
CSE 594 : Modern Cryptography 4/13/2017

Lecture 20: Non interactive Zero Knowledge

Instructor: Omkant Pandey Scribe: Venkata Kedarnath Pakala, Sayan Bandyopadhyay

1 Setting

In previous lecture , we discussed about interactive zero knowledge proof. But what if Prover (Alice)
is restricted to send only a single message to verifier (Bob). Proof becomes ’Non interactive’. But
1-message zero-knowledge proofs is only possible for languages in bounded probabilistic polynomial
(BPP) because a simulator that can simulate the single message can use this as witness for x. This
is useless as we want to prove statements for languages in NP

Fortunately, Alice and Bob have access to common random string generated honestly by
someone they both trust. This common random string can be used for proving statements non-
interactively.

2 Definition 1 (NIZK)

A non interactive proof system for language L with witness relation R is a tuple of algorithms
(K,P,V) such that:

• Setup : σ ← K(1n) outputs a common random string

• Prove : π ← P(σ, x, w) takes as input a common random string σ and a statement x ∈ L and
a witness w and outputs a proof π

• Verify : V(σ, x, π) outputs 1 if it accepts the proof and 0 otherwise.

A non interactive proof system must satisfy the properties of completeness and soundness as shown
below :
Completeness : ∀x ∈ L,∀w ∈ R(x):
Pr [σ ← K(1n);π ← P (σ, x, w) : V (σ, x, π) = 1] = 1

Non-Adaptive Soundness : There exists a negligible function v(.) s.t. ∀x /∈ L
Pr [σ ← K(1n);∃πs.t.V (σ, x, π) = 1] ≤ v(n)

Adaptive Soundness : There exists a negligible function v(.) s.t.
Pr [σ ← K(1n);∃(x, π)s.t.∀x /∈ L ∧ V (σ, x, π) = 1] ≤ v(n)

The reader should note that in non adaptive soundness adversary chooses x before seeing the
common random string while in adaptive soundness adversary can choose x based on common
random string, implies Adaptive soundness is stronger notion of soundness.

Similar to soundness we have two types of non interactive zero knowledge (NIZK). We can
transform a non-adaptive NIZK to one with adaptive soundness in a way similar to hardness
amplification.

20-1

3 Definition 2(Non adaptive NIZK)

A non interactive proof system (K,P,V) for a language L with witness relation R is non adaptive
zero-knowledge if there exists a PPT simulator S s.t. for every x ∈ L, w ∈ R(x), the output distri-
bution of the following two experiments are computationally indistinguishable :

REAL(1n, x, w)

σ ← K(1n)
π ← P (σ, x, w)
Output(σ, π)

IDEAL(1n, x)

(σ, π)← S(1n, x)

Output(σ, π)

Here the simulator is allowed to generate both the common random string and the simulated proof
for a given input statement x. If simulator S is not allowed to generate σ, the definition would have
been trivial as verifier could have convinced himself by running the simulator instead of interacting
with P. Allowing S still keeps the definition zero knowledge as verifier sees both σ and π but P
and S are treated unequally.

4 Definition 3(Adaptive NIZK)

A non interactive proof system (K,P,V) for a language L with a witness relation R is adaptive
zero knowledge if there exists a PPT simulator S=(S0, S1) s.t. for every x ∈ L, w ∈ R(x), the
output distribution of the following two experiments are computationally distinguishable :

REAL(1n, x, w)

σ ← K(1n)
π ← P (σ, x, w)
Output(σ, π)

IDEAL(1n, x)

(σ, τ)← S0(1
n)

π ← S1(σ, τ, x)
Output(σ, π)

Here τ is the ”trapdoor” for simulated common random string σ that is used by simulator S1 to
generate an accepting proof for x without knowing the witness.

Here τ should be considered as the local state stored by the simulator.

Remarks on NIZK :

1. In NIZK, the simulator gets seemingly ”extra power” in choosing common random string
along with trap door to enable simulation without a witness.

2. While in interactive ZK, the simulator’s extra power was the ability to reset the verifier.

3. It turns out that, simulator must always have extra power over the normal prover else it
would be impossible to realize the definition in the languages other than BPP.

4. In NIZK, the extra power is justified as we require the indistinguishability of the joint distri-
bution over σ and π

20-2

Now, let us show that adaptive soundness is much harder to achieve by constructing it from
NIZK with non adaptive soundness with a procedure similar to hardness amplification.

Lemma : Given a NIZK(K,P,V) with non-adaptive soundness, we can construct NIZK(K,P,V)
with adaptive soundness.

Proof: Let us consider a σ ”bad” for x0 if (for x0 /∈ L) then ∃ a false proof π for x0 using
random string σ s.t. V (σ, x, π) = 1 Let `(n) be the length of the statements Now, if we repeat
the non-adaptive NIZK polynomially many times each time choosing fresh random string σ, the
probability of σ being ”bad” for x0 decreases to 2−2`(n). By using union bound we can determine
the probability of σ being ”bad” for all statements (x ∈ L) as follows :
Pr[∃(x, π)s.t.V (σ, x, π) = 1]
= Pr[σ bad for some x]
≤ 2`(n) ∗ Pr[σ bad for x0]
= 2`(n) ∗ 2−2`(n)

=2−`(n)

So, this repeated scheme becomes adaptively sound.

5 NIZK for NP

NIZK for NP is constructed first from non-adaptive zero-knowledge property and then convert
non-adaptive NIZK to adaptive NIZK

Steps to construct NIZK for NP from non-adaptive zero-knowledge property are :

1. Construct a NIZK proof system for NP in the hidden bit model. this step is unconditional.

2. Using trapdoor permutation, transform any NIZK proof system for language in hidden bit
model to a non-adaptive NIZK proof system in the common random string model.

Next transform non-adaptive NIZK to adaptive NIZK for NP using one-way functions which are
implied by trap door permutations.

Putting all the steps together, we get adaptive NIZKs for NP using trapdoor permutations.

20-3

6 NIZK in Hidden-Bit Model

6.1 Syntax

A non-interactive proof system for a language L with witness relation R in the hidden-bit model is
a tuple of algorithms

• Setup : σ ←KHB(1n) outputs the hidden random string

• Prove : (I, π) ← PHB(σ, x,w) generates the indices I ⊆ [|r|] of r to reveal, along with a
proof π

• Verify : VHB(I, {ri}i∈I , π) outputs 1 if it accepts the proof and 0 otherwise.

The above proof must satisfy completeness and soundness like above

6.2 Definition

A non-interactive proof system (KHB, PHB, VHB) for a language L with witness relation R in the
hidden-bit model is (non-adaptive) zero-knowledge if there exists a PPT simulator SHB s.t. for ev-
ery x ∈ L,w ∈ R(x), the output distributions of the following two experiments are computationally
indistinguishable:

REAL(1n, x, w)

σ ← KHB(1n)
(I, π)← PHB(r, x, w)
Output(I, {ri}i∈I , π)

IDEAL(1n, x)

(I, {ri}i∈I , π)← SHB(1n, x)

Output(I, {ri}i∈I , π)

7 Conversion from NIZK in HB to NIZK in CRS

7.1 Intuition

How to transform a public random string into a hidden random string?
Suppose the prover samples a trapdoor permutation (f, f−1) with hardcore predicate h. Given a
common random string σ = σ1, σ2,, σn the prover can compute r = r1, ..., rn where:

ri = h(f -1(σi))

.
If f is a permutation and h is a hard-core predicate, then r is guaranteed to be random. Now r can
be treated as the hidden random string: V can only see the parts of it that the prover wishes to
reveal

7.2 Construction

Let F = {f, f -1} be a family of 2n trapdoor permutations with hardcore predicate h. Let (KHB, PHB, VHB)
be a NIZK proof system for L in the hidden-bit model with soundness error 22n

20-4

Construction of (K,P,V):

K(1n): Output a random string σ = σ1, ..., σn s.t. ∀i, |σi| = n
P (σ, x, w): Execute the following steps:

· Sample (f, f -1)← F (1n)

· Compute αi = f1(σi) for i ∈ [n]

· Compute ri = h(αi) for i ∈ [n]

· Compute (I, φ)← PHB(r, x, w)

· Output π = (f, I, {αi}i∈I ,Φ)

V (, x,) : Parse π = (f, I, {αi}i∈I , φ,Φ) and:

· Check f ∈ F and f(αi) = σi for every i ∈ I

· Compute ri = h(αi) for i ∈ I

· Output V HB(I, rii∈I , x,Φ)

Notes:

· Completeness → α is uniformly distributed since f1 is a permutation and σ is random.
Further, since h is a hard-core predicate, r is also uniformly distributed. Completeness follows
from the completeness of (KHB, PHB, VHB)

· Soundness → : For any f = f0, r is uniformly random, so from (non-adaptive) soundness of
(KHB, PHB, VHB), we have:

Pr
σ

[Pcan cheat using f0] ≤ 2−2n

Since there are only 2n possible choices of f (verifier checks that f ∈ F), by union bound, it
follows:

Pr
σ

[Pcan cheat] ≤ 2−2n

20-5

7.3 Proof of zero knowledge: Simulator

Let SHB be the simulator for (KHB, PHB, VHB)

1: procedure Simulator S(1n, x)
2: (I, {ri}i∈I ,Φ)← SHB(1n, x)
3: (f, f−1)← F
4: αi ← h−1(ri), ∀i ∈ I
5: σi = f(αi), ∀i ∈ I
6: σi

$← {0, 1}n, ∀i /∈ I
7: Return (σ, f, I, {αi}i∈I ,Φ)
8: end procedure

Note: h1(ri) denotes sampling from the pre-image of ri, which can be done efficiently by
simply trying random αi ’s until h(αi) = ri

7.4 Proof of zero knowledge: Hybrid

1: procedure H0(1
n, x, w) := REAL(1n, x, w)

2: σ ← K(1n) where σ = σ1, ..., σn
3: (f, f−1)← F
4: αi ← f−1(σi), ∀i ∈ [n]
5: ri = h(αi), ∀i ∈ [n]
6: (I,Φ)← PHB(r, x, w)
7: Return (σ, f, I, {αi}i∈I ,Φ)
8: end procedure

1: procedure H1(1
n, x, w)

2: αi
$← {0, 1}n, ∀i ∈ [n]

3: (f, f−1)← F
4: σi ← f(αi), ∀i ∈ [n]
5: ri = h(αi), ∀i ∈ [n]
6: (I,Φ)← PHB(r, x, w)
7: Return (σ, f, I, {αi}i∈I ,Φ)
8: end procedure

H0 ≈ H1: In H1, we sample αi at random and then compute σi (instead of sampling σi and
then computing αi as in H0). This induces an identical distribution since f is a permutation.
So the order of the 2 operations can be reversed.

20-6

1: procedure H2(1
n, x, w)

2: ri
$← {0, 1}n, ∀i ∈ [n]

3: (f, f−1)← F
4: αi ← h−1(ri), ∀i ∈ [n]
5: ri = f(αi), ∀i ∈ [n]
6: (I,Φ)← PHB(r, x, w)
7: Return (σ, f, I, {αi}i∈I ,Φ)
8: end procedure

H1 ≈ H2: In H2, we again change the sampling order: first sample r = r1, ..., rn at random and
then sample αi from the pre-image of ri (as described earlier). This distribution is identical to
H1

1: procedure H3(1
n, x, w)

2: ri
$← {0, 1}, ∀i ∈ [n]

3: (f, f−1)← F
4: αi ← h−1(ri), ∀i ∈ [n]
5: (I,Φ)← PHB(r, x, w)
6: σi = f(αi), ∀i ∈ I
7: σi

$← {0, 1}n, ∀i /∈ I
8: Return (σ, f, I, {αi}i∈I ,Φ)
9: end procedure

Here in H3 we are taking one extra computation step.
H2 ≈c H3: In H3, we output random σi for i ∈ I. From security of hard-core predicate h, it
follows that:

{f(h1(ri)} ≈c Un

Indistinguishability of H2 and H3 follows using the above equation

1: procedure H4(1
n, x)

2: (I, {ri}i∈I ,Φ)← SHB(1n, x)
3: (f, f−1)← F
4: αi ← h−1(ri), ∀i ∈ I
5: σi = f(αi), ∀i ∈ I
6: σi

$← {0, 1}n, ∀i /∈ I
7: Return (σ, f, I, {αi}i∈I ,Φ)
8: end procedure

H3 ≈c H4: InH4, we swap PHB with SHB. Indistinguishability follows from the zero-knowledge
property of (KHB, PHB, VHB)

20-7

