
CSE 594 : Modern Cryptography 04/11/2017

Lecture 19: Zero-Knowledge Proofs - II

Instructor: Prof. Omkant Pandey Scribe: Swarnima Shrivastava, Vaishali Chanana

1 Recall: Zero Knowledge and Interactive Proof for Graph Iso-
morphism

In last class, we proved completeness of interactive proofs i.e., a prover can’t cheat. We discussed
soundness of the proof but we did not prove that the proof itself doesn’t convey any extra knowl-
edge. In today’s class, we will prove that the interactive proof itself is a zero knowledge proof.
Following is the definition:

Definition 1 An interactive proof (P, V) for a language L with witness relation R is said to be
zeroknowledge if for every non-uniform PPT adversary V ∗, there exists a PPT simulator S s.t.
for every non-uniform PPT distinguisher D, there exists a negligible function v(.) s.t. for every
x ∈ L, w ∈ R(x), z ∈ 0, 1∗, D distinguishes between the following distributions with probability at
most v(|x|):

• {V iew∗V [P (x,w)↔ V ∗(x, z)]}

• {S(1n, x, z)}

Note: If the distributions are statistically close, then we call it statistical zero knowledge and
if the distributions are identical, then we call it perfect zero knowledge

Now, let us prove that the interactive proof (Graph Isomorphism) is a perfect zero knowledge
proof i.e., it doesn’t convey any extra knowledge. Recall Graph Isomorphism protocol from last
class:

Protocol (P,V): Prover P, Verifier V, common input x = (G0, G1) and P ′s witness π s.t.
G1 = π(G0), repeats the following procedure n times using fresh randomness each time:

• P → V : Prover chooses a random permutation σ ∈ Πn, computes H = σ(G0) and sends H

• V → P : V chooses a random bit b ∈ 0, 1 and sends it to P .

• P → V : If b = 0, P sends σ, else φ = σ.π−1

• V outputs 1 iff H = φ(Gb) where verifier V ′s view is V (x, b, φ)

This way the verifier is never able to see π. He either sees σ or φ and since σ is completely
random, φ is also random and is computationally indistinguishable even though it was calculated
using π. That’s the protocol and it is sound because if the graphs are not isomorphic then with a
prover can guess correct answer only with probability 1/2.

19-1

2 Formal Proof: Protocol(P,V) is Perfect Zero Knowledge

Strategy: We are going to prove that a single iteration of (P, V) is perfect zero knowledge and
the way we have defined zero knowledge, the following theorem holds which states that if we can
prove the property for one component then it holds for all the subsequent sequential executions.

Theorem 1 Sequential repetition of any zero knowledge protocol is also zero knowledge.

Now, all we need to do is prove that single iteration of Protocol(P, V) is perfect zero knowledge.
To prove it, we need to do the following:

1. Construct a Simulator S for every PPT V ∗ s.t. the view of verifier V in real execution is
indistinguishable with view created by simulator.

2. Prove that expected run time of such a simulator S is polynomial

3. Prove that the output distribution of S is correct (i.e.indistinguishable from real execution)

2.1 Construction of Simulator S

Main idea behind constructing such a simulator is if the simulator is not able to produce results
similar to real execution, it throws away the information about current run and restarts afresh till
it produces a run computationally indistinguishable to real execution.

Algorithm 1 Simulator S(x, z):

1: Choose random b
′ $←− {0, 1} and σ

$←− Πn

2: Compute H = σ(Gb′)
3: Emulate execution of V ∗(x, z) by feeding it H. Let b denote its response.
4: If b = b

′
, then feed σ to V ∗ and output its view. Otherwise, restart the above procedure.

In above algorithm, we assumed that G0 and G1 are isomorphic. Since G0 is isomorphic to
G1, for a random σ ← Πn, σ(G0) and σ(G1) are identically distributed i.e., distribution of H is
independent of b

′
. Therefore, H has the same distribution as σ(G0). Now, since V ∗ only takes H

as input, its output b
′

is also independent of b
′
. Since b

′
is chosen at random, a cheating verifier

can only guess it with probability no more than half . More formally,

Lemma 2 In the execution of S(x, z),

• H is identically distributed to σ(G0), and

• Pr[b = b
′
] = 1

2

2.2 Proving Run Time of Simulator S is Polynomial

Some relaxation is provided here in terms that instead of asking for a strict polynomial time
algorithm, we can consider a running time that is polynomial only in expectation i.e., run time
itself might be random whose expectation is polynomial since this can be addressed.
Claim: If X is a random boolean variable s.t. Pr[X = 1] = p and T be random num of trials
before X = 1 occurs then, E[T]=1

p provided 0 < p < 1.

19-2

Now from above lemma, we know that S can succeed with probability 1
2 in each trial. Therefore,

in expectation, S stops after 2 trials. Since each trial takes polynomial time, so total run time of
S is expected to be polynomial.

2.3 Proving Indistinguishability of Simulated View

From above lemma, we know that H has same distribution as σ(G0). If we could always output σ,
then output distribution of S would be same as in real execution. S, however, only outputs H and σ
if b

′
= b. But since H is independent of b

′
, this does not change the output distribution. Therefore,

we can say that the simulated view is computationally indistinguishable from view obtained from
real execution.

2.4 Takeaway:

A verifier V that participates in the live conversation with the prover P is convinced that transcript
x is valid but any 3rd party (verifier) who did not see the live conversation with the prover could not
be convinced that the transcript is real/valid since it is easy to come up with a simulated transcript
without knowing the actual isomorphism. It is similar to signature authentication only if it is done
online. If you get the transcript from third party, it might not be authentic as it could be forged
using simulator. This is the main essence, tt gives you plausible deniability.

3 Zero-Knowledge Proofs for NP Languages and Graph 3-Coloring

If we construct proofs for every NP language, it would not be efficient. There are numerous
languages in NP. Key to this is NP-completeness. All languages in NP reduces to NP-complete
languages. Also, the following theorem states as follows:

Theorem 3 If one-way permutations exist, then every language in NP has a zero-knowledge in-
teractive proof.

This assumption can also be relaxed to just one-way functions.
Using this fact, we can say that instead of constructing proofs for all NP languages, it would suffice
if we construct a zero knowledge proof for an NP-complete problem(say Graph3−Coloring in our
case) and reduce NP problem to it as shown below:

1. Given instance x and witness w, P and V reduce x into an instance x
′

of Graph 3-coloring
using Cooks (deterministic) reduction

2. P also applies the reduction to witness w to obtain witness w
′

for x
′

3. Now, P and V can run the zero knowledge proof from Step 1 on common input x
′

3.1 Physical Zero knowledge Proof for Graph 3-Coloring

Consider a graph G = (V,E). Let C be a set of 3-coloring of V given to P . P then picks a random
permutation π over colors {1, 2, 3}, colors G according to π(C) and hides each vertex inside a locked
box(we will digitize this later). Conceptually, using locked box is a way of saying that V doesn’t
have access to know the color of any of the vertices initially. Now, once V picks a random edge

19-3

(u, v)from E, P unlocks the boxes corresponding to edge (u, v). V accepts if u and v have different
colors, and rejects otherwise. The above process is repeated n|E| (to ensure simulator’s success, as
discussed in section 2.2 above)
Intuition behind zero knowledge proof of Graph 3-coloring:

1. Intuition for Soundness: In each iteration, cheating prover is caught with probability 1
|E|

2. Intuition for Zero Knowledge: In each iteration, V only sees something it knew before two
random (but different) colors.

3.2 Digitizing above Proof

To digitize the above proof(intuitions), we need to implement our concept of lockedboxes. We
require the digital lock boxes to hold the following two properties:

1. Hiding: V should not be able to see the content inside a locked box

2. Binding: P should not be able to modify the content inside a box once its locked.

This can be achieved with the help of technique called commitmentschemes which is discussed in
the following section.

4 Commitment Schemes

4.1 Introduction

The locked boxes described above can be well explained by their digital analogue - commitment
schemes. If we have one-way permutation, we will be using the non-interactive version of the
scheme and if we do not have, then we might need a few rounds of interaction. It has two phases:

1. Commit phase: Sender locks a value v inside a box and sends it over to the verifier.

2. Open phase: Sender unlocks the box and reveals v.

Definition 2 A randomized polynomial time algorithm Com is called a commitment scheme for
n-bit strings if it satisfies the following properties:

• Binding: For all v0, v1 ∈ {0, 1}n and r0, r1 ∈ {0, 1}n, it holds that Com(v0; r0) 6= Com(v1; r1)

• Hiding: For every non-uniform PPT distinguisher D, there exists a negligible function v(.)
s.t. for every v0, v1 ∈ {0, 1}n, D distinguishes between the following distributions with proba-
bility at most v(n)

– {r $←− {0, 1}n : Com(v0; r)}

– {r $←− {0, 1}n : Com(v1; r)}

The definition is applicable to a single message. As we are coloring for many nodes, we need the
hiding property for multiple messages. Intuitively, instead of a single v0, we can have sequence of v
in the distribution and they should look indistinguishable. This is called multi-value hiding which
is explained in the next section.

19-4

4.2 Construction of Bit Commitments

Let f be an OWP and h be the hard core predicate for f . To commit bit b, you chose random
permutation r such that sender computes Com(b; r) = f(r), b⊕ h(r). This is the commit phase.
Let the commitment be denoted by C.
The verifier will check C = (f(r), b ⊕ h(r)), will accept if its true or reject otherwise. This is the
open phase.

Testing security: As f is OWP, first part of the commitment fixes exactly one value of r.
Thereby, fixing h(r) would fix b as h(r) is deterministic.

5 Revisit Zero Knowledge Proof for Graph 3-Coloring

Protocol (P, V): Prover P , Verifier V , common inputG = (E, V) where |V | = n and color1, color2..colorn ∈
{1, 2, 3} are the colors for the nodes of the graph, repeats the following procedure n|E| times using
fresh randomness each time:

• P → V : Prover P chooses a random permutation π over {1,2,3}. For every i ∈ [n], it

computes Ci = Com(c̃olori) where c̃olori = π(colori). It sends (C1, C2 . . . Cn) to the verifier
V

• V → P : V chooses a random edge (i, j) ∈ E and sends it to P

• P → V : Prover P opens Ci and Cj to reveal (c̃olori, c̃olorj

• V : If the openings of Ci, Cj are valid and c̃olori 6= c̃olorj , then V accepts the proof and
rejects, otherwise.

5.1 Proof of Soundness

If it is not 3-colorable, then it will not be colored correctly. Meaning, there will be at least one
edge that has the same color on both the endpoints. From the binding property, we know that

C1, . . . , Cn have unique openings c̃olor1, . . . , c̃olorn. The verifier V chooses i = i∗ and j = j∗ with

probability 1
|E| to catch P where (i∗, j∗) ∈ E such that c̃olor∗i = c̃olor∗j . This means, for n|E|

repetitions, P can successfully cheat with probability at most(
1− 1

|E|

)n|E|
≈ e−n

5.2 Proving Zero Knowledge

Intuitively, zero knowledge can be proved by using the hiding property of Com as it guarantees
that everything remains hidden from V except the two colors of the edge he picks. Let us see how
that can be put in a more formal way.

5.2.1 Construction of Simulator S

19-5

Algorithm 2 Simulator S(x = G, z):

1: Choose a random edge (i
′
, j

′
)

$←− E and pick random colors color
′

i′
, color

′

j′
$←− {1,2,3} s.t.

color
′

i′
6= color

′

j′
and set color

′
k = 1 for every other k ∈ [n]\{i′ , j′}

2: Compute Cl = Com(color
′
l) for every l ∈ [n]

3: Emulate execution of V ∗(x, z) by giving (C1 . . . Cn) as input. Let (i, j) be the output.
4: If (i, j) = (i

′
, j

′
)

feed the openings of Ci, Cj to V ∗ and output its view
else

restart with Step 1 at most n|E| times
5: If simulation does not succeed after n|E| attempts, then output fail

5.2.2 Correctness of Above Simulation

We will prove the correctness of the simulation using hybrid arguments where we will change the
witness one at a time till the point when no witness is required by the simulator machine.

• H0 : Real execution with the prover machine P

• H1 : Hybrid Simulator S
′

that chooses (i
′
, j

′
)

$←− E at random along with the witnesses
color1 . . . colorn and outputs fail if (i

′
, j

′
) 6= (i, j)

If S
′

does not output fail, then H0 and H1 are proved to be identical. H0 and H1 seem to
be statistically indistinguishable as (i, j) and (i

′
, j

′
) are independently chosen and S

′
will fail

with least probability of (
1− 1

|E|

)n|E|
≈ e−n

which follows that H0 ≈ H1

• H2 : Simulator machine S which does not require witnesses at all.
For all k ∈ [n]\{i′ , j′}, Ck is a commitment to π(colork) in H1 and a commitment to 1 in H2.
Multi-value hiding property shows that H1 ≈ H2.

19-6

