
1

Enumerated Types
CSE 114: Introduction to Object-Oriented Programming

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types
 An enumerated type defines a list of enumerated values

 Each value is an identifier
enum MyFavoriteColor {RED, BLUE, GREEN, YELLOW};

 A value of an enumerated type is like a constant and so, by

convention, is spelled with all uppercase letters

 Also, by convention, an enumerated type is named like a

class with first letter of each word capitalized

 Once a type is defined, you can declare a variable of that type:
MyFavoriteColor color;

 The variable color can hold one of the values defined in the enumerated type

MyFavoriteColor or null, but nothing else

 Using enumerated values (e.g., Color.BLUE, Day.MONDAY) rather

than literal integer values (e.g., 0, 1, and so on) can make program easier

to read and maintain

2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types
 The enumerated values can be accessed using the syntax

EnumeratedTypeName.valueName

 For example, the following statement assigns enumerated value

BLUE to variable color:

color = MyFavoriteColor.BLUE;

 An enumerated type is treated as a special class, so an

enumerated type variable is therefore a reference variable
 An enumerated type is a subtype of the Object class (inherits all

the methods in the Object class) and the Comparable interface

(has the compareTo method in the Comparable interface)

3

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types
 The following methods are defined for any enumerated object:
public String name();

 Returns a name of the value for the object

public int ordinal();
 Returns the ordinal value associated with the enumerated value

 The first value in an enumerated type has an ordinal value of 0, the second

has an ordinal value of 1, the third one 3, and so on

4

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class EnumeratedTypeDemo {

static enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY, SATURDAY};

public static void main(String[] args) {

Day day1 = Day.FRIDAY;

Day day2 = Day.THURSDAY;

System.out.println("day1's name is " + day1.name());

System.out.println("day2's name is " + day2.name());

System.out.println("day1's ordinal is " + day1.ordinal());

System.out.println("day2's ordinal is " + day2.ordinal());

System.out.println("day1.equals(day2) returns " +

day1.equals(day2));

System.out.println("day1.toString() returns " +

day1.toString());

System.out.println("day1.compareTo(day2) returns " +

day1.compareTo(day2));

}

}

5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY, SATURDAY};

public class EnumeratedTypeDemo {

public static void main(String[] args) {

Day day1 = Day.FRIDAY;

Day day2 = Day.THURSDAY;

System.out.println("day1's name is " + day1.name());

System.out.println("day2's name is " + day2.name());

System.out.println("day1's ordinal is " + day1.ordinal());

System.out.println("day2's ordinal is " + day2.ordinal());

System.out.println("day1.equals(day2) returns " +

day1.equals(day2));

System.out.println("day1.toString() returns " +

day1.toString());

System.out.println("day1.compareTo(day2) returns " +

day1.compareTo(day2));

}

}

6

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

day1's name is FRIDAY

day2's name is THURSDAY

day1's ordinal is 5

day2's ordinal is 4

day1.equals(day2) returns false

day1.toString() returns FRIDAY

day1.compareTo(day2) returns 1

7

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types
 An enumerated type can be defined inside a class or standalone

 After the first program is compiled, a class named

EnumeratedTypeDemo$Day.class is created
 When an enumerated type is declared inside a class, the type must be

declared as a static member of the class and cannot be declared

inside a method

 static may be omitted

 In the latter case, the type is treated as a standalone class, so

after the program is compiled, a class named Day.class is

created

8

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Using if or switch Statements

with an Enumerated Variable
Often your program needs to perform a specific

action depending on the value
 For example, if the value is Day.MONDAY, play soccer; if the

value is Day.TUESDAY, take piano lesson, and so on

if (day.equals(Day.MONDAY)) {

// process Monday

} else if (day.equals(Day.TUESDAY)) {

// process Tuesday

} else

...

9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Using if or switch Statements

with an Enumerated Variable
switch (day) {

case MONDAY:

// process Monday

break;

case TUESDAY:

// process Tuesday

break;

...

}

 In the switch statement, the case label is an unqualified

enumerated value (e.g., MONDAY, but not Day.MONDAY).

10

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Processing Enumerated Values

Using a Foreach Loop
 Each enumerated type has a static method values()

that returns all enumerated values for the type in an

array:
Day[] days = Day.values();

for (int i = 0; i < days.length; i++)

System.out.println(days[i]);

// is equivalent with:

for (Day day: days)

System.out.println(day);

11

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types with Data Fields,

Constructors, and Methods
public enum TrafficLight {

RED ("Please stop"), GREEN ("Please go"),

YELLOW ("Please caution");

private String description;

private TrafficLight(String description) {

this.description = description;

}

public String getDescription() {

return description;

}

};

 The constructor is invoked whenever an enumerated value is accessed

 The enumerated value’s argument is passed to the constructor, which is

then assigned to description

12

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types with Data Fields,

Constructors, and Methods
public class TestTrafficLight {

public static void main(String[] args) {

TrafficLight light = TrafficLight.RED;

System.out.println(light.getDescription());

}

}

 An enumerated value TrafficLight.RED is assigned to variable
light

 Accessing TrafficLight.RED causes the JVM to invoke the constructor

with argument “please stop”

13

