$ (we will prove the $[a] \cap [b] = \emptyset$).

By element method, by contradiction, there exists an element x in A s.t.

$x \in [a] \cap [b] \implies x \in [a]$ and $x \in [b] \implies$ so $x \mathrel{R} a$ and $x \mathrel{R} b$

By symmetry and transitivity, $a \mathrel{R} b$ (contradiction).
Let R be the relation of congruence modulo 3 on the set \mathbb{Z} of all integers: for all integers m and n,

$$m \sim n \iff 3 \mid (m - n) \iff m \equiv n \pmod{3}.$$

Solution For each integer a,

$$[a] = \{x \in \mathbb{Z} \mid 3 \mid (x-a)\} = \{x \in \mathbb{Z} \mid x-a=3k, \text{ for some integer } k\}$$

$$= \{x \in \mathbb{Z} \mid x = 3k + a, \text{ for some integer } k\}.$$

$[0] = \{x \in \mathbb{Z} \mid x = 3k + 0, \text{ for some integer } k\} = \{x \in \mathbb{Z} \mid x = 3k, \text{ for some integer } k\}$

$$= \{...-9,-6,-3,0,3,6,9,...\} = [3] = [-3] = [6] = [-6] = ...$$

$[1] = \{x \in \mathbb{Z} \mid x = 3k + 1, \text{ for some integer } k\}$

$$= \{...-8,-5,-2,1,4,7,10,...\} = [4] = [-2] = [7] = [-5] = ...$$

$[2] = \{x \in \mathbb{Z} \mid x = 3k + 2, \text{ for some integer } k\}$

$$= \{...-4,-1,2,...\} = [5] = [-1] = [8] = [-4] = ...$$
Congruence Modulo

- Let m and n be integers and let d be a positive integer.

m is congruent to n modulo d:

$$m \equiv n \pmod{d} \iff d \mid (m - n)$$

Example:

$12 \equiv 7 \pmod{5}$ because $12 - 7 = 5 = 5 \cdot 1$

\Rightarrow

$5 \mid (12 - 7)$.
Rational Numbers Are Equivalence Classes

- Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero: $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$

R is a relation on A: for all $(a, b), (c, d) \in A$,

$$(a, b) R (c, d) \iff \frac{a}{b} = \frac{c}{d}$$

R is an equivalence relation

Example equivalence class:

$$[(1, 2)] = \{(1, 2), (-1, -2), (2, 4), (-2, -4), (3, 6), (-3, -6), \ldots\}$$

$$\frac{1}{2} = \frac{-1}{-2} = \frac{2}{4} = \frac{-2}{-4} = \frac{3}{6} = \frac{-3}{-6} \text{ and so forth.}$$
Antisymmetry

- Let R be a relation on a set A.

R is *antisymmetric* \iff for all $a, b \in A$, if aRb and bRa then $a = b$

R is *not antisymmetric* \iff there exist $a, b \in A$ s.t. aRb, bRa, but $a \neq b$

0 R 2 and 2 R 0 but 0 \neq 2
Antisymmetry of “Divides” Relations

• For all $a, b \in \mathbb{Z}^+$, $a R_1 b \iff a \mid b$.

R_1 is antisymmetric: Suppose $a, b \in \mathbb{Z}^+$ such that $a R_1 b$ and $b R_1 a$. [We must show that $a = b$]

By definition of R_1, $a \mid b$ and $b \mid a \Rightarrow b = k_1 a$ and $a = k_2 b$, $k_1, k_2 \in \mathbb{Z}$ (and both are positive since a and b are positive) $\Rightarrow b = k_1 k_2 b$.

Dividing both sides by b gives $k_1 k_2 = 1$ (and both > 0) $\Rightarrow k_1 = k_2 = 1$ $\Rightarrow a = b$

• For all $a, b \in \mathbb{Z}$, $a R_2 b \iff a \mid b$.

R_2 is not antisymmetric:

Counterexample: $a = 2$ and $b = -2 \Rightarrow a \neq b$

$a \mid b$ since $-2 = (-1) \cdot 2 \Rightarrow a R_2 b$

$b \mid a$ since $2 = (-1)(-2) \Rightarrow b R_2 a$
Partial Order Relations

- Let R be a relation defined on a set A.

R is a **partial order relation** \iff R is reflexive, antisymmetric and transitive.

- Example: The “Subset” Relation

Let A be any collection of sets and \subseteq (the “subset”) relation on A:

For all $U, V \in A$, $U \subseteq V \iff$ for all x, if $x \in U$ then $x \in V$.

\subseteq is a partial order (reflexive, transitive and antisymmetric)

Proof that \subseteq is antisymmetric: for all sets U and V in A

if $U \subseteq V$ and $V \subseteq U$ then $U = V$ (by definition of equality of sets)
The “Less Than or Equal to” Relation

- The “less than or equal to” relation \(\leq \) on \(\mathbb{R} \) (reals): for all \(x,y \in \mathbb{R} \)
 \[
x \leq y \iff x < y \text{ or } x = y.
 \]

\(\leq \) is a partial order relation:
- \(\leq \) is reflexive: \(x \leq x \) for all real numbers. \(x \leq x \) means that \(x < x \) or \(x = x \), and \(x = x \) is always true.
- \(\leq \) is antisymmetric: for all \(x,y \in \mathbb{R} \), if \(x \leq y \) and \(y \leq x \) then \(x = y \).
- \(\leq \) is transitive: for all \(x,y,z \in \mathbb{R} \), if \(x \leq y \) and \(y \leq z \) then \(x \leq z \).
Lexicographic Order

• Order in an English dictionary: compare letters one by one from left to right in words.

• Let A be a set with a partial order relation R, and let S be a set of strings over A. "\leq" is a relation on S: for any 2 strings in S, $a_1a_2...a_m$ and $b_1b_2...b_n$, $m,n \in \mathbb{Z}^+$:

 1. If $m \leq n$ and $a_i=b_i$ for all $i=1,2,...,m$, then $a_1a_2...a_m \leq b_1b_2...b_n$

 2. If for some integer k with $k \leq m$, $k \leq n$, and $k \geq 1$, $a_i=b_i$ for all $i=1,2,...,k-1$, and $a_k \neq b_k$, but $a_k R b_k$ then $a_1a_2...a_m \leq b_1b_2...b_n$.

 3. If ε is the null string and s is any string in S, then $\varepsilon \leq s$.

If no strings are related other than by these three conditions, then "\leq" is a partial order relation (lexicographic order for S).
Lexicographic Order

- Let $A = \{x, y\}$ and R the partial order relation on A:

 $R = \{(x, x), (x, y), (y, y)\}$.

Let S be the set of all strings over A, and \preceq the lexicographic order for S that corresponds to R.

\[
\begin{align*}
 x & \preceq xx & x & \preceq xy \\
 yxy & \preceq yxyxxx & x & \preceq y \\
 xx & \preceq xyx & xxxy & \preceq xy \\
 \varepsilon & \preceq x & \varepsilon & \preceq xyxyyx
\end{align*}
\]
A Hasse Diagram is a simpler graph with a partial order relation defined on a finite set.

Example: let $A = \{1, 2, 3, 9, 18\}$ and the “divides” relation $|$ on A:
for all $a, b \in A$, $a | b \iff b = ka$ for some integer k.

Start with a directed graph of the relation, placing vertices on the page so that all arrows point upward. Eliminate:
1. the loops at all the vertices
2. all arrows whose existence is implied by the transitive property
3. the direction indicators on the arrows
The “subset” relation \subseteq on the set $P(\{a, b, c\})$:

For all sets U and V in $P(\{a, b, c\})$

$$U \subseteq V \iff \forall x, \text{ if } x \in U \text{ then } x \in V$$

Draw the directed graph of the relation in such a way that all arrows except loops point upward.

Strip away all loops, unnecessary arrows, and direction indicators to obtain the Hasse diagram.

(c) Paul Fodor (CS Stony Brook)
Obtain the original directed graph from the Hasse diagram:

1. Reinsert the direction markers on the arrows making all arrows point upward.
2. Add loops at each vertex.
3. For each sequence of arrows from one point to a second and from that second point to a third, add an arrow from the first point to the third.
Partially and Totally Ordered Sets

• Let \preceq be a partial order relation on a set A. Elements a and b of A are comparable \iff either $a \preceq b$ or $b \preceq a$. Otherwise, a and b are noncomparable.

• If R is a partial order relation on a set A, and any two elements a and b in A are comparable, then R is a total order relation on A.

• The Hasse diagram for a total order relation can be drawn as a single vertical “chain.”

• A set A is called a partially ordered set (or poset) with respect to a relation \preceq if \preceq is a partial order relation on A.

• A set A is called a totally ordered set with respect to a relation \preceq if A is partially ordered with respect to \preceq and \preceq is a total order.
Partially and Totally Ordered Sets

- Let A be a set that is partially ordered with respect to a relation \leq. A subset B of A is called a *chain* if the elements in each pair of elements in B is comparable.

- The *length* of a chain is one less than the number of elements in the chain.

- Example: Chain of Subsets

 The set $P\{{a, b, c}\}$ is partially ordered with respect to \subseteq.

 Chain of length 3: $\emptyset \subseteq \{a\} \subseteq \{a, b\} \subseteq \{a, b, c\}$
An element a in A is called a **maximal element** \iff for all b in A, either $b \leq a$ or b and a are not comparable.

An element a in A is called a **greatest element** of A \iff for all b in A, $b \leq a$.

An element a in A is called a **minimal element** \iff for all b in A, either $a \leq b$ or b and a are not comparable.

An element a in A is called a **least element** of A \iff for all b in A, $a \leq b$.

Example:

- one maximal element = g = also the greatest element
- minimal elements: c, d and i
- there is no least element
Topological Sorting

- Given partial order relations \(\preceq \) and \(\preceq ' \) on a set \(A \), \(\preceq ' \) is compatible with \(\preceq \) if for all \(a \) and \(b \) in \(A \), if \(a \preceq b \) then \(a \preceq ' b \)

- Given partial order relations \(\preceq \) and \(\preceq ' \) on a set \(A \), \(\preceq ' \) is a topological sorting for \(\preceq \) if \(\preceq ' \) is a total order that is compatible with \(\preceq \).

- Example: \(P(\{a, b, c\}) \) with partial order \(\subseteq \) (any element in \(P(\{a,b,c\}) \) we can either compare them or not, e.g., \(\{a,b\} \) with \(\{a,c\} \)

 Total order:

 \[
 \emptyset \preceq ' \{a\} \preceq ' \{b\} \preceq ' \{c\} \preceq ' \{a, b\} \preceq ' \{a, c\} \preceq ' \{b, c\} \preceq ' \{a, b, c\}
 \]
Topological Sorting

- Constructing a Topological Sorting:
 1. Pick any minimal element x in A with respect to \preceq.
 [Such an element exists since A is nonempty.]
 2. Set $A' = A - \{x\}$
 3. Repeat steps a–c while $A' \neq \emptyset$:
 a. Pick any minimal element y in A’.
 b. Define $x \preceq y$.
 c. Set $A' = A' - \{y\}$ and $x = y$.