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 Properties of integers (whole numbers), rational numbers 
(integer fractions), and real numbers.

 Truth of mathematical statements.
 Example:

Definition: For any real number x, the floor of x, ⌊x⌋, is the 
largest integer that is less than or equal to x⌊2.3⌋ = 2;             ⌊12.99999⌋ = 12;            ⌊−1.5⌋ = −2
 For any real number x, is ⌊x−1⌋ = ⌊x⌋ −1?

 yes (true)
 For any real numbers x and y, is ⌊x−y⌋ = ⌊x⌋ − ⌊y⌋?

 no (false)
o ⌊2.0−1.1⌋ = ⌊0.9⌋ = 0
o ⌊2.0⌋ − ⌊1.1⌋ = 2 − 1 = 1 
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Number theory
 Proof example:
 If x is a number with 5x + 3 = 33, then x = 6

Proof:
If 5x + 3 = 33, then 5x + 3 − 3 = 33 − 3 since subtracting the 

same number from two equal quantities gives equal results.
5x + 3 − 3 = 5x because adding 3 to 5x and then subtracting 3 

just leaves 5x, and also, 33 − 3 = 30.
Hence 5x = 30.

That is, x is a number which when multiplied by 5 equals 30.
The only number with this property is 6. 

Therefore, if 5x + 3 = 33 then x = 6.
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Number theory introduction
 Properties of equality: 

(1) A = A
(2) if A = B then B = A
(3) if A = B and B = C, then A = C

 The set of all integers is closed under addition, subtraction, 
and multiplication
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Number theory introduction
 An integer n is even if, and only if, n equals twice some 

integer:
n is even ⇔∃ an integer k such that n = 2k

 An integer n is odd if, and only if, n equals twice some 
integer plus 1:

n is odd ⇔∃an integer k such that n = 2k + 1

 Reasoning examples:
 Is 0 even? Yes,   0 = 2·0
 Is −301 odd? Yes,   −301 = 2(−151) + 1.
 If a and b are integers, is 6a2b even?

Yes, 6a2b = 2(3a2b) and 3a2b is an integer 
being a product of integers: 3, a, a and b .
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Number theory introduction
 An integer n is prime if, and only if, n>1 and for all positive 

integers r and s, if n=r·s, then either r or s equals n:
n is prime ⇔∀ positive integers r and s, if n = r·s then either 

r = 1 and s = n or r = n and s = 1

 An integer n is composite if, and only if, n>1 and n=r·s for 
some integers r and s with 1<r<n and 1<s<n:
n is composite ⇔∃ positive integers r and s such that n = r·s and

1 < r < n and 1 < s < n
 Example: Is every integer greater than 1 either prime or composite?

Yes. Let n be an integer greater than 1. There exist at least two pairs of 
integers r=n and s=1, and r=1 and s=n, s.t. n=rs. If there exists a pair of 
positive integers r and s such that n = rs and neither r nor s equals either 
1 or n (1 < r < n and 1 < s < n), then n is composite. Otherwise, it’s 
prime.6
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Proving Existential Statements
 x D such that Q(x) is true if, and only if, Q(x) is true for 

at least one x in D
 Constructive proofs of existence: find an x in D that 

makes Q(x) true OR give a set of directions for finding such x

 Examples:
 ∃ an even integer n that can be written in two ways as a sum of 

two prime numbers
Proof: n=10=5+5=3+7 where 5, 3 and 7 are prime numbers
 ∃ an integer k such that 22r + 18s = 2k where r and s are 

integers
Proof: Let k = 11r + 9s. k is an integer because it is a sum of 

products of integers. By distributivity of multiplication the 
equality is proved.
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Proving Existential Statements
 Nonconstructive proofs of existence:
 the evidence for the existence of a value of x is guaranteed by an 

axiom or theorem 
 the assumption that there is no such x leads to a contradiction

 Problems: gives no idea of what x is
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Disproving Universal Statements by Counterexample

 Disprove x in D, if P(x) then Q(x)
 The statement is false is equivalent to its negation is true by 

giving an example
 The negation is: ∃x in D such that P(x) ∧ ~Q(x)

 Disproof by Counterexample: x in D, if P(x) then 
Q(x) is false if we find a value of x in D for which the 
hypothesis P(x) is true and the conclusion Q(x) is false
 x is called a counterexample

 Example: 
Disprove ∀ real numbers a and b, if a2 = b2 then a = b
Counterexample: Let a = 1 and b = −1. 

a2 = b2 = 1, but a = b
9
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Proving Universal Statements
 Universal statement: x D, if P(x) then Q(x)
 The method of exhaustion:  if D is finite or only a finite 

number of elements satisfy P(x), then we can try all 
possibilities

 Example:
 Prove ∀n ∈ Z, if n is even and 4 ≤ n ≤ 7, then n can be written 

as a sum of two prime numbers.
Proof:

4 = 2 +2  and
6= 3 +3    ■
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Proving Universal Statements
 Method of Generalizing from the Generic Particular

suppose x is a particular but arbitrarily chosen element of 
the set, and show that x satisfies the property
 no special assumptions about x that are not also true of all other 

elements of the domain

 Method of Direct Proof: 
1. Statement:  ∀x ∈ D, if P(x) then Q(x)
2. Let x is a particular but arbitrarily chosen element of D for 

which the hypothesis P(x) is true
3. Show that the conclusion Q(x) is true

11



(c) Paul Fodor (CS Stony Brook)

Method of Direct Proof
 Example: prove that the sum of any two even integers is even

1. Formalize: ∀ integers m, n, if m and n are even then m + n is even
2. Suppose m and n are any even integers
 Existential Instantiation: If the existence of a certain kind of object 

is assumed or has been deduced then it can be given a name
Since m and n equal twice some integers, we can give those integers names
m = 2r, for some integer r and n = 2s, for some integer s

m + n = 2r + 2s = 2(r + s)
However, r + s is an integer because the sum of any two integers is an 

integer, so m + n is an even number
 The example can be formalized as a proved theorem
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Common Mistakes
1. Arguing from examples: it is true because it’s true in one 

particular case – NO
2. Using the same letter to mean two different things
3. Jumping to a conclusion – NO, we need complete proofs!
4. Circular reasoning: x is true because y is true since x is 

true
5. Confusion between what is known and what is still to be 

shown:
 What is known? Premises, axioms and proved theorems.

6. Use of any rather than some
7. Misuse of if
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Showing That an Existential Statement Is False

 The negation of an existential statement is universal:
 To prove that an existential statement is false, we must prove 

that its negation (a universal statement) is true.

 Example - prove falsity of the existential statement:
There is a positive integer n such that n2 + 3n + 2 is prime.
 The negation is: 

For all positive integers n, n2+ 3n + 2 is not prime.
Let n be any positive integer

n2 + 3n + 2 = (n + 1)(n +2)
where n + 1 > 1 and n + 2 > 1 because n ≥ 1
Thus n2 + 3n + 2 is a product of two integers each greater than 1,

and so it is not prime.
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Rational Numbers
 A real number r is rational if, and only if, it can be 

expressed as a quotient of two integers with a nonzero 
denominator

r is rational integers a and b such that r = a / b and b ≠ 0
 Examples: 10/3, − 5 /39, 0.281 = 281/1000, 7 = 7/1, 

0 = 0/1, 0.12121212... = 12/99

 Every integer is a rational number: n = n/1
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A Sum of Rationals Is Rational
 real numbers r and s, if r and s are rational then r + s is rational
 Suppose r and s are particular but arbitrarily chosen real numbers such 

that r and s are rational
 r = a / b and s = c / d for some integers a, b, c, and d, 

where b = 0 and d = 0
r + s = a / b + c / d 
= ad / bd + bc / bd (rewriting the fraction with a common denominator)
= (ad + bc)/ bd (by adding fractions with a common denominator)
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Deriving Additional Results about 
Even and Odd Integers

Prove:
if a is any even integer and b is any odd integer, 

then (a2+b2+1)/2 is an integer

Using the properties:
1. The sum, product, and difference of any two even integers are even.
2. The sum and difference of any two odd integers are even.
3. The product of any two odd integers is odd.
4. The product of any even integer and any odd integer is even.
5. The sum of any odd integer and any even integer is odd.
6. The difference of any odd integer minus any even integer is odd.
7. The difference of any even integer minus any odd integer is odd.
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 Suppose a is any even integer and b is any odd integer.
 By property 3, b2 is odd.
 By property 1, a2 is even.
 By property 5, a2 + b2 is odd.
 By property 2, a2 + b2 + 1 is even.
 By definition of even, there exists an integer k such that 

a2 + b2 + 1 = 2k.
 (a2+b2+1)/2 = k, which is an integer.
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Divisibility
 If n and d are integers and d ≠ 0 then n is divisible by d if, 

and only if, n equals d times some integer
d | n an integer k such that n = dk

 n is a multiple of d
 d is a factor of n
 d is a divisor of n
 d divides n

 Notation: d | n (read “d divides n”)
 Examples: 21 is divisible by 3, 32 is a multiple of −16, 
5 divides 40, 6 is a factor of 54, 7 is a factor of −7
 Any nonzero integer k divides 0 as 0 = k · 0
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A Positive Divisor of a Positive Integer

 For all integers a and b, if a and b are positive and a divides b, 
then a ≤ b
 Suppose a and b are positive integers and a divides b
 Then there exists an integer k so that b = ak
 1 ≤ k because every positive integer is greater than or equal to 1
 Multiplying both sides by a gives a ≤ ka = b, since a is a positive 

number
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Transitivity of Divisibility
 For all integers a, b, and c, if a|b and b|c, then a|c
 Since a | b,     b = ar for some integer r.
 Since b | c,     c = bs for some integer s.
Hence, c = bs= (ar)s = a(rs) by the associative law for 
multiplication

rs is an integer, so a|c
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Counterexamples and Divisibility
 For all integers a and b, if a | b and b | a then a = b.

Counterexample:
Let a = 2 and b = −2
Then a|b since 2|(−2) and b|a since (−2)|2, 
but a ≠ b since 2 ≠ −2
Therefore, the statement is false.
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Unique Factorization of Integers Theorem
Given any integer n > 1, there exist a positive integer k, 

distinct prime numbers p1, p2,..., pk , and positive integers 
e1, e2,..., ek such that:

n = p1
e1 p2

e2 p3
e3 ...pk

ek

and any other expression for n as a product of prime numbers 
is identical to this except for the order in which the factors 
are written.

Standard factored form: p1 < p2 < ··· < pk
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The Quotient-Remainder Theorem
 Given any integer n and positive integer d, there exist unique 

integers q and r such that
n = dq + r and 0 ≤ r < d.

 n div d = the integer quotient obtained when n is divided by d
 n mod d = the nonnegative integer remainder obtained when n is 

divided by d.
n div d = q      and    n mod d = r     ⇔ n = dq + r

n mod d = n − d · (n div d )

 Examples:
 54 = 52+2 = 4·13 + 2; hence q = 13 and r = 2
 −54 = -56 + 2 = 4· (−14) + 2; hence q = −14 and r = 2
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Parity
 The parity of an integer refers to whether the integer is even 

or odd

 Consecutive Integers Have Opposite Parity
 Case 1: The smaller of the two integers is even
 Case 2: The smaller of the two integers is odd
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Method of Proof by Division into Cases

 To prove:
If A1 or A2 or . . . or An, then C

prove all of the following:
If A1, then C,
If A2, then C,
...
If An, then C.

C is true regardless of which of A1, A2,..., An happens to be the case
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Method of Proof by Division into Cases

 Example: any integer can be written in one of the four forms:
n = 4q or n = 4q +1     or     n = 4q +2      or       n = 4q + 3

Proof: By the quotient-remainder theorem to n with d =4:
n = 4q + r and 0 ≤ r < 4

the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 3
Hence:
n = 4q or n = 4q +1     or     n = 4q +2      or       n = 4q + 3
for some integer q
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Absolute Value and the Triangle Inequality

 The absolute value of x is:

|x| =

 For all real numbers r,      −|r| ≤ r ≤ |r|
 Case 1 (r ≥ 0): |r| = r
 Case 2 (r<0): |r| = − r , so, −|r| = r

28
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Floor and Ceiling
 The floor of a real number x, x , is a unique integer n such 

that n ≤ x < n+1:
x = n    n ≤ x < n+1

 The ceiling of a real number x, x , is a unique integer n 
such that n−1 < x ≤ n:

x = n    n−1 < x ≤ n
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Floor and Ceiling
 Examples:
 25/4 = 6.25, where 6 < 6.25 < 7⌊25/4⌋ = 6⌈25/4⌉ = 7
 0.999, where 0 < 0.999 < 1⌊0.999⌋ = 0 ⌈0.999⌉ = 1
 −2.01, where −3 < −2.01 < −2⌊−2.01⌋ = −3 ⌈−2.01⌉ = −2
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Disproving A Property of Floor
 Disproving: 

For all real numbers x and y, x + y = x + y
Counterexample: x = y = 1/2
x + y = 1 = 1
x + y = 1/2 + 1/2 = 0 + 0 = 0

Hence, x + y ≠ x + y
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Hints on how to reason about & 

x = x + fractional part of x

x + y = x + y + the sum of the fractional parts of x and y
x + y = x+y + the fractional part of (x + y)
Counterexample: x = y = 1/2
the sum of the fractional parts of x and y = 1
the fractional part of (x + y) = 0
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Proving a Property of Floor
 For all real numbers x and for all integers m, x+m = x +m
Suppose x is a particular but arbitrarily chosen real number 

m is a particular but arbitrarily chosen integer
n = x n is an integer and n ≤ x < n + 1

add m: n + m ≤ x + m < n + m + 1
x+m = n + m = x + m, since n = x
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The Floor of n/2
 For any integer n,

n/2 = 

Suppose n is a particular but arbitrarily chosen integer
Case 1 (n is odd):  n = 2k + 1 for some integer k
n/2 = (2k + 1)/2 = 2k/2 + 1/2 = k+1/2 = k = k

(n − 1)/2 = (2k + 1 − 1)/2 = 2k/2 = k
Case 2 (n is even):  n = 2k for some integer k
n/2 = n/2 = k

34
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Division quotient and remainder
 If n is any integer and d is a positive integer, 

if q= n/d and r=n − d n/d ,
then n = dq + r and 0 ≤ r < d
Proof: Suppose n is any integer, d is a positive integer

dq + r = d n/d +(n − d n/d ) = n

q ≤ n/d < q + 1     | * d
dq ≤ n < dq + d  | −dq
0 ≤ n − dq < d
0 ≤ r < d [This is what was to be shown.]
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Indirect Argument: Contradiction and Contraposition

 Proof by Contradiction (reductio ad impossible or reductio 
ad absurdum)
 A statement is true or it is false but not both
 Assume the statement is false
 If the assumption that the statement is false leads logically to a 

contradiction, impossibility, or absurdity, then that assumption 
must be false

 Hence, the given statement must be true
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There Is No Greatest Integer
 Assumption: there is a greatest integer N

N ≥ n for every integer n
 If there were a greatest integer, we could add 1 to it to obtain 

an integer that is greater
N + 1 ≥ N

 This is a contradiction, no greatest integer can exist (our 
initial assumption)
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No Integer Can Be Both Even and Odd

 Suppose there is at least one integer n that is both even and odd
n = 2a for some integer a, by definition of even
n = 2b+1 for some integer b, by definition of odd

2a = 2b + 1
2a − 2b = 1
a − b = 1/2

Since a and b are integers, the difference a − b must also be an 
integer, contradiction!
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The Sum of a Rational Number and an 
Irrational Number
 The sum of any rational number and any irrational number is 

irrational
real numbers r and s, if r is rational and s is irrational, 

then r + s is irrational
Assume its negation is true: 

a rational number r and an irrational number s 
such that r + s is rational

r = a/b for some integers a and b with b ≠ 0
r + s = c/d for some integers c and d with d ≠ 0
s = c/d − a/b = (bc − ad)/bd with bd ≠ 0

This contradicts the supposition that it is irrational
39
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Argument by Contraposition
 Logical equivalence between a statement and its contrapositive
 We prove the contrapositive by a direct proof and conclude that 

the original statement is true
x in D, if P(x) then Q(x)

Contrapositive: x in D, if Q(x) is false then P(x) is false
Prove the contrapositive by a direct proof
1. Suppose x is a (particular but arbitrarily chosen) element of D 

such that Q(x) is false
2. Show P(x) is false
Contraposition: the original statement is true
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Contraposition Example
 If the Square of an Integer Is Even, Then the Integer Is Even
Contrapositive: For all integers n, if n is odd then n2 is odd
Suppose n is any odd integer
n = 2k + 1 for some integer k, by definition of odd
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

2(2k2 + 2k) is an integer
n2 is odd

[This was to be shown]
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Contradiction Example
 If the Square of an Integer Is Even, Then the Integer Is Even
Suppose the negation of the theorem: 

There is an integer n such that n2 is even and n is not even
Any integer is odd or even, by the quotient-remainder theorem 

with d = 2  since n is not even it is odd
n = 2k + 1 for some integer k

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1
 n2 is odd
Contradiction: n2 is both odd and even (by hypothesis)
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The Irrationality of √2
c2 = 12 + 12 = 2
c =√2

 Suppose the negation: √2 is rational

43
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The set of all prime numbers is infinite
 Proof (by contradiction):
Suppose the set of prime numbers is finite: some prime 

number p is the largest of all the prime numbers:
2, 3, 5, 7, 11,. . . ,p

N = (2·3·5·7·11· · ·p) + 1
N > 1  N is divisible by some prime number q in 2, 3,...,p
q divides 2·3·5·7·11· · ·p, but not (2·3·5·7·11·...·p) + 1 = N

(also proved by contradiction)
Contradiction!
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Application: Algorithms
 A variable refers to a specific storage location in a 

computer’s memory
 The data type of a variable indicates the set in which the 

variable takes its values: integers, reals, characters, strings, 
boolean (the set {0, 1})

 Assignment statement: x := e
 Conditional statements: 

if (condition) then s1 else s2

The condition is evaluated by substituting the current values of 
all algorithm variables appearing in it and evaluating the truth 
or falsity of the resulting statement
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Application: Algorithms
x := 5
if x >2 
then y := x + 1 
else do 

x := x − 1
y := 3· x 

end do
 the condition x > 2 is true, then y := x + 1 := 6

46



(c) Paul Fodor (CS Stony Brook)

Iterative statements
while (condition)

[statements that make up the body of the loop]
end while

i := 1, s := 0
while (i ≤ 2)

s := s + i
i := i + 1

end while
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Iterative statements
for variable := initial expression to final expression
[statements that make up the body of the loop]
next (same) variable

for i := 1 to 4
x := i2

next i
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The Division Algorithm
 Given a nonnegative integer a and a positive integer d, find integers 

q and r that satisfy the conditions a = dq + r and 0 ≤ r < d
Input: a [a nonnegative integer], d [a positive integer]
Algorithm Body:
r := a, q := 0
while (r ≥ d)

r := r − d
q := q + 1

end while
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The greatest common divisor
 The greatest common divisor of two integers a and b (that 

are not both zero), gcd(a, b), is that integer d with the 
following properties:
1. d is a common divisor of both a and b: 

d|a and d|b
2. For all integers c, if c is a common divisor of both a and b, 

then c is less than or equal to d: 
for all integers c, if c | a and c | b, then c ≤ d

 Examples: 
gcd(72, 63) = gcd(9·8, 9·7)= 9
If r is a positive integer, then gcd(r, 0) = r.
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Euclidean Algorithm
 If a and b are any integers not both zero, and if q and r are 

any integers such that
a = bq + r,

then
gcd(a, b) = gcd(b, r ).
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Euclidean Algorithm
 Given two integers A and B with A > B ≥ 0, this algorithm 

computes gcd(A, B)
Input: A, B [integers with A > B ≥ 0]
Algorithm Body:
a := A, b := B, r := B
while (b = 0)

r := a mod b
a := b
b := r

end while
gcd := a Output: gcd [a positive integer]
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