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Last time

PKE from ANY trapdoor permutation

RSA-based trapdoor permutation
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Today

ElGamal Public-Key Encryption

Some Comments about Textbook RSA

Some attacks on RSA

LWE based Public-Key Encryption

Scribe notes volunteeer?
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(Weak) Indistinguishability Security for PKE

Definition (Secure Public-Key Encryption)
A public-key encryption scheme tGen,Enc,Decu is said to be secure if
for all non-uniform PPT D there exists a negligible function µ such
that for all n P N, for all pair of messages m0,m1 PM such that
|m0| “ |m1|, D distinguishes between the following distributions with
at most νpnq advantage:

tppk, skq Ð Genp1nq : ppk,Encppk,m0qqu

tppk, skq Ð Genp1nq : ppk,Encppk,m1qqu

I.e., the distributions above are computationally indistinguishable.
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Recall: DDH Problem

Recall the DDH Problem: for a large prime p, and a generator g
for the group Z˚p :

!

xÐ Z˚p , y Ð Z˚p :
`

gx, gy, gxy
˘

)

«c

!

xÐ Z˚p , y Ð Z˚p , z Ð Z˚p :
`

gx, gy, gz
˘

)

Recall: |Z˚p | “ p´ 1 is not prime! (This makes the problem easier
in some special cases)
Recall: we work with a prime order subgroup of Z˚p by picking a
safe prime p “ 2q ` 1 and g “ x2 for a random x P Z˚p .
Gq = group generated by g = tg0, g1, . . . , gq´1u. |Gq| “ q.
There are other ways as well to obtain prime order groups G where
DDH is conjectured to be hard.
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Recall: DDH Problem

DDH Assumption: Let G be a group of prime order q and g P G be
a generator of G

!

xÐ Zq, y Ð Zq :
`

gx, gy, gxy
˘

)

«c

!

xÐ Zq, y Ð Zq, z Ð Zq :
`

gx, gy, gz
˘

)
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ElGamal Public-Key Encryption

ElGamal Scheme: Let G be a prime order group where DDH
Assumption holds. The description of G and its order q are
publicly known.

Messages are group elements and the message space is M “ G.
– Genp1nq: sample g Ð G, xÐ Zq and set h “ gx P G. Output
ppk, skq where:

pk “ pg, hq sk “ x

– Encppk,mq for m P G: choose a random r Ð Zq and output:

pgr,m ¨ hrq

– Decpsk, cq where c “ pc1, c2q: output

m “
c2
cx1
“ c2 ˆ pInverse of cx1q

Correctness: m “ c2
cx1
“ m¨hr

grx “
m¨pgxqr

grx “ m.
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Security of ElGamal Scheme

Proof based on DDH Assumption: We now prove that ElGamal
scheme is secure assuming that the DDH assumption holds.
We have to show that for all m0,m1 P G these two distributions
are indistinguishable:

– tppk, skq Ð Genp1nq : ppk,Encppk,m0qqu

– tppk, skq Ð Genp1nq : ppk,Encppk,m1qqu

Let D be a PPT algorithm.

Start with the first distribution, and slowly go to the second
distribution.
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Security of ElGamal Scheme

Game-0: tppk, skq Ð Genp1nq : ppk,Encppk,m0qqu

=
 

g, h, gr,m0 ¨ h
r
(

=
 

g, gx, gr,m0 ¨ g
xr
(

Game-1: Use gz for a random z instead of gxr. We get:

=
 

g, gx, gr,m0 ¨ g
z
(

Claim: Game-0 and Game-1 are indistinguishable.

Proof: Suppose that D can distinguish Game-0 and Game-1.

– We construct D1 which can break DDH Assumption

– D1 gets as input pg, gx, gy, gαq where α “ xy or α “ z.

– D1 sends pg, gx, gy,m0 ¨ g
αq to D,

– D1 outputs whatever D outputs.

If α “ xy, D is in Game-0. If α “ z, D is in Game-1.

If D tells Game-0, Game-1 apart, D1 tells DDH tuples apart! ˝

Instructor: Omkant Pandey Lecture 16: Public Key Encryption:II Spring 2017 (CSE 594) 9 / 17



Textbook RSA-Encryption

Public-Key Encryption:
– Genp1nq: Sample p, q Ð Πn and set N Ð pq.

Sample eÐ Z˚φpNq and compute d s.t. ed “ 1 mod φpNq.

Output pk “ pN, eq and sk “ pN, dq.

– Message space M “ Z˚N

– Encppk,mq for pk “ pN, eq outputs fN,epmq “ me mod N.

– Decpsk, cq for sk “ pN, dq outputs cd mod N.

The correct way to encrypt: construction from previous class.

More efficient way to encrypt: RSA-OAEP+
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Textbook RSA-Signature

RSA can be used as a signature as well! Simply use e to verify and
d to sign instead of decrypt!
Signature scheme:

– Genp1nq: Sample p, q Ð Πn and set N Ð pq.

Sample eÐ Z˚φpNq and compute d s.t. ed “ 1 mod φpNq.

Output vk “ pN, eq and sk “ pN, dq.

– Message space M “ Z˚N

– Signpsk,mq for sk “ pN, dq outputs σ “ md mod N.

– Verifypvk,m, σq for vk “ pN, eq outputs 1 iff σe “ m mod N.
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Remarks on Textbook RSA-Signature

Signature function Signpsk,mq for sk “ pN, dq:

fN,dpmq “ md mod N.

Verification checks m “ σe mod N .

Signature is deterministic but that is not a problem !

Can you forge a signature?

Not if someone gives you a random challenge (RSA Assumption).

However: what if you select your own messages?

Forgery: Choose a random αÐ Z˚N .
Adversary knows the verification key vk “ pN, eq.
It can compute:

β “ αe mod N.
Notice that pβ, αq is a valid (message, signature) pair!

Read: how to sign from any trapdoor permutation.
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Attacks on the RSA Function

To speed up encryption, choose a short e: e.g., e “ 3.

This is often a big problem!
A Simple Example (Coppersmith, Hastad, and Boneh):

– Suppose Alice broadcasts m to 3 people with keys
pN1, 3q, pN2, 3q, pN3, 3q.

– c1 “ m3 mod N1, c2 “ m3 mod N2 and c3 “ m3 mod N3

– Suppose that N1, N2, N3 are co-primes
(no common factors, otherwise easy to get m).

– You can compute (by Chinese Remainder Theorem):

C 1 “ m3 mod N1N2N3.

m is less than N1, N2, N3 ñ m3 ă N1N2N3.
Therefore, m “

3
?
C 1 on integers (modulus plays no role)!
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Attacks on the RSA Function

How often can you apply this attack?

When same e is used by at least k ě e parties

This takes modulus out of the equation and you can solve over
integers (easy)

If e is large enough, attack is not practical.

Current wisdom: low exponent RSA when used carefully with
appropriate padding is still secure.

You can use e of special form, e.g., e “ 216 ` 1 to speed up
exponentiation and use appropriate padding.

(M. Weiner): If d ă 1
3N

0.25, easy to get d from pN, eq.

(Boneh-Durfee): If d ă N0.292, east to get d from pN, eq.
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LWE-based Public Key Encryption

Let q ě 2 be a modulus, n the security parameter (a.k.a
dimension), and α ! 1 an erroer parameter such that αq ą

?
n.

LWE Instance:
– choose a random (column) vector s $

Ð Znq (secret)

– choose a random matrix of coefficients A $
Ð Zmˆnq

– choose a Gaussian error vector e χ
Ð Zm (column)

where χ is a Gaussian distribution over Z with parameter αq
– Let

b “ A ¨ s` e

– The LWE instance is: pA,bq
Decisional LWE Assumption: hard to distinguish an LWE pair
from a random instance.

pA,bq «c pA,uq

where u P Zmq is a random column vector.
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LWE-based Public Key Encryption

Regev’s scheme based on LWE.

Key Generation:

– choose s
$
Ð Znq ,A

$
Ð Zmˆnq , e

χ
Ð Zm, b “ A ¨ s` e (as before).

– the keys are:
pk “ pA,bq, sk “ s

Encryption (for a bit): pick a row-vector of bits x $
Ð t0, 1um, output:

pc “ xA, c1 “ xb` bit ¨
q

2
q

Decryption:

c1 ´ c ¨ s “ pxb` bit ¨
q

2
q ´ xAs “ pxb` bit ¨

q

2
q ´ xb` xe « bit ¨

q

2
.

Parameters: n2 ď q ď 2n2,m “ 1.1n log q, α “ 1{p
?
n log2 nq.
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LWE-based Public Key Encryption

Correctness: if not for the error term, the value would be either 0
or q{2.

– The error is adding at most m independent normally distributed
variables whose standard deviation is

?
mαq ă q{ log n.

– The probability that it goes over q{4 is negligible.
Security: (LWE + LHL)

– Game 0: Real pk = LWE instance = pA,bq

– Game 1: change pk to a random instance = pA,uq

– Game 2: change bit from 0 to 1 (one-time pad, due to LHL)
– Game 3: change pk back to LWE instance
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