
Binary I/O
CSE 114: Introduction to Object-Oriented Programming

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Contents
 Binary files

 Text Files vs. Binary Files

 Binary I/O Classes

 InputStream/OutputStream

 FileInputStream/FileOutputStream

 FilterInputStream/FilterOutputStream

 DataInputStream/DataOutputStream

 Characters and Strings in Binary I/O

 BufferedInputStream/BufferedOutputStream

 Copy Files

 Object I/O

 ObjectInputStream/ObjectOutputStream

 The Serializable Interface

 The transient Keyword

 Serializing Arrays

 Random Access Files2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Motivation
 Data stored in a text files is represented in human-

readable form

 Data stored in a binary files is represented in binary

form

The advantage of binary files is that they are more

efficient to process than text files (e.g., the

number 123 is smaller in binary than in text: "123")

But, people cannot read binary files
 Binary files are designed to be read by programs

 For example, Java bytecode classes are stored in binary files

and are read by the JVM

3

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Text Files vs. Binary Files
 A text file consists of a sequence of characters

For example, the decimal integer 199 is stored as the
sequence of three characters: '1', '9', '9' in a text file
 Java is UTF-16, that is uses 2 bytes variable encoding for

characters

 '1', '9', '9' would require 6 bytes to encode it

 A binary file consists of a sequence of bits
 For example, the decimal integer 199 is stored as one byte

binary value for the hexadecimal number C7 in a binary file,
because the decimal 199 equals to the hexadecimal C7

4

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Reminder Text I/O
 A File object encapsulates the properties of a file or a path, but

does not contain the methods for reading/writing data from/to a file

 In order to perform I/O, you need to create objects using

appropriate Java I/O classes: Scanner and PrintWriter:

5

PrintWriter output = new PrintWriter("temp.txt");

output.println("Java 101");

output.close(); // to flush the output to disk

Scanner input = new Scanner(new File("temp.txt"));

System.out.println(input.nextLine());

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 Text I/O requires encoding and decoding: the JVM converts a

Unicode of a char to a file specific encoding when writing a character

and coverts a file specific encoding to a Unicode when reading a

character.

 Binary I/O does not require conversions: when you write a byte to a

file, the original byte is copied into the file, and when you read a byte

from a file, the exact byte in the file is returned
 Text I/O program

The Unicode of

the character
Encoding/

Decoding

 Binary I/O program

A byte is read/written (b)

(a)

e.g.

,
"199"

The encoding of the character

is stored in the file

0x31

e.g.

,
199 00110111

00110001 00111001 00111001

 0x39 0x39

0xC7

The same byte in the file

6

Text Files vs. Binary Files

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Binary I/O Classes

7

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

• The abstract InputStream is the root class for reading binary data

• The abstract OutputStream is the root class for writing binary data

• The design of the Java I/O classes is a good example of

applying inheritance, where common operations are generalized

in superclasses, and subclasses provide specialized operations.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

java.io.InputStream

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int,
len: int): int

+available(): int

+close(): void

+skip(n: long): long

+markSupported(): boolean

+mark(readlimit: int): void

+reset(): void

Reads the next byte of data from the input stream. The value byte is returned as

an int value in the range 0 to 255. If no byte is available because the end of

the stream has been reached, the value –1 is returned.

Reads up to b.length bytes into array b from the input stream and returns the

actual number of bytes read. Returns -1 at the end of the stream.

Reads bytes from the input stream and stores into b[off], b[off+1], …,
b[off+len-1]. The actual number of bytes read is returned. Returns -1 at the

end of the stream.

Returns the number of bytes that can be read from the input stream.

Closes this input stream and releases any system resources associated with the

stream.

Skips over and discards n bytes of data from this input stream. The actual
number of bytes skipped is returned.

Tests if this input stream supports the mark and reset methods.

Marks the current position in this input stream.

Repositions this stream to the position at the time the mark method was last

called on this input stream.

InputStream

8

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

OutputStream

9

java.io.OutputStream

+write(int b): void

+write(b: byte[]): void

+write(b: byte[], off: int,

len: int): void

+close(): void

+flush(): void

Writes the specified byte to this output stream. The parameter b is an int value.
(byte)b is written to the output stream.

Writes all the bytes in array b to the output stream.

Writes b[off], b[off+1], …, b[off+len-1] into the output stream.

Closes this input stream and releases any system resources associated with the

stream.

Flushes this output stream and forces any buffered output bytes to be written out.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

FileInputStream/FileOutputStream
 FileInputStream/FileOutputStream are for

reading/writing bytes from/to files.

 All the methods in FileInputStream/FileOutputStream are
inherited from its superclasses

10

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

FileInputStream
To construct a FileInputStream, use the

following constructors:

public FileInputStream(File file)

public FileInputStream(String filename)

 A java.io.FileNotFoundException would

occur if you attempt to create a FileInputStream

with a nonexistent file.

11

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

FileOutputStream
 To construct a FileOutputStream, use the following

constructors:
public FileOutputStream(File file)

public FileOutputStream(String filename)

public FileOutputStream(File file,

boolean append)

public FileOutputStream(String filename,

boolean append)

 If the file does not exist, a new file would be created

 If the file already exists, the first two constructors would delete the current
contents in the file

 To retain the current content and append new data into the file, use the last
two constructors by passing true to the append parameter

12

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
13

import java.io.*;

public class TestFileStream {

public static void main(String[] args) throws IOException {

// Create an output stream for the file

try (FileOutputStream output =

new FileOutputStream("temp.dat");) {

// Output values to the file

for (int i = 1; i <= 10; i++) {

output.write(i);

}

}

// Create an input stream for the file

try (FileInputStream input =

new FileInputStream("temp.dat");){

// Read values from the file

int value;

while ((value = input.read()) != -1) {

System.out.print(value + " ");

}

}

}

} Run: 1 2 3 4 5 6 7 8 9 10

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

FilterInputStream/FilterOutputStream
 Filter streams are streams that filter bytes for some purpose

 The basic byte input stream provides a read method that can only be used for
reading bytes

 If you want to read integers, doubles, or strings, you need a filter class to wrap the
byte input stream

 Using a filter class enables you to read integers, doubles, and strings instead of
bytes and characters

 FilterInputStream and FilterOutputStream are the base
classes for filtering data
 When you need to process primitive numeric types, use
DataInputStream and DataOutputStream to filter bytes

14

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

DataInputStream/DataOutputStream
 DataInputStream reads bytes from the stream and converts them

into appropriate primitive type values or strings

 DataOutputStream converts primitive type values or strings into
bytes and output the bytes to the stream

15

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

DataInputStream

16

DataInputStream extends FilterInputStream and

implements the DataInput interface

java.io.DataInput

+readBoolean(): boolean

+readByte(): byte

+readChar(): char

+readFloat(): float

+readDouble(): float

+readInt(): int

+readLong(): long

+readShort(): short

+readLine(): String

+readUTF(): String

Reads a Boolean from the input stream.

Reads a byte from the input stream.

Reads a character from the input stream.

Reads a float from the input stream.

Reads a double from the input stream.

Reads an int from the input stream.

Reads a long from the input stream.

Reads a short from the input stream.

Reads a line of characters from input.

Reads a string in UTF format.

InputStream

FilterInputStream

DataInputStream

+DataInputStream(

in: InputStream)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

DataOutputStream

17

DataOutputStream extends FilterOutputStream and

implements the DataOutput interface

java.io.DataOutput

+writeBoolean(b: Boolean): void

+writeByte(v: int): void

+writeBytes(s: String): void

+writeChar(c: char): void

+writeChars(s: String): void

+writeFloat(v: float): void

+writeDouble(v: float): void

+writeInt(v: int): void

+writeLong(v: long): void

+writeShort(v: short): void

+writeUTF(s: String): void

Writes a Boolean to the output stream.

Writes to the output stream the eight low-order bits

of the argument v.

Writes the lower byte of the characters in a string to
the output stream.

Writes a character (composed of two bytes) to the

output stream.

Writes every character in the string s, to the output

stream, in order, two bytes per character.

Writes a float value to the output stream.

Writes a double value to the output stream.

Writes an int value to the output stream.

Writes a long value to the output stream.

Writes a short value to the output stream.

Writes two bytes of length information to the output

stream, followed by the UTF representation of
every character in the string s.

OutputStream

FilterOutputStream

DataOutputStream

+DataOutputStream(

out: OutputStream)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Characters and Strings in Binary I/O
 Java uses Unicode (UTF-16) and consists of two bytes

 The writeChar(char c) method writes the Unicode of character
c to the output

 The writeChars(String s) method writes the Unicode for
each character in the string s to the output

 Most operating systems use ASCII since most applications need
only the ASCII character set and it is a waste to represent an 8-bit
ASCII character as a 16-bit Unicode character

 Many operating systems and Internet protocols use the
alternative scheme UTF-8 that stores a character using 1, 2,
or 3 bytes
 ASCII values (less than 0x7F) are coded in one byte

 Unicode values less than 0x7FF are coded in two bytes

 Other Unicode values are coded in three bytes18

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Using DataInputStream/DataOutputStream
 Data streams are used as wrappers on existing input and output

streams to filter data in the original stream

 They are created using the following constructors:

public DataInputStream(InputStream instream)

public DataOutputStream(OutputStream outstream)

 The statements given below create data streams: the first
statement creates an input stream for file in.dat; the second
statement creates an output stream for file out.dat.
DataInputStream infile =

new DataInputStream(new FileInputStream("in.dat"));

DataOutputStream outfile =

new DataOutputStream(new FileOutputStream("out.dat"));

19

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
20

import java.io.*;

public class TestDataStream {

public static void main(String[] args) throws IOException {

// Create an output stream for file temp.dat

try (DataOutputStream output =

new DataOutputStream(new FileOutputStream("temp.dat"));) {

// Write student test scores to the file

output.writeUTF("John");

output.writeDouble(85.5);

output.writeUTF("Jim");

output.writeDouble(185.5);

output.writeUTF("George");

output.writeDouble(105.25);

}

// Create an input stream for file temp.dat

try (DataInputStream input =

new DataInputStream(new FileInputStream("temp.dat"));) {

// Read student test scores from the file

System.out.println(input.readUTF() + " " + input.readDouble());

System.out.println(input.readUTF() + " " + input.readDouble());

System.out.println(input.readUTF() + " " + input.readDouble());

}

}

}

Run:

John 85.5

Jim 185.5

George 105.25

CAUTION: You have to read the data in the same order and same format in which they are
stored. For example, since names are written in UTF-8 using writeUTF, you must read
names using readUTF.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Checking End of File

 If you keep reading data at the end of a stream, an
EOFException would occur

You can use input.available() to check it
input.available() == 0 indicates that it

is the end of a file

21

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
22

import java.io.*;

public class DetectEndOfFile {

public static void main(String[] args) {

try {

try (DataOutputStream output =

new DataOutputStream(new FileOutputStream("test.dat"))) {

output.writeDouble(4.5);

output.writeDouble(43.25);

output.writeDouble(3.2);

}

try (DataInputStream input =

new DataInputStream(new FileInputStream("test.dat"))) {

while (true) // or input.available() != 0

System.out.println(input.readDouble());

}

} catch (EOFException ex) {

} catch (IOException ex) {

ex.printStackTrace();

} finally {

System.out.println("All data were read");

}

}

}

Run:

4.5

43.25

3.2

All data were read

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

BufferedInputStream/BufferedOutputStream

 Using buffers to speed up I/O:

23

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

BufferedInputStream/BufferedOutputStream does not contain new methods: all the

methods BufferedInputStream/BufferedOutputStream are inherited from the

InputStream/OutputStream classes

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Constructing BufferedInputStream/

BufferedOutputStream
 Create a BufferedInputStream:

public BufferedInputStream(InputStream in)

public BufferedInputStream(InputStream in, int

bufferSize)

 Create a BufferedOutputStream:

public BufferedOutputStream(OutputStream out)

public BufferedOutputStream(OutputStream out,

int bufferSize)

24

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Copy File

25

import java.io.*;

public class CopyFile {

public static void main(String[] args) throws IOException {

// Check command-line parameter usage

if (args.length != 2) {

System.out.println("Usage: java CopyFile sourceFile targetfile");

System.exit(1);

}

// Check if source file exists

File sourceFile = new File(args[0]);

if (!sourceFile.exists()) {

System.out.println("Source file " + args[0] + " does not exist");

System.exit(2);

}

// Check if target file exists

File targetFile = new File(args[1]);

if (targetFile.exists()) {

System.out.println("Target file " + args[1] + " already exists");

System.exit(3);

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Copy File

26

try (

// Create an input stream

BufferedInputStream input

= new BufferedInputStream(new FileInputStream(sourceFile));

// Create an output stream

BufferedOutputStream output

= new BufferedOutputStream(new FileOutputStream(targetFile));) {

// Continuously read a byte from input and write it to output

int r, numberOfBytesCopied = 0;

while ((r = input.read()) != -1) {

output.write((byte) r);

numberOfBytesCopied++;

}

// Display the file size

System.out.println(numberOfBytesCopied + " bytes copied");

}

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Object I/O
 DataInputStream/DataOutputStream enables

you to perform I/O for primitive type values and strings.

 Finally, ObjectInputStream /
ObjectOutputStream enables you to perform I/O for
objects in addition for primitive type values and strings

27

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

ObjectInputStream
 ObjectInputStream extends InputStream and

implements ObjectInput and
ObjectStreamConstants

28

java.io.ObjectInput

+readObject(): Object

Reads an object.

java.io.InputStream

java.io.ObjectInputStream

+ObjectInputStream(in: InputStream)

java.io.DataInput

ObjectStreamConstants

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

ObjectOutputStream
 ObjectOutputStream extends OutputStream

and implements ObjectOutput and
ObjectStreamConstants:

29

java.io.ObjectOutput

+writeObject(o: Object): void

Writes an object.

java.io.OutputStream

java.io.ObjectOutputStream

+ObjectOutputStream(out: OutputStream)

java.io.DataOutput

ObjectStreamConstants

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Object Streams
 You may wrap an

ObjectInputStream/ObjectOutputStream on any

InputStream/OutputStream using the following

constructors:

// Create an ObjectInputStream

public ObjectInputStream(InputStream in)

// Create an ObjectOutputStream

public ObjectOutputStream(OutputStream out)

30

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
31

import java.io.*;

public class TestObjectInputOutputStream {

public static void main(String[] args) throws ClassNotFoundException,

IOException {

try (// Create an output stream for file object.dat

ObjectOutputStream output

= new ObjectOutputStream(new FileOutputStream("object.dat"));) {

// Write a string, double value, and object to the file

output.writeUTF("John");

output.writeDouble(85.5);

output.writeObject(new java.util.Date());

output.close();

}

try (// Create an input stream for file object.dat

ObjectInputStream input

= new ObjectInputStream(new FileInputStream("object.dat"));) {

// Read a string, double value, and object from the file

String name = input.readUTF();

double score = input.readDouble();

java.util.Date date = (java.util.Date) (input.readObject());

System.out.println(name + " " + score + " " + date);

}

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The Serializable Interface
 Not all objects can be written to an output stream!

 Objects that can be written to an object stream is said to be

serializable: a serializable object is an instance of the

java.io.Serializable interface (so the class of a

serializable object must implement Serializable)

The Serializable interface is a marker

interface: it has no methods, so you don't need to

add additional code in your class that implements

Serializable

 Implementing this interface enables the Java serialization

mechanism to automate the process of storing the objects and

arrays32

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The transient Keyword
 An object instance of Serializable may contain

non-serializable instance data fields
 To enable the object to be serialized, you can use the transient

keyword to mark these data fields to tell the JVM to ignore

these fields when writing the object to an object stream:
class A { } // A is not serializable

public class Foo implements java.io.Serializable {

private int v1;

private static double v2;

private transient A v3 = new A();

}

 Note: When an object of the Foo class is serialized, only variable v1 is

serialized.

 Variable v2 is not serialized because it is a static variable, and variable

v3 is not serialized because it is marked transient

 If v3 were not marked transient, a java.io.NotSerializableException

would occur.33

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Serializing Arrays
 An array is serializable if all its elements are serializable:

 The entire array can be saved using writeObject into a file and later restored using

readObject:

int[] numbers = {1, 2, 3, 4, 5};

String[] strings = {"John", "Susan", "Kim"};

try (// Create an output stream for file array.dat

ObjectOutputStream output = new ObjectOutputStream(new

FileOutputStream("array.dat", true));) {

// Write arrays to the object output stream

output.writeObject(numbers);

output.writeObject(strings);

}

try (// Create an input stream for file array.dat

ObjectInputStream input =

new ObjectInputStream(new FileInputStream("array.dat"));){

int[] newNumbers = (int[])(input.readObject());

for(int n:newNumbers) System.out.print(n + " ");

String[] newStrings = (String[])(input.readObject());

}
34

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Random Access Files
 All of the previous are read-only or write-only streams

 The external files of these streams are sequential files that
cannot be updated without creating a new file

 RandomAccessFile class allows a file to be read from
and write to at random locations.
RandomAccessFile raf =

new RandomAccessFile("test.dat", "rw");

//allows read and write

RandomAccessFile raf2 =

new RandomAccessFile("test2.dat", "r");

//read only

35

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
36

Creates a RandomAccessFile stream with the specified File object and
mode.

Creates a RandomAccessFile stream with the specified file name

string and mode.

Closes the stream and releases the resource associated with the stream.

Returns the offset, in bytes, from the beginning of the file to where the

next read or write occurs.

Returns the length of this file.

Reads a byte of data from this file and returns –1 an the end of stream.

Reads up to b.length bytes of data from this file into an array of bytes.

Reads up to len bytes of data from this file into an array of bytes.

Sets the offset (in bytes specified in pos) from the beginning of the

stream to where the next read or write occurs.

Sets a new length of this file.

Skips over n bytes of input discarding the skipped bytes.

Writes b.length bytes from the specified byte array to this file, starting
at the current file pointer.

Writes len bytes from the specified byte array starting at offset off to

this file.

DataInput

DataInput

java.io.RandomAccessFile

+RandomAccessFile(file: File, mode:
String)

+RandomAccessFile(name: String,

mode: String)

+close(): void

+getFilePointer(): long

+length(): long

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int, len: int) : int

+seek(long pos): void

+setLength(newLength: long): void

+skipBytes(int n): int

+write(b: byte[]): void

+write(byte b[], int off, int len)
+write(b: byte[], off: int, len: int):

void

Random Access Files

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

File Pointer
 A random access file consists of a sequence of bytes and there is a special

marker called file pointer that is positioned at one of these bytes

 A read or write operation takes place at the location of the file pointer

 When a file is opened, the file pointer sets at the beginning of the file

 When you read or write data to the file, the file pointer moves forward to the
next data
 For example, if you read an int value using readInt(), the JVM reads four bytes from

the file pointer and now the file pointer is four bytes ahead of the previous location.

37

byte

file

byte

…

byte

byte

byte

byte

byte

…

byte

byte

byte

byte

byte

file pointer

byte

file

byte

…

byte

byte

byte

byte

byte

…

byte

byte

byte

byte

byte

file pointer

(A) Before readInt()

(B) Before readInt()

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

RandomAccessFile Methods
 Many methods in RandomAccessFile are the same as those in

DataInputStream and DataOutputStream: readInt(),

readLong(), writeDouble(), readLine(), writeInt(),

writeLong() ...

 void seek(long pos) sets the offset from the beginning of the

RandomAccessFile stream to where the next read or write occurs.

 long getFilePointer()returns the current offset, in bytes, from

the beginning of the file to where the next read or write occurs.

 long length() returns the length of the file.

 final void writeChar(int v) writes a character to the file as

a two-byte Unicode, with the high byte written first.

 final void writeChars(String s)writes a string to the file

as a sequence of characters.

38

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
39

import java.io.*;

public class TestRandomAccessFile {

public static void main(String[] args) throws IOException {

try (// Create a random access file

RandomAccessFile inout = new RandomAccessFile("inout.dat", "rw");

) {

// Clear the file to destroy the old contents if exists

inout.setLength(0);

// Write new integers to the file

for (int i = 0; i < 200; i++)

inout.writeInt(i);

// Display the current length of the file

System.out.println("Current file length is " + inout.length());

// Retrieve the first number

inout.seek(0); // Move the file pointer to the beginning

System.out.println("The first number is " + inout.readInt());

// Retrieve the second number

inout.seek(1 * 4); // Move the file pointer to the second number

System.out.println("The second number is " + inout.readInt());

// Retrieve the tenth number

inout.seek(9 * 4); // Move the file pointer to the tenth number

System.out.println("The tenth number is " + inout.readInt());

// Modify the eleventh number

inout.writeInt(555);

// Append a new number

inout.seek(inout.length()); // Move the file pointer to the end

inout.writeInt(999);

// Display the new length

System.out.println("The new length is " + inout.length());

// Retrieve the new eleventh number

inout.seek(10 * 4); // Move the file pointer to the eleventh number

System.out.println("The eleventh number is " + inout.readInt());

}

}

}

Current file length is 800
The first number is 0
The second number is 1
The tenth number is 9
The new length is 804
The eleventh number is 555

	Slide 1: Binary I/O
	Slide 2: Contents
	Slide 3: Motivation
	Slide 4: Text Files vs. Binary Files
	Slide 5: Reminder Text I/O
	Slide 6: Text Files vs. Binary Files
	Slide 7: Binary I/O Classes
	Slide 8: InputStream
	Slide 9: OutputStream
	Slide 10: FileInputStream/FileOutputStream
	Slide 11: FileInputStream
	Slide 12: FileOutputStream
	Slide 13
	Slide 14: FilterInputStream/FilterOutputStream
	Slide 15: DataInputStream/DataOutputStream
	Slide 16: DataInputStream
	Slide 17: DataOutputStream
	Slide 18: Characters and Strings in Binary I/O
	Slide 19: Using DataInputStream/DataOutputStream
	Slide 20
	Slide 21: Checking End of File
	Slide 22
	Slide 23: BufferedInputStream/BufferedOutputStream
	Slide 24: Constructing BufferedInputStream/ BufferedOutputStream
	Slide 25: Copy File
	Slide 26: Copy File
	Slide 27: Object I/O
	Slide 28: ObjectInputStream
	Slide 29: ObjectOutputStream
	Slide 30: Object Streams
	Slide 31
	Slide 32: The Serializable Interface
	Slide 33: The transient Keyword
	Slide 34: Serializing Arrays
	Slide 35: Random Access Files
	Slide 36: Random Access Files
	Slide 37: File Pointer
	Slide 38: RandomAccessFile Methods
	Slide 39

