
1

Elementary Programming

CSE 114: Introduction to Object-Oriented Programming

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Contents
 Identifiers

 Variables
 Declaring Variables and Data Types (Java’s Primitive Types)

 Assignments and Assignment Compatibility

 Type Casting

 Arithmetic Operators
 Pre and Post Increment and Decrement Operators

 Scientific Notation and “double-precision” values

 Constants

 Character Data Type and Unicode

 Classes, Methods and the main Method
 HelloWorld.java, ComputeArea.java, ChangeMaker.java

 Reading Input from the Console and Packages in Java

 Software engineering basics
2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Identifiers
 What’s an Application Programming Interface (API)?

 a library of code identifiers/names to use

 What are identifiers/names used for?

For Variables, Classes, and Methods

 They come from 2 sources:

 the Oracle (or someone else’s) Java API

 your own classes, variables, and methods

 Identifiers (Names) – Why name them?

 they are your data and commands, and you’ll need to reference

them elsewhere in your program

int myVariable = 5; // Declaration

myVariable = myVariable + 1; // Using the variable

3

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Rules for Identifiers
 Should contain only letters, numbers, & '_'

 '$' is allowed, but only for special use

 Cannot begin with a digit!

 Although it is legal, do not begin with ‘_’ (underscore)

 Uppercase and lowercase letters are considered to be

different characters (Java is case-sensitive)

 Examples:

 Legal: myVariable, my_class, my4Var

 Illegal: 4myVariable, my class, my!Var,

@#$myClass

4

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Common Java Naming Conventions
 Variables & Methods start with lower case letters:

radius, getRadius

 Classes start with upper case letters: Circle

 Variables and Class identifiers should generally be nouns:

radius, Circle

 Method identifiers should be verbs: getRadius

 Use Camel notation: GeometricObject,

getRadius

 Use descriptive names: Circle, radius, area

 area = PI * radius * radius;

5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 In a program, the variables store data

 All Java variables must have a declared type

 type variable;

A variable’s type determines:

 what kind of value the variable can hold

 how much memory to reserve for that variable

char letter;

int i;

double area;

String s;

Object o;
6

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Data Types
 There are 2 categories of types in Java (and most other

modern programming languages):

Primitive type variables store single pieces of data:

int i = 1; i

char letter = 'A'; letter

Object or reference type variables store the reference

(i.e., address) to an object that has multiple pieces of

data (ex: a String is a sequence of potentially

multiple characters):

 String text = "ABCDEFG";

7

1

'A'

ref :String

ABCDEFG

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Java’s 8 Primitive Types
 Integers (whole numbers):

 byte–represented in 1 byte (8 bits) (-128 to 127)

 short –2 bytes (-32,768 to 32,767)

 int–4 bytes (-2,147,483,648 to 2,147,483,647) – default for

integer constants in the program

 long–8 bytes (-9223372036854775808 to 9223372036854775807)

 Real Numbers:

 float–4 bytes

 double–8 bytes - default for real constants in the program

 char–represented in 2 bytes to store a single character

(Unicode2/UTF16 variable encoding)

 boolean–stores true or false (uses 1-bit)
8

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Assignments
A variable gets a value in an assignment statement:

 Variable = some_value or

 an expression ;

Examples:

 double salary;

 salary = 20000.0;

 char grade;

 grade = 'A';

9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 Variables can be declared and initialized at once:

char yesChar = 'y';

String word = "Hello!";

char initial3 = 'T';

boolean completed = false;

 We can declare and (optionally) assign multiple

variables in one statement:

double total, count=0, avg = 0.0,

stdDev, his = 0.0;

10

Assignments

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The Assignment Statement
variable = expression;

What does it do?

1. First: Solves/evaluates expression!

2. Assigns resulting value to the left variable!

 Exercise: What’s the output if the same variable appear to the left

and right of an assignment?

int x = 5;

x = x + x + 10;

System.out.print(x);

11

20

Assignments

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 A variable must be declared before being assigned

values:

public void methodWithGoodDeclaration(){

 double salary; //GOOD

 salary = 20000.0; //GOOD

 System.out.println("Salary is " + salary);

}

public void methodWithBadDeclaration(){

 salary = 20000.0; // SYNTAX ERROR

 double salary;

 System.out.println("Salary is " + salary);

}

12

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 A local variable must be initialized before being used:

public void methodWithGoodReference(){

 double salary = 20000.0; // GOOD

 double raise = salary * 0.05; // 5% raise

 System.out.println("Raise is " + raise);

}

public void methodWithBadReference(){

 double salary; // Salary has no value.

 double raise = salary * 0.05;

 // SYNTAX ERROR because salary has no value

 System.out.println("Raise is " + raise);

}
13

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 A variable should only be declared once in one block:

public void methodWithGoodDeclaration(){

 double salary = 20000.0;

 System.out.println("Salary is " + salary);

 salary = 60000.0;

 System.out.println("Salary is " + salary);

}

public void methodWithBadDeclaration(){

 double salary = 50000.0;

 System.out.println("Salary is " + salary);

 double salary = 60000.0; //Syntax ERROR

 System.out.println("Salary is " + salary);

 }

14

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables

15

 Local variables can only be used from their declaration

until the end of the block where they were declared
public void methodWithGoodScope(){

 double x = 5.0;

 if (x > 0.0){ // x is in scope here

 x = 6.0; // including in inner blocks

 }

 System.out.println("x " + x); // x is still in scope here

}

public void methodWithBadScope(){

 double y = 100.0;

 if (y > 0.0) {

 double x = 5.0;

 } // no more x

 System.out.println("x " + x); // SYNTAX ERROR

} // x is not in scope

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Compatibility
Assignment Compatibility:

 The expression should be of compatible type with the variable

 if not, you may get a compiler error.

Examples:

int sumGrades, gradeX, gradeY;

gradeX = 1; // GOOD

sumGrades = 1473; // GOOD

sumGrades = 1472 + 1; // GOOD

sumGrades = 1472 + gradeX; // GOOD

sumGrades = true; // SYNTAX ERROR

sumGrades = 5.4; // SYNTAX ERROR
16

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 What about mixing numeric types?

 These assignment statements are ok:

int x = 5;

long y = x; // OK

double z = y; // OK

because: byte < short < int < long < float < double

 What about these?

double a = 6.5;

long b = a; // SYNTAX ERROR

int c = b; // SYNTAX ERROR

 No assigning big type values to little type variables OR

real type values to integer type variables
17

Assignment Compatibility

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 Type Casting: change a data type value to

another type (sometimes with some loss):

 (type_name)expression

Example:

double myReal = 10.5;

int goodInt = (int)myReal;//Good

// goodInt is now 10

No type casting is allowed to/from boolean

18

Assignment Compatibility

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators
+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo/Remainder (integer operands only)

int x = 5;

int y = 10;

int z = 2;

int num1 = (x + y) * z;

System.out.println(num1); 30

19

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Division
Integer division:

8/3 = 2 (the quotient)

Double division (if at least an operand

is a double):

8.0/3.0 = 2.666666666666667

8.0/3 = 2.666666666666667

8/3.0 = 2.666666666666667
20

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 Division examples (evaluate full expression first, then

assignment):

double average = 100.0/8.0; //12.5

average = 100.0/8; //12.5

average = 100/8; //12.0

int sumGrades = 100/8; //12

sumGrades = 100.0/8.0; //ERROR

sumGrades = (int)100.0/8.0; //ERROR

sumGrades = (int)(100.0/8.0); //12

int fifty_percent = 50/100; //0

double fiftyPercent = 50/100; //0.0

fiftyPercent = 50.0/100.0; //0.5

21

Division

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Rules of precedence
 Standard PEMDAS order of operations:

 Multiplication and division (*/) have higher precedence over

addition and subtraction (+-)

int x = 5;

int y = 10;

int z = 2;

int num1 = x + y * z;

System.out.println(num1);

 My Advice: avoid rules of precedence and,whenever in doubt,

go with explicit use of parentheses.

 int r2d2c3po = 3 * 4 + 5 / 6;

int r2d2c3po2 = (3 * (4 + 5))/ 6;

22

25

12

4

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators

The modulo/remainder % operator

Produces division remainders

int remainder = 10 % 6;

System.out.println(remainder); 4

23

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators
++ Increment by one

-- Decrement by one

+= Increment by specified amount

-= Decrement by specified amount

*= Multiply by specified amount

/= Divide by specified amount

int x = 5, y = 15, z = 25;

x = x + 1;

y++;

z += 1;

System.out.println(x); 6

System.out.println(y); 16

System.out.println(z); 26

24

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Pre and Post Increment and

Decrement Operators

25

int i = 10;

int newNum = 10 * i++;

int newNum = 10 * i;

i = i + 1;

Same effect as

int i = 10;

int newNum = 10 * (++i);

i = i + 1;

int newNum = 10 * i;

Same effect as

i=11

newNum = 110

newNum = 100

i=11

Results in:

Results in:

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Pre and Post Increment
int i = 10;

i = ++i + i++;

//(i=11)11 + 11(i=12) = 22

System.out.println(i); // 22

int i = 10;

i = i++ + i++;

// 10(i=11) + 11(i=12) = 21

System.out.println(i); // 21

int y = 5;

y -= y++ - --y;

// y = 5 - (5(y=6) - (y=5)5) = 5 - (5 - 5) = 5 - 0 = 5

System.out.println(y); // 5

 Notes:

y -= val; IS y = y - val;

26

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Scientific Notation
Floating-point literals can also be specified

in scientific notation:

E (or e) represents an exponent of the

base and it can be either in lowercase or

uppercase

Examples
1.23456e+2 = 1.23456e2 = 123.456

1.23456e-2 = 0.0123456

27

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

“double-precision” values
 double values are represented internally as 64-bit “double-

precision” values, according to the IEEE 754 standard

(https://en.wikipedia.org/wiki/IEEE_754-2008_revision):

 That is, floating point numbers are represented internally as

sums of binary (base-2) fractions/negative powers of 2 (e.g.,

0.5 = 2-1 , 0.75 = 2-1 + 2-2).

 But many/most decimal fractions (e.g, 1/10=0.1) cannot be

represented exactly as binary fractions, so in many/most cases the

internal representation of a floating-point number is an approximation

of the actual value.

System.out.println(1 - 0.1 - 0.1 - 0.1);

0.70000001
28

https://en.wikipedia.org/wiki/IEEE_754-2008_revision

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Constants

29

final datatype CONSTANTNAME = VALUE;

 Examples:

 final double PI = 3.14159;

 final int SIZE; // assignment can be later

 SIZE = 3; // GOOD

 SIZE = 4; // ILLEGAL if changed again

 Convention (i.e., style): UPPERCASE letters are

used for constants (because FORTRAN did not have

constants, so developers used uppercase only to

communicate that the identifier is a constant)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
30

char letter = 'A';

char numChar = '4';

Character Data Type

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Character Data Type

31

• Java characters use Unicode UTF-16 bit encoding

• chars can be assigned Unicode codes:
char letter = '\u0041'; // Unicode for 'A'

char numChar = '\u0034'; // Unicode for '4'

Unicode takes two bytes preceded by \u, expressed in four

hexadecimal numbers that run from '\u0000' to '\uFFFF'.

Unicode can represent 65535 + 1 characters.

• Examples:
Unicode \u03b1 \u03b2 \u03b3 for three Greek

letters

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Casting between char and

Numeric Types

32

int i = 'a'; // Same as int i = (int)'a';

 // i is 97

char c = 97; // Same as char c = (char)97;

 // c is 'a'

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
33

The increment and decrement operators can also

be used on char variables to get the next or

preceding Unicode character.

 - the following statements display character b:

 char ch = 'a';

 System.out.println(++ch);

Character Data Type

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Escape Sequences for Special Characters

34

Description Escape Sequence Unicode

Tab \t \u0009

Linefeed \n \u000A

Backslash \\ \u005C

Single Quote \' \u0027

Double Quote \" \u0022

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Classes

35

A program is defined by using one or more classes

public class ClassName {

 // implementation

}

A class is also a template or blueprint for objects (we will

see that later in Objects and Classes)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Methods

36

A method is a sequence of statements that performs a

sequence of operations.

 public static void print(String arg) {

 // implementation

 }

 -It is used by invoking the method with arguments.

 System.out.print("Welcome to Java!");

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The main Method

37

 The main method provides the control of program flow.

 public class ClassName {

 public static void main(String[] args) {

 // ClassName PROGRAM’S POINT OF ENTRY

 // THIS PROGRAM’S INSTRUCTIONS

 // START HERE

 }

 }

 ClassName is executable because it has a main method

 we can compile and then run it

Not all classes require main methods
 only those classes that initiate program execution require a main method

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Example programs: HelloWorld.java

/**

* HelloWorld is a Java application

* that simply displays "Hello World!" in the

* Java console.

*/

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World!");

 // Statement above displays "Hello, World!"

 }

}

38

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
39

Computing the Area of a Circle:
public class ComputeArea {

 public static void main(String[] args) {

 double radius; // Declare radius

 double area; // Declare area

 // Assign a radius

 radius = 20; // New value is radius

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle"

 + " of radius " + radius + " is " + area);

 }

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class ComputeArea {

 /** Main method */

 public static void main(String[] args) {

 double radius;

 double area;

 // Assign a radius

 radius = 20;

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

 }

}

Trace a Program Execution

40

no valueradius

allocate memory

for radius

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class ComputeArea {

 /** Main method */

 public static void main(String[] args) {

 double radius;

 double area;

 // Assign a radius

 radius = 20;

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

 }

}

Trace a Program Execution

41

no valueradius

memory

no valuearea

allocate memory

for area

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class ComputeArea {

 /** Main method */

 public static void main(String[] args) {

 double radius;

 double area;

 // Assign a radius

 radius = 20;

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

 }

}

Trace a Program Execution

42

20radius

no valuearea

assign 20 to radius

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace a Program Execution

43

20radius

memory

1256.636area

compute area and assign it

to variable area

public class ComputeArea {

 /** Main method */

 public static void main(String[] args) {

 double radius;

 double area;

 // Assign a radius

 radius = 20;

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

 }

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class ComputeArea {

 /** Main method */

 public static void main(String[] args) {

 double radius;

 double area;

 // Assign a radius

 radius = 20;

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

 }

}

44

20radius

memory

1256.636area

print a message to the

console

Trace a Program Execution

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

import java.util.Scanner;

public class ChangeMaker {

 public static void main(String[] args) {

 int change, rem, qs, ds, ns, ps;

 System.out.print("Input change amount (1-99): ");

 Scanner input = new Scanner(System.in);

 change = input.nextInt();

 qs = change / 25;

 rem = change % 25;

 ds = rem / 10;

 rem = rem % 10;

 ns = rem / 5;

 rem = rem % 5;

 ps = rem;

 System.out.print(qs + " quarters,"

 + ds + " dimes,");

 System.out.println(ns + " nickels and"

 + ps + " pennies");

 }

}

ChangeMaker.java

45

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Reading Input from the Console

46

1. Create a Scanner object

Scanner input = new Scanner(System.in);

2. Use the methods nextByte(), nextShort(),

nextInt(), nextLong(), nextFloat(),

nextDouble(), nextBoolean() or next() to obtain a
byte, short, int, long, float, double, boolean
or String (up to the first white space) value. For example,

System.out.print("Enter a double value: ");

Scanner input = new Scanner(System.in);

double d = input.nextDouble();

Scanner is in the Java package java.util

- start your program with:
import java.util.Scanner;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Packages in Java
 To make types easier to find and use, to avoid naming conflicts, and to

control access, programmers bundle groups of related types into

packages.

 The types that are part of the Java platform are members of various

packages that bundle classes by function: fundamental classes are

in java.lang, classes for reading and writing (input and output) are

in java.io and java.util, and so on.

 You can put your types in packages too.

 To create a package, you choose a name for the package and put

a package statement with that name at the top of every source file that

contains the types (e.g., classes, interfaces). In file Circle.java:

package edu.stonybrook.cse114;

public class Circle {

 ...

}47

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Packages in Java
To use a public package member from outside its

package, you must do one of the following:

 Import the package member

import java.util.Scanner;

 Import the member's entire package

import java.util.*;

Refer to the member by its fully qualified name

java.util.Scanner input =

 new java.util.Scanner(System.in);

48

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Packages in Java
 Packages appear to be hierarchical, but they are not.

 Importing java.awt.* imports all of the types in the java.awt package,

but it does not import java.awt.color, java.awt.font, or any

other java.awt.xxxx packages.

 If you plan to use the classes and other types in java.awt.color as well

as those in java.awt, you must import both packages with all their files:

import java.awt.*;

import java.awt.color.*;

Setting the CLASSPATH System Variable

 In Windows: set CLASSPATH=C:\users\george\java\classes

 In Unix-based OS:

%CLASSPATH=/home/george/java/classes;

export CLASSPATH

49

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Software engineering basics
 Software engineering waterfall model:

1. Understand and define the problem

2. Determine the required input and output

3. Design an algorithm to solve the problem by

computer

4. Implement (code) the solution

5. Debug and test the software

6. Maintain and update the software

50

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Example: ChangeMaker

51

Problem:

you have to give someone change

what coins do you give that person?

Requirements:

takes user input

displays the change breakdown as output

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
52

1. Understand and Define the Problem

 ask user for input

US coins (quarter, dime, nickel, penny)

max change: 99¢

display the minimum number of coins (output)

 What’s involved?

 interview users

 What are their expectations?

 What data do they need to access?

write a requirements analysis report

ChangeMaker

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
53

2. Determine Input and Output

Typed input by user: amount of change requested (an

integer between 1 and 99)

Printed output:

 Number of quarters given

 Number of dimes given

 Number of nickels given

 Number of pennies given

ChangeMaker

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
54

3. Design an algorithm

 How many quarters?

 subtract the maximum number of quarters X 25c from the total

 How many dimes?

 subtract the maximum number of dimes X 10c from remaining total

 How many nickels?

 subtract the maximum number of nickels X 5c from remaining total

 How many pennies?

 the remaining total

ChangeMaker

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
55

3. Design an algorithm (cont.)
 Pseudocode:Use div and mod (remainder operator)

User Inputs originalAmount

numQuarters=originalAmount div 25

remainder =originalAmount mod 25

numDimes =remainder div 10

remainder =remainder mod 10

numNickels = remainder div 5

remainder =remainder mod 5

numPennies =remainder

Output numQuarters

Output numDimes

Output numNickels

Output numPennies

ChangeMaker

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

import java.util.Scanner;

public class ChangeMaker {

 public static void main(String[] args) {

 int change, rem, qs, ds, ns, ps;

 System.out.print("Input change amount (1-99): ");

 Scanner input = new Scanner(System.in);

 change = input.nextInt();

 qs = change / 25;

 rem = change % 25;

 ds = rem / 10;

 rem = rem % 10;

 ns = rem / 5;

 rem = rem % 5;

 ps = rem;

 System.out.print(qs + " quarters," + ds + " dimes,");

 System.out.println(ns + " nickels and" + ps + " pennies");

 }

}

56

4. Implement (code) the solution

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
57

int remainingAmount = (int)(amount * 100);

 // Find the number of one dollars

 int numberOfOneDollars = remainingAmount / 100;

 remainingAmount = remainingAmount % 100;

 // Find the number of quarters in the remaining amount

 int numberOfQuarters = remainingAmount / 25;

 remainingAmount = remainingAmount % 25;

 // Find the number of dimes in the remaining amount

 int numberOfDimes = remainingAmount / 10;

 remainingAmount = remainingAmount % 10;

 // Find the number of nickels in the remaining amount

 int numberOfNickels = remainingAmount / 5;

 remainingAmount = remainingAmount % 5;

 // Find the number of pennies in the remaining amount

 int numberOfPennies = remainingAmount;

1156remainingAmount

remainingAmount

initialized

Suppose amount is 11.56

Extend ChangeMaker to include dollars

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace / Debug

58

1156remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

numberOfOneDollars

assigned

int remainingAmount = (int)(amount * 100);

 // Find the number of one dollars

 int numberOfOneDollars = remainingAmount / 100;

 remainingAmount = remainingAmount % 100;

 // Find the number of quarters in the remaining amount

 int numberOfQuarters = remainingAmount / 25;

 remainingAmount = remainingAmount % 25;

 // Find the number of dimes in the remaining amount

 int numberOfDimes = remainingAmount / 10;

 remainingAmount = remainingAmount % 10;

 // Find the number of nickels in the remaining amount

 int numberOfNickels = remainingAmount / 5;

 remainingAmount = remainingAmount % 5;

 // Find the number of pennies in the remaining amount

 int numberOfPennies = remainingAmount;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace / Debug

59

56remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

remainingAmount

updated

int remainingAmount = (int)(amount * 100);

 // Find the number of one dollars

 int numberOfOneDollars = remainingAmount / 100;

 remainingAmount = remainingAmount % 100;

 // Find the number of quarters in the remaining amount

 int numberOfQuarters = remainingAmount / 25;

 remainingAmount = remainingAmount % 25;

 // Find the number of dimes in the remaining amount

 int numberOfDimes = remainingAmount / 10;

 remainingAmount = remainingAmount % 10;

 // Find the number of nickels in the remaining amount

 int numberOfNickels = remainingAmount / 5;

 remainingAmount = remainingAmount % 5;

 // Find the number of pennies in the remaining amount

 int numberOfPennies = remainingAmount;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace / Debug

60

56remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

2numberOfOneQuarters

numberOfOneQuarters

assigned

int remainingAmount = (int)(amount * 100);

 // Find the number of one dollars

 int numberOfOneDollars = remainingAmount / 100;

 remainingAmount = remainingAmount % 100;

 // Find the number of quarters in the remaining amount

 int numberOfQuarters = remainingAmount / 25;

 remainingAmount = remainingAmount % 25;

 // Find the number of dimes in the remaining amount

 int numberOfDimes = remainingAmount / 10;

 remainingAmount = remainingAmount % 10;

 // Find the number of nickels in the remaining amount

 int numberOfNickels = remainingAmount / 5;

 remainingAmount = remainingAmount % 5;

 // Find the number of pennies in the remaining amount

 int numberOfPennies = remainingAmount;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace / Debug

61

6remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

2numberOfQuarters

remainingAmount

updated

int remainingAmount = (int)(amount * 100);

 // Find the number of one dollars

 int numberOfOneDollars = remainingAmount / 100;

 remainingAmount = remainingAmount % 100;

 // Find the number of quarters in the remaining amount

 int numberOfQuarters = remainingAmount / 25;

 remainingAmount = remainingAmount % 25;

 // Find the number of dimes in the remaining amount

 int numberOfDimes = remainingAmount / 10;

 remainingAmount = remainingAmount % 10;

 // Find the number of nickels in the remaining amount

 int numberOfNickels = remainingAmount / 5;

 remainingAmount = remainingAmount % 5;

 // Find the number of pennies in the remaining amount

 int numberOfPennies = remainingAmount;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

import java.util.Scanner;

public class ChangeMaker {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 // read a price, e.g., $73.28

 // read an amount, e.g., $100

 // compute the change=amount-price, e.g., $100-$73.29=$26.72

 // use bills and coins to cover that change

 System.out.print("Input the price: $");

 double price = input.nextDouble();

 System.out.print("Input the paid amount: $");

 double amount = input.nextDouble();

 double change = amount - price;

 System.out.println("Change: $" + change);

 int rem = (int)(change * 100);

 int hundreds = rem / 10000;

 rem = rem % 10000;

 if(hundreds > 0)

 System.out.println(hundreds + " x $100 bills");

extending

ChangeMaker

62

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int fifties = rem / 5000;

 rem = rem % 5000;

 if(fifties > 0)

 System.out.println(fifties + " x $50 bills");

 int twenties = rem / 2000;

 rem = rem % 2000;

 if(twenties > 0)

 System.out.println(twenties + " x $20 bills");

 int tens = rem / 1000;

 rem = rem % 1000;

 if(tens > 0)

 System.out.println(tens + " x $10 bills");

 int fives = rem / 500;

 rem = rem % 500;

 if(fives > 0)

 System.out.println(fives + " x $5 bills");

 int ones = rem / 100;

 rem = rem % 100;

 if(ones > 0)

 System.out.println(ones + " x $1 bills");63

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int qs = rem / 25;

 rem = rem % 25;

 if(qs > 0)

 System.out.println(qs + " x 25c");

 int ds = rem / 10;

 rem = rem % 10;

 if(ds > 0)

 System.out.println(ds + " x 10c");

 int ns = rem / 5;

 rem = rem % 5;

 if(ns > 0)

 System.out.println(ns + " x 5c");

 if(rem > 0)

 System.out.println(rem + " x 1c");

 }

}

extending

ChangeMaker

64

	Slide 1: Elementary Programming
	Slide 2: Contents
	Slide 3: Identifiers
	Slide 4: Rules for Identifiers
	Slide 5: Common Java Naming Conventions
	Slide 6: Variables
	Slide 7: Data Types
	Slide 8: Java’s 8 Primitive Types
	Slide 9: Assignments
	Slide 10: Assignments
	Slide 11: Assignments
	Slide 12: Variables
	Slide 13: Variables
	Slide 14: Variables
	Slide 15: Variables
	Slide 16: Compatibility
	Slide 17: Assignment Compatibility
	Slide 18: Assignment Compatibility
	Slide 19: Arithmetic Operators
	Slide 20: Division
	Slide 21: Division
	Slide 22: Rules of precedence
	Slide 23: Arithmetic Operators
	Slide 24: Arithmetic Operators
	Slide 25: Pre and Post Increment and Decrement Operators
	Slide 26: Pre and Post Increment
	Slide 27: Scientific Notation
	Slide 28: “double-precision” values
	Slide 29: Constants
	Slide 30: Character Data Type
	Slide 31: Character Data Type
	Slide 32: Casting between char and Numeric Types
	Slide 33: Character Data Type
	Slide 34: Escape Sequences for Special Characters
	Slide 35: Classes
	Slide 36: Methods
	Slide 37: The main Method
	Slide 38: Example programs: HelloWorld.java
	Slide 39
	Slide 40: Trace a Program Execution
	Slide 41: Trace a Program Execution
	Slide 42: Trace a Program Execution
	Slide 43: Trace a Program Execution
	Slide 44: Trace a Program Execution
	Slide 45: ChangeMaker.java
	Slide 46: Reading Input from the Console
	Slide 47: Packages in Java
	Slide 48: Packages in Java
	Slide 49: Packages in Java
	Slide 50: Software engineering basics
	Slide 51: Example: ChangeMaker
	Slide 52: ChangeMaker
	Slide 53: ChangeMaker
	Slide 54: ChangeMaker
	Slide 55: ChangeMaker
	Slide 56
	Slide 57
	Slide 58: Trace / Debug
	Slide 59: Trace / Debug
	Slide 60: Trace / Debug
	Slide 61: Trace / Debug
	Slide 62: extending ChangeMaker
	Slide 63
	Slide 64: extending ChangeMaker

