
CSE 594 : Modern Cryptography 2/23/2017

Pseudorandomness-III

Instructor: Omkant Pandey Scribes: Gustavo Poscidonio, Justin Maldonado

1 Random Functions

We begin by considering how to define a random function. These functions F will be in the form
F : {0, 1}n → {0, 1}n. It will be useful for future constructions to think of F as a table:

x F (x)

000 . . . 000 101 . . . 110
000 . . . 001 111 . . . 010
000 . . . 010 001 . . . 110

...
...

111 . . . 101 011 . . . 000
111 . . . 110 101 . . . 001
111 . . . 111 001 . . . 011

For each input x we select a random sequence of bits and we call that sequence F (x). This
table is exponentially large with 2n entries in the table. Each entry in the image of F (i.e. the
right column of the table) takes up n bits. Thus, a bitwise representation of F would take up n · 2n
bits. Note that there are a total of 2 size of F = 2n2

n
such functions F that map n bits to n bits.

One way to define a random function is to select uniformly at random one of these 2n2
n

func-
tions. This is impractical because just describing such a function (e.g., as a table of entries) takes
exponential time. Since the function is truly random, its full table-description cannot be compressed
too much. Another alternative to define the function is as follows:

Describing F in Polynomial Time Use a randomized algorithm M to iteratively describe
the function:

1. M initializes a function table (as pictured above) called T . This table T is initially empty.

x F (x)

2. On input a to M , is M does not have an entry for a in its table, choose a random string b
and add the entry (a, b) to the table.

x F (x)

a b

1-1

3. If a is already in the table, then simply query the table T for the image of a. So in the table
above, F (a) = b.

Observe here that M ’s output distribution is identical to that of F , i.e. it is truly random.
The inherent problem with truly random functions is that they are incredibly large objects.

Consider storing an entire truly random function that maps from 4 bits to 4 bits. That requires
24·2

4
bits ≈ 2 million terabytes. It doesn’t matter how we construct T , we can’t possibly store

the entire function efficiently. The method we described to generate T one entry at a time only
allows us to support polynomial calls to the function. It doesn’t magically let us define the whole
function in polynomial space or time.

2 Pseudorandom Functions (PRF)

A PRF is a construct which looks like a random function but only requires polynomially many
bits to be described. Precisely speaking, a PRF and a random function should be computationally
indistinguishable.

So let us consider a distinguisher D that will try to distinguish between a PRF and a random
function. If we simply give D the full description of the PRF and the random function:

1. D won’t be able to read the input efficiently

2. D can distinguish between the PRF and the random function by simply looking at the size
of the inputs. The larger one will be the random function with high probability.

The solution to these issues is that D should only be able to query the function on inputs of its
choice and see the output. Now, that’s not to say that the description of the PRF should be hidden
from D. This violates Kerckoff’s principle which says that security by obscurity is a bad idea. So
instead we will make the PRF a keyed function. This is far more ideal since if the key is exposed,
it’s easy to simply generate a new key. If an algorithm gets exposed, it’s not easy to generate a
new algorithm. So we use a publicly understood algorithm with a secret key as our PRF.

We will define the security of a PRF using a Game based definition. The Game will have
two players: a challenger Ch and a distinguisher D.

1. The Game begins with Ch choosing a random bit b. If b = 0, then Ch will implement a
random function. Otherwise it will implement a PRF. This selection remains for the duration
of the Game. Ch may not switch the function it is using once the Game has started.

2. D sends queries x1, x2, . . . to Ch one at a time.

3. Ch correctly applies whichever function it chose and responds with the result F (x1), F (x2),

• Observe that PRFs run in polynomial time. Also observe that the calculation F (x)
where F is a random function can also be done in polynomial time if we use the iterative
construction of F as given earlier in the lecture. So regardless of whether Ch implements
a PRF or a random function, we can compute F (x) in polynomial time.

4. After however many queries D chooses to make, D will output it’s guess b′. That is, D guesses
whether the output came from a PRF or a random function.

1-2

5. D wins of b′ = b.

We say that PRFs are secure if no D can win with probability greater than 1
2

Definition 1 A family {Fk}k∈{0,1}n of functions, where Fk : {0, 1}n → {0, 1}n for all k, is pseu-
dorandom if:

• Easy to compute: There is an efficient algorithm M such that ∀k, x : M(k, x) = Fk(x).

• Hrad to distinguish: for every non-uniform PPT D there exists a negligible function ν
such that ∀n ∈ N: ∣∣∣∣Pr[D wins GuessGame]− 1

2

∣∣∣∣ ≤ ν(n)

where GuessGame is defined below:

GuessGame(1n) incorporates D and proceeds as follows:

• The games choose a PRF key k and a random bit b.

• It runs D answering every query x as follows:

• If b = 0: (answer using PRF)

– output Fk(x)

• If b = 1: (answer using a random F)

– (keep a table T for previous answers)

– if x is in T : return T [x]

– else: choose y ← {0, 1}n, T [x] = y, return y

• Game stops when D halts. D outputs a bit b′.

D wins the GuessGame if b′ = b.

3 Constructing a PRF

We will be constructing a PRF using a PRG. We can generalize this later so we will begin by
building a PRF for just 1-bit inputs using a PRG. Our construction begins as follows:

Let G be a length doubling PRG. Our goal is to find some family of functions {Fk} over all
keys k such that Fk : {0, 1} → {0, 1}n. We know that G is length doubling so let us write:

G(s) = y0||y1

where |y0| = |y1| = n. The idea here is that on 1-bit input x to some function Fk, if x = 0 then we
output y0, otherwise we output y1. More precisely, let b← {0, 1}, then:

Fk(b) = yb where G(k) = y0||y1

1-3

By constructing F in this way, we guarantee that for any 1-bit input x, Fk(x) will always be
the same, and it will always look random since G always produces random looking output.

We can extend the ideas discussed here to work for n-bit inputs. For the 1-bit case, we applied
the idea of “double and choose” where we selected the left side of G’s output if the input was 0
and the right side if the input was 1. We may visualize this as a decision tree with depth 1 (Note:
in the following diagrams, i represents the depth of the tree at that node):

x

k

y0 = G0(k) y1 = G1(k)

xi = 0 xi = 1

We may expand this to an input x with n-bits by simply expanding the decision tree. Consider
an input x of length 2. The decision tree would be as follows:

k

k0 = G0(k)

k00 = G0(k0) k01 = G1(k0)

k1 = G1(k)

k10 = G0(k1) k11 = G1(k1)

xi = 0

xi = 0 xi = 1

xi = 1

xi = 0 xi = 1

The idea here is that each x will take a unique path down this tree. That is, you will repeatedly
“double and choose” and your choice is dependent on the ith bit of x. Eventually, you will end at
a leaf node with the label kx. For example, if x = 01, then the PRF described by the decision tree
above would output Fk(01) = k01.

Theorem 1 If pseudorandom generators exist, then pseudorandom functions exist.

Before beginning our proof, let us clarify some notation about our construction. We define G0

and G1 as:
G(s) = G0(s)||G1(s)

i.e., G0 chooses the left half of G and G1 chooses the right half. Now for x ∈ {0, 1}n we write
x = x1x2 . . . xn where xi is the ith bit of x. Then we define Fk(x) as:

Fk(x) = Gxn(Gxn−1(. . . (Gx1(k))))

1-4

Observe that this is merely saying that for each i ≤ n, we let the ith bit of x determine whether
we choose the left half of G or the right half of G. Consult the tree above for the decision tree
generated by this function where n = 2.

Proof.
We will pursue a proof by hybrid arguments. Observe, however, that if we try to create hybrids

on each possible leaf node in the tree, then we will have exponentially many hybrids and the Hybrid
Lemma won’t hold. So we must coneive of a way to construct polynomially many hybrids. Here, we
make the observation that an efficient adversary can only make polynomially many queries. Thus,
we really only need to change polynomially many nodes in the tree. So we will construct a hybrid
over an arbitrary path taken by some input x.

Suppose to the contrary that Fk(x) is not pseudorandom. Formally, this means that for some
distinguisher D and some noticeable function ε:∣∣∣∣Pr[D wins GuessGame]− 1

2

∣∣∣∣ > ε(n)

In other words, D can distinguish between the output of a PRG and a random function. Now let
us construct hybrids Hi for 1 ≤ i ≤ d where d is the depth of the decision tree mentioned before.
Each hybrid Hi is a distribution of outputs of some function F defined as follows. Let k ∈ {0, 1}i
such that k = xixi−1 . . . x1. Let us define a table T which we initally have empty and we will use to
construct a truly random function in polynomial time as we have discussed previously. This table
T will map i bits to n bits. Then we have:

Fk(x) = Gxn(Gxn−1(. . . (Gxi+1(T [k]))))

That notation looks pretty messy, so let’s investigate it piece by piece. First, let us understand
what is meant by T [k]. T is, as was previously stated, a table construction of a random function
which can be queried in polynomial time. T [k] = T [xixi−1 . . . x1], so effectively it’s just assigning
a random string of length |n| to the bit string xixi−1 . . . x1.

Now we take the result of Tk and apply the choosing functions of G several times. What does
this all mean? Well consider the tree that we constructed previously. Then, in experiment Hi, for
all rows in the tree up to the ith row, the function F returns truly random values. Starting from
the (i+ 1)th row, the function returns pseudorandom values. Consider the following tree where we
are observing the experiment H1 when n = 2. Note: consider the following notation to mean the
same thing: T [k] = tk.

t

t0

k00 = G0(t0) k01 = G1(t0)

t1

k10 = G0(t1) k11 = G1(t1)

xi = 0

xi = 0 xi = 1

xi = 1

xi = 0 xi = 1

1-5

Observe that for the 0th row and the 1st row, we have truly random values from the table T and
starting on the 2nd row, we compute pseudorandom values from the generator G. Furthermore,
observe that for experiment H0, we compute only pseudorandom values and for experiment Hn we
return only truly random values. Thus, by our contrary assumption, distinguisher D can distinguish
between H0 and Hn with noticeable probability ε. Therefore, by the Hybrid Lemma, ∃i ≤ n ∈ N
such that D distinguishes Hi and Hi+1 with probability ≥ ε

n . Note that the only difference between
Hi and Hi+1 is that in Hi, the (i+ 1)th level is computed from a PRG while in Hi+1 the (i+ 1)th
level is computed from a random function.

Observe here that the distinguisher D, in order to remain efficient, is bounded in the number of
queries she can make by some polynomial q(n). Since this is the case, at the ith level of the tree, the
number of entries that will have been generated over the course of the experiment is ≤ q(n). Since
there are at most polynomially many entries on the ith level, we may construct a hybrid on that
level. Let us call this set of hybrids O and suppose there are k such hybrids. We define O0 := Hi

and Ok := Hi+1. Oj answers the first j new queries to F using Hi and the remaining queries using
Hi+1. So we know that D distinguishes between O0 and On with probability ε

n . Therefore, by the
Hybrid Lemma, ∃j ≤ k ∈ N such that D distinguishes Oj and Oj+1 with probability ε

nk .
Now, using D, we construct the following distinguisher A which distinguishes PRGs from ran-

domly chosen values:

1. On input x which is an n-bit output of either a PRG or a randomly chosen value, replace the
j + 1 entry of level i in the tree with x.

2. Ask D whether the current experiment is Oj or Oj+1:

(a) If D says Oj , output that x came from a PRG.

(b) Else, if D says Oj+1, output that x was randomly sampled.

A succeeds in distinguishing x with the same probability that D succeed in distinguishing Oj and
Oj+1 which is ε

kn . That is, A succeeds with noticeable probability which violates the pseudorandom
property of the PRG. This is a contradiction. So we must conclude, finally, that F is indeed
pseudorandom.

1-6

