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Last time

e PKE from ANY trapdoor permutation

@ RSA-based trapdoor permutation
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Today

o ElGamal Public-Key Encryption

e Some Comments about Textbook RSA
Some attacks on RSA

LWE based Public-Key Encryption

@ Scribe notes volunteeer?
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(Weak) Indistinguishability Security for PKE

Definition (Secure Public-Key Encryption)

A public-key encryption scheme {Gen, Enc, Dec} is said to be secure if
for all non-uniform PPT D there exists a negligible function y such
that for all n € N, for all pair of messages mg, m; € M such that

|mo| = |m1|, D distinguishes between the following distributions with
at most v(n) advantage:

o {(pk,sk) — Gen(1™) : (pk, Enc(pk,mo))}
o {(pk,sk) — Gen(1™) : (pk, Enc(pk,m1))}

Le., the distributions above are computationally indistinguishable.
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Recall: DDH Problem

@ Recall the DDH Problem: for a large prime p, and a generator g
for the group Zy:

{w — Ly — Ly (g"”,gy,gw)}
Xe {x «— Z;,y — Z;,Z «— Zz : (g:c’gy’gz)}

o Recall: |Z5| = p— 1 is not prime! (This makes the problem easier
in some special cases)

o Recall: we work with a prime order subgroup of Z; by picking a
safe prime p = 2¢ + 1 and g = 2 for a random x € Zy.

o G, = group generated by g = {¢°, ¢*,..., g7 }. |G, = q.
@ There are other ways as well to obtain prime order groups G where
DDH is conjectured to be hard.
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Recall: DDH Problem

e DDH Assumption: Let G be a group of prime order ¢ and g € G be
a generator of G

{J? «— Zq, Y — Zq : (gxagy>gxy)}
X {l’ «— Zq,y «— anz A Zq : (nggy,gz)}
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ElGamal Public-Key Encryption

o ElGamal Scheme: Let G be a prime order group where DDH
Assumption holds. The description of G and its order ¢ are
publicly known.

o Messages are group elements and the message space is M = G.
— Gen(1™): sample g «— G, © — Z, and set h = g € G. Output
(pk, sk) where:
pk = (gv h) sk =x
— Enc(pk,m) for m € G: choose a random r — Z, and output:

(gr,m ! hT)

— Dec(sk, ¢) where ¢ = (¢1,cq): output

C2
m = — = ¢y x (Inverse of cf)
[ mC;zT m-(g”)"
o Correctness: m = & =Tge = e =M
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Security of ElGamal Scheme

Proof based on DDH Assumption: We now prove that ElGamal
scheme is secure assuming that the DDH assumption holds.

We have to show that for all mg, mq1 € G these two distributions
are indistinguishable:
— {(pk, sk) < Gen(1™) : (pk, Enc(pk, mo))}
{(pk, sk) < Gen(1™) : (pk, Enc(pk,m1))}

o Let D be a PPT algorithm.

Start with the first distribution, and slowly go to the second
distribution.
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Security of ElGamal Scheme

o Game-0: {(pk, sk) < Gen(1") : (pk, Enc(pk, mo))}
- {gahagram()'hr} - {g,ga:’gr,mo_gwr}

e Game-1: Use g7 for a random z instead of ¢g*". We get:
={9.9",9"mo- g%}

Claim: Game-0 and Game-1 are indistinguishable.

e Proof: Suppose that D can distinguish Game-0 and Game-1.
— We construct D’ which can break DDH Assumption
— D' gets as input (g, g%, ¢¥, g*) where a = zy or a = 2.
— D' sends (g, g%, g¥, mg - g*) to D,
— D’ outputs whatever D outputs.
o If  =xy, D isin Game-0. If a = z, D is in Game-1.

If D tells Game-0, Game-1 apart, D’ tells DDH tuples apart! o
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Textbook RSA-Encryption

o Public-Key Encryption:
— Gen(1™): Sample p, g < II,, and set N «— pq.

Sample e < Z% \, and compute d s.t. ed =1 mod d(N).

Output pk = (N, e) and sk = (N, d).
— Message space M = Z%
— Enc(pk, m) for pk = (N, e) outputs fy.(m)=m® mod N.

Dec(sk, c) for sk = (N, d) outputs ¢ mod N.

@ The correct way to encrypt: construction from previous class.

@ More efficient way to encrypt: RSA-OAEP+
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Textbook RSA-Signature

@ RSA can be used as a signature as well! Simply use e to verify and
d to sign instead of decrypt!

e Signature scheme:
Gen(1™): Sample p, q < II,, and set N « pq.
Sample e — Z(’;(N) and compute d s.t. ed =1 mod ¢(N).
Output vk = (N, e) and sk = (N, d).
— Message space M = Z%

— Sign(sk,m) for sk = (N,d) outputs ¢ = m? mod N.

— Verify(vk,m, o) for vk = (N,e) outputs 1 iff 0 = m mod N.
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Remarks on Textbook RSA-Signature

e Signature function Sign(sk,m) for sk = (N, d):
fna(m) =m? mod N.

Verification checks m = ¢ mod N.
@ Signature is deterministic but that is not a problem !
e Can you forge a signature?
e Not if someone gives you a random challenge (RSA Assumption).
e However: what if you select your own messages?

e Forgery: Choose a random a « ZY.
Adversary knows the verification key vk = (N, e).
It can compute:
. . F = a° mod N. )
e Notice that (8, «) is a valid (message, signature) pair!

e Read: how to sign from any trapdoor permutation.
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Attacks on the RSA Function

o To speed up encryption, choose a short e: e.g., e = 3.
e This is often a big problem!

e A Simple Example (Coppersmith, Hastad, and Boneh):
— Suppose Alice broadcasts m to 3 people with keys
(vag)a (N273)a (N373)

3 3

— ¢ =m?® mod Ny,ca = m® mod N, and ¢35 = m® mod Nj

— Suppose that Ny, No, N3 are co-primes
(no common factors, otherwise easy to get m).

~ You can compute (by Chinese Remainder Theorem):

Cl = m3 mod N1N2N3.

m is less than Ny, Ny, N5 = m? < Ny Ny Ns.
Therefore, m = v/C’ on integers (modulus plays no role)!
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Attacks on the RSA Function

e How often can you apply this attack?
e When same e is used by at least k > e parties

e This takes modulus out of the equation and you can solve over
integers (easy)

o If e is large enough, attack is not practical.

e Current wisdom: low exponent RSA when used carefully with
appropriate padding is still secure.

@ You can use e of special form, e.g., e = 216 4+ 1 to speed up
exponentiation and use appropriate padding.

(M. Weiner): If d < $N%% easy to get d from (N, e).
(Boneh-Durfee): If d < N%2%2 cast to get d from (N, e).
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LWE-based Public Key Encryption

e Let ¢ = 2 be a modulus, n the security parameter (a.k.a
dimension), and « « 1 an erroer parameter such that ag > /n.
e LWE Instance:

choose a random (column) vector s & Z3 (secret)

. . $
— choose a random matrix of coefficients A < Z;”“X”

~ choose a Gaussian error vector e & Z™ (column)
where x is a Gaussian distribution over Z with parameter ag
Let
b=A-s+e

— The LWE instance is: (A, b)

@ Decisional LWE Assumption: hard to distinguish an LWE pair
from a random instance.

(A,b) ~.(A,u)

where u € ZZ”“ is a random column vector.
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LWE-based Public Key Encryption

@ Regev’s scheme based on LWE.
o Key Generation:
~ choose s & Ly, A & Zg™ " e X 7™ b=A-s+e (as before).
— the keys are:
pk = (A,b), sk=s
@ Encryption (for a bit): pick a row-vector of bits x & {0,1}™, output:
’ .4
(c=xA,¢ =xb+ b|t-§)
@ Decryption:

C,7C‘S=(Xb‘l’bit‘g)*XAS:(Xb+bit‘g)fxb+xe%bit'

N

@ Parameters: n? < ¢ < 2n%,m = Llnlogq,a = 1/(y/nlog®n).
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LWE-based Public Key Encryption

e Correctness: if not for the error term, the value would be either 0
or q/2.

— The error is adding at most m independent normally distributed
variables whose standard deviation is \/magq < ¢/logn.

— The probability that it goes over ¢/4 is negligible.

e Security: (LWE + LHL)

— Game 0: Real pk = LWE instance = (A, b)

— Game 1: change pk to a random instance = (A, u)

— Game 2: change bit from 0 to 1 (one-time pad, due to LHL)
Game 3: change pk back to LWE instance

Instructor: Omkant Pandey Lecture 16: Public Key Encryption:II Spring 2017 (CSE 594) 17 /17



