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Abstract

Differential privacy (DP) is a well-studied notion of privacy, that is generally achieved by ran-
domizing outputs to preserve the privacy of the input records. A central problem in differential
privacy is how much accuracy must be lost in order to preserve input privacy?

We study this question in the context of distributed two-party differentially private protocols,
where the input is split between two parties. The recent work of McGregor et al. provided several
examples of functionalities for which there is an accuracy gap between the client-server setting
and the distributed setting. However, many questions remain: does such a gap exist for any
non-trivial functionality? How large must this gap be? Answering these questions for a large
and natural class of functionalities in the two-party setting is the main focus of this work.

Our work obtains general lower bounds on accuracy for differentially private protocols com-
puting any Boolean function. Our bounds are independent of the number of rounds and the
communication complexity of the protocol, and hold with respect to computationally unbounded
parties. At the heart of our results is a new general geometric technique for obtaining non-trivial
accuracy bounds for any Boolean functionality. We obtain the following results:

• We show that for any Boolean function, there is a constant accuracy gap between the
accuracy that is possible in the client-server setting and the accuracy that is possible in
the two-party setting.

• In particular, we show tight results on the accuracy that is achievable for the AND and
XOR functions in the two-party setting, completely characterizing which accuracies are
achievable for any given level of differential privacy.

• Finally, we consider the situation if we relax the privacy requirement to computational
differential privacy. We show that to achieve any noticeably better accuracy than what is
possible for differentially private two-party protocols, it is essential that one-way functions
exist.
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1 Introduction

Differential privacy (DP) is a theoretically sound and well studied notion of privacy (see [Dwo11]
for a recent survey). Differential privacy mechanisms work by randomizing the output to preserve
the privacy of the input records. A central problem in differential privacy is how much accuracy
must be lost in order to preserve input privacy?

The problem of the output being of lower quality appears significantly more difficult in the
distributed setting compared to the client-server setting. In the client-server setting, the server
can see the entire input in the clear, compute the output correctly and then perturb the output
by an appropriate amount to preserve the privacy of the individual entries. However if the input
is distributed across several parties, output needs to be computed through an interactive protocol.
Throughout the protocol, parties are restricted in how much information their messages should
reveal about their input, and this would seem to degrade the quality of the output.

The notion of differential privacy has been studied in the distributed setting, starting with the
seminal work of Dwork and Nissim [DN04]. In their work, there are multiple parties each holding a
dataset as the input. The parties are interested in mining some information from the entire input
vector while preserving the privacy of each individual entry in each dataset. This is a natural
setting where the parties may have a legal obligation to protect the privacy of each individual entry
(e.g., when the entries consist of medical records). At the same time, the accuracy of the output is
very important for the entire computation to be meaningful.

The study of limitations on accuracy of distributed differentially-private protocols was initiated
in works of Beimel, Nissim, and Omri [BNO08] for the case of n parties each holding its own input
and of McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan [MMP+10] for the setting of two
parties with n-bit inputs. The latter work considers several natural and constructed functionalities
that exhibit a stark gap in accuracy that can be as large as Θ(n) between client-server and two-party
protocols.

However, many questions remain. While we have several examples of functionalities for which
there is an accuracy gap between the client-server setting and the distributed setting, does such a
gap exist for any non-trivial functionality? How large must this gap be? Answering these questions
for a large and natural class of functionalities in the two-party setting is the main focus of this
work.

Boolean Functionalities. In this work, we focus on protocols that attempt to compute a
Boolean function. While much work in differential privacy has focused on computing statistics,
we note that computing Boolean functions has long been a motivating goal in differential privacy
(e.g., answering the question “Does smoking cause cancer?”). Our goal is to obtain a character-
ization of which Boolean functions must suffer accuracy loss in the two-party setting, as well as
lower bounds on how much accuracy loss is inherently needed. We note that our understanding of
Boolean functions has been particularly (and perhaps surprisingly) weak: Before this work, even for
computing simple Boolean gates, like AND and XOR, we did not understand whether any accuracy
loss is essential to the two-party setting.

1.1 Our Results

Before we describe our results, we must define the notion of accuracy that we measure. Since our
focus is on functions with Boolean output, there is only one natural choice for accuracy measure:
the probability that the output is correct. We note that other metrics considered in the literature
do not apply to the Boolean setting.
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Now we discuss our setting in more detail. There are two parties Alice and Bob holding inputs
x and y respectively and interested in computing a Boolean function f(x, y). The protocol should
be such that the differential privacy of each bit of x as well as of y should be preserved1. We assume
that Alice and Bob follow the protocol as specified, but keep a record of what transpired during
the protocol (i.e. they are semi-honest in the cryptographic sense).

For a protocol to achieve accuracy a, it must be the case that for any possible inputs (x, y) to
the protocol, the protocol computes the correct output with probability at least a, over the coins of
the protocol. Informally speaking, the differential privacy (DP) constraint for Alice states that for
any two inputs x0, x1 for Alice that differ only in one bit, and for any input y for Bob, the following
must hold: For every possible execution of the protocol, the resulting view v of Bob must be such
that the probability that v arises on inputs (x0, y) is within a multiplicative factor of eǫ from the
probability that v arises on inputs (x1, y) (see Section 2 for the formal definition of differential
privacy). Thus, no matter what Bob sees, he remains uncertain about the value of each bit of
Alice’s input even if he knows every other bit in her input. Here ǫ is the key privacy parameter.
We will denote by λ the value eǫ. It is easy to see that in the client-server setting, an accuracy of
λ

1+λ
is always possible.
Our work obtains general lower bounds on accuracy. Our bounds are independent of the number

of rounds and the communication complexity of the protocol, and hold with respect to computa-
tionally unbounded parties. At the heart of our results is a new general geometric technique for
obtaining non-trivial accuracy bounds for any Boolean functionality.

General Boolean Functions. Our strategy to obtain results on two-party differentially private
protocols for general Boolean functions begins by reducing the problem of obtaining lower bounds
for general Boolean functions to specific, simple functions. We first note that Boolean functions
where one party’s input completely determines the output can of course be computed just as
accurately in the two-party setting as in the client-server setting. We call such functions trivial2.
We then show that the existence of an ǫ-DP protocol with accuracy a for any non-trivial function
implies the existence of an ǫ-DP protocol with accuracy a for either the AND or XOR functionalities
(defined below). Thus, if we can obtain lower bounds on accuracy for AND and XOR, we obtain
lower bounds on accuracy for all non-trivial Boolean functions.

Computing an AND gate. The AND functionality is as follows: Alice and Bob each hold a
bit denoted by x and y respectively and are interested in computing the AND of the two bits.
Given the output (and the protocol transcript), each input bit should remain private. The best
known differentially private protocol for this task is the randomized response protocol: each party
individually perturbs its input and sends it out. The parties then compute the output based on
the two input bits appearing in the protocol transcript. It is easy to see that the output and the
protocol transcript still maintain privacy of each individual bit. The randomized response technique
gives protocols for AND with accuracy λ2

(1+λ)2 . The question we consider is: is it optimal?

Towards that end, we show, somewhat surprisingly, that is not the case. We show that a
technique we call “shifted randomized response” can achieve higher accuracy than the above ran-
domized response technique. The shifted randomized response technique can achieve an accuracy

1Note that stronger notions of privacy are also interesting: for example, where the entire input of each party

should be protected, or where symbols larger than bits are to be protected. However, since our focus is on obtaining

lower bounds, we use the weaker notion of the privacy stated here, with respect to bits.
2This is the same terminology used in works on classifying which Boolean functions have statistically-secure

two-party secure function evaluation protocols.
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of λ(λ2+λ+2)
(1+λ)3

. Moreover, we show that this accuracy is optimal for AND. We show that any protocol

(having any unrestricted number of rounds) can achieve an accuracy of at most λ(λ2+λ+2)
(1+λ)3

.

Computing an XOR gate. The XOR functionality is defined analogously to the AND func-
tionality above, except the XOR of the two input bits is to be computed. For the XOR case,
the randomized response technique provides an accuracy of 1+λ2

(1+λ)2
. We show that this is, in fact,

optimal for XOR.
Combining the results above, we establish the following: There does not exist any non-trivial

Boolean functionality which can be computed with a differential private protocol in the two party
setting with accuracy matching that of the client-server setting. In fact, we obtain a constant
separation between the level of accuracy obtainable in the client-server setting and the two-party
setting for every non-trivial Boolean functionality, where this constant separation is the best possible
in the case of AND and XOR. Our bounds are shown in Figure 1.

Computational Differential Privacy: What assumption is necessary? One option to
restore accuracy in a distributed setting is to resort to a relaxed computational notion of differential
privacy [MPRV09]. In computational differential privacy (CDP), we relax the privacy condition
to require that no efficient adversary can predict any bit of the input with probability greater
than λ

1+λ
, even if the adversary knows all other bits. We ask the question: what computational

assumptions are necessary for CDP to enable greater accuracy?
We show that to achieve any noticeably greater accuracy with CDP protocols than what is

possible with DP protocols, one-way functions are required. We show this by presenting a more
general result, showing that if one-way functions do not exist, then any CDP protocol must in fact
also be a DP protocol.

When discussing CDP protocols, it is important to consider the relationship between CDP
protocols and secure computation protocols from cryptography [Yao82, GMW87]. These notions
are quite different at a basic syntactic level: for instance, the CDP definition that we consider
does not require any two distributions to be computationally distinguishable, whereas this is cru-
cial to generally accepted notions of security for two-party secure computation protocols (both
in the input-indistinguishability flavor of definitions as well as the more widely used simulation-
based definitions). This is not surprising given the essential philosophical differences between these
notions:

• In (computationally) differentially private protocols, “privacy comes first”. We would like
to first ensure privacy of each individual input and then with this constraint, would like to
compute an accurate output.

• In secure computation protocols, “accuracy comes first”. We would like to release an accurate
output to the function we are computing first and then with this constraint, would like to
ensure privacy of inputs.

Nevertheless, it is immediate that general secure computation methods do give a way to achieve the
same level of accuracy in CDP two-party protocols as in the client-server setting. To achieve this, a
secure computation can be used to compute the algorithm that the server would perform on the joint
input in the client-server setting. However, general secure computation is essentially equivalent to
secure Oblivious Transfer [Kil88, IPS08]. It remains an important open question whether accuracy
beyond what is possible with DP protocols may be possible based on an assumption somewhere
between one-way functions and the existence of secure Oblivious Transfer protocols.
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1.2 Our Techniques.

We present a new general geometric technique for bounding the accuracy of differentially private
protocols. At a high level, our technique gives us a method for taking the truth table of a function
f , a privacy parameter ǫ, and an accuracy level a, and converting this into a linear program P . We
prove that if there does exist an ǫ-DP protocol for computing f with accuracy a, then this linear
program must have a solution. By analyzing this LP in the case of specific functions, we can show
that no solution exists when a is greater than a bound a∗. This proves that no ǫ-DP protocol can
exist with accuracy greater than a∗.

For simplicity, let us focus on protocols for Boolean functions where each party holds a single bit.
To obtain our bounds, we first think of every possible “transcript” corresponding to some execution
of the protocol. We can associate with each such transcript a 2-by-2 “transcript matrix,” whose
entries are the probability that this transcript occurs when Alice and Bob start with a particular
pair of inputs. Now, each such transcript has an associated output value. If we sum together all the
transcript matrices with output value 0, we get a 2-by-2 “protocol matrix,” whose entries show the
probability that the protocol outputs 0 when Alice and Bob start with a particular pair of inputs.

Now let us consider what constraints we can place on these matrices. Two types of constraints
are immediate: (1) the differential privacy conditions on each input linearly constrain each tran-
script matrix; and (2) the accuracy conditions linearly constrain the protocol matrix. But these
constraints alone would not yield any bound better than λ

1+λ
, which is achievable in the client-server

setting. The key to obtaining better bounds, and our main obstacle, are conditions which capture
the constraint that these matrices must actually arise from a protocol between two players. We
consider a condition that we call protocol compatibility that essentially captures the fact that if the
two parties’ inputs are drawn from independent distributions, then they must remain independent
even when conditioned on any particular protocol transcript. This post-execution independence has
been useful in other works on differential privacy including the work of McGregor et al. [MMP+10],
as well as in works on secure computation such as the work of Kilian [Kil00].

The protocol-compatibility constraint manifests itself as a non-linear (quadratic) constraint on
transcript matrices. Note that there can be an enormous (exponential in communication complex-
ity) number of possible transcript matrices, and we do not want to have to consider such a large
space of variables. In particular, we do not want our bounds to depend in any way on the commu-
nication complexity or the number of rounds in the protocol. We avoid this by proving a key lemma
that shows how to optimally combine the linear differential privacy constraints with the non-linear
protocol-compatibility constraint to yield a new linear constraint (Lemma 2 in Section 3). This
combined linear constraint establishes an upper bound on sums of probabilities from a transcript
matrix that combine both the upper and lower bounds from the differential privacy constraints.
Because these constraints are linear, they immediately give constraints on the protocol matrix, as
well. This gives us our linear program.

We analyze the linear programs that arise specifically for the AND and XOR functionalities, and
prove that the linear program is not satisfiable when the accuracy a is higher than a certain value.
We prove that these bounds are tight by showing that this accuracy can be achieved for both the
AND and XOR functionalities. We stress that our technique is more general, and can be applied to
other specific functions to obtain potentially stronger bounds. (As mentioned above, we focus our
attention on AND and XOR because every non-trivial Boolean function must contain an embedded
AND or XOR function.)

Related Work. In addition to the works mentioned above, several other works have focused on
the issue of accuracy and privacy. In the client-server setting (i.e., where only one party owns the
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entire database), limitations for a wide class of private algorithms were first shown by Dinur and
Nissim [DN03], refined and extended by [DMT07, DY08, KRSU10]. Dwork et el. [Dwo06, DMNS06]
introduced the concept of differential privacy and provided a general method for achieving non-
trivial accuracy based on the sensitivity of the function. The optimality of such mechanisms has
since been studied in different models such as answering multiple linear queries [HT10] or producing
synthetic datasets by computationally-bounded curators [DNR+09, UV11]. In a surprising result of
Ghosh et al. [GRS09], a simple geometric mechanism (a discrete version of the additive Laplacian
mechanism) was shown to be universally optimal for releasing a single count query to Bayesian
consumers (extended to risk-averse agents by Gupte and Sundararajan [GS10]). Brenner and
Nissim [BN10] showed that such universal mechanisms do not exist for other types of queries.

In the secure function evaluation model against computationally unbounded semi-honest ad-
versaries, characterization of deterministic Boolean functionalities was completed by Chor and
Kushilevitz [CK91], and for randomized functionalities by [Kil00]. These results establish the “all
or nothing” nature of two-party computation under information-theoretic reductions. A related
question of characterizing complete deterministic functionalities in the computational setting was
considered by Harnik et al. [HNRR06]. Complete classification of randomized functionalities in the
computational setting remains an important research problem.

2 Notation and Definitions

Standard notation. We use symbols ¬,∨,∧, and ⊕ to denote the standard Boolean operations:
not, or, and, and xor respectively. The set of natural numbers is denoted by N; for n ∈ N,
we write by [n] as shorthand for the set {1, 2, . . . , n}. The Hamming distance between two strings
x, y ∈ {0, 1}n is defined as: |x − y|h = | {i ∈ [n] : xi 6= yi} |, where xi, yi denote the ith bit of x, y
respectively. We denote by e, the base of the natural logarithm.

We now recall the definition of ǫ-differential-privacy [Dwo06] and (ǫ, δ)-differential privacy
[DKM+06].

Definition 1 (ǫ-Differential-Privacy) A randomized function M : {0, 1}n 7→ R, with a finite
range R, is said to be an ǫ-differentially-private (ǫ-DP) mechanism for ǫ ≥ 0 if for every (x, y) ∈
{0, 1}n×{0, 1}n satisfying |x−x′|h = 1 and every subset S ⊂ R we have that over the randomness
of M :

Pr[M(x) ∈ S] ≤ eǫ × Pr[M(x′) ∈ S].

Definition 2 ((ǫ, δ)-Differential-Privacy) A randomized function M : {0, 1}n 7→ R, with a fi-
nite range R, is said to be a (ǫ, δ)-differentially-private mechanism for ǫ, δ ≥ 0 if for every
(x, y) ∈ {0, 1}n × {0, 1}n satisfying |x − x′|h = 1 and every subset S ⊂ R we have that over
the randomness of M :

Pr[M(x) ∈ S] ≤ eǫ × Pr[M(x′) ∈ S] + δ.

We next recall the definition of computational differential privacy which captures differen-
tially privacy for polynomial time tests. We work with the weakest definition, namely ǫ-ind-cdp
[MPRV09]. In the following, k denotes the security parameter, implicitly available to all algorithms;
algorithms are assumed to run in time polynomial in k unless stated otherwise.

Definition 3 (ǫ-IND-CDP Privacy) An ensemble {Mκ}k∈N of randomized functions Mk : {0, 1}n 7→
Rk provides ǫ-ind-cdp if there exists a negligible function negl(·) such that for every probabilistic
polynomial time distinguisher A, for every polynomial p(·), for any adjacent strings x, x′ ∈ {0, 1}n
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(i.e., |x−x′|h = 1), for every sufficiently large k ∈ N, and for every advice string zk of size at most
p(k), it holds that

Pr [Ak(Mk(x)) = 1] ≤ eǫ × Pr
[

Ak(Mk(x
′)) = 1

]

+ negl(κ),

where we write Ak(x) for A(1
k, zk, x) and the probability is taken over the randomness of mechanism

Mk and the distinguisher A.

Interactive Setting. Let π := 〈A,B〉 be a two-party protocol. Define view
A
π (x, y) to be the

random-variable which, in a random-execution of π with inputs x, y for A,B respectively, consists
of (x,RA, trans), where RA is the randomness used by A and trans is the sequence of messages
exchanged between the parties in the sampled execution. For each x, viewA

π (x, y) is a mechanism
over the y’s. Define view

B
π (x, y) analogously. When dealing with the computational notion, we

consider the family of protocols {πk}k∈N and denote the view of A (resp., B) by view
A
π (k, x, y)

(resp., viewB
π (k, x, y)).

Definition 4 (Two Party Differentially Privacy) We say that a protocol π := 〈A,B〉 is ǫ-DP

(resp., (ǫ, δ)-DP) if the mechanism view
A
π (x, y) is ǫ-DP (resp., (ǫ, δ)-DP) for all values of x and

the same holds for view
B
π (x, y). Analogously, a family of protocols {πk}k∈N is ǫ-ind-cdp if the

mechanism view
A
π (k, x, y) is ǫ-ind-cdp for all values of x and every sufficiently large k, and the

same holds for view
B
π (k, x, y).

Finally, our measure of accuracy for Boolean functions simply looks at how often a randomized
mechanism outputs the correct output bit in the worst case.

Definition 5 (Accuracy) The accuracy of (randomized) mechanism M : {0, 1}n 7→ {0, 1} with
respect to a Boolean function f : {0, 1}n 7→ {0, 1} is defined as: Accf(M) = minx{Pr[M(x) =
f(x)]}, where the probability is taken over the randomness of M .

The accuracy of a two party protocol π := 〈A,B〉 w.r.t. to f : {0, 1}n × {0, 1}n 7→ {0, 1} is
defined as the accuracy of the mechanism outπ : {0, 1}n × {0, 1}n 7→ {0, 1} which returns the
(official) output of the protocol in a randomly sampled execution of π. The accuracy for a family
of protocols {πk}k∈N is defined analogously for each k.

3 Geometric Analysis of Two-party Differential Privacy for Boolean

Functions

We first show that AND and XOR gates are embedded on adjacent inputs into any non-trivial Boolean
two-party functionality, i.e., any functionality whose output is not fully determined by one side’s
input (Section 3.1). Therefore, it will be sufficient to analyze AND/XOR gates. A similar claim
also appears in [CKL03] but does not guarantee the adjacency of inputs that embed AND/XOR
gates. Adjacency is crucial in our case, since otherwise we cannot conclude that the protocol for
AND/XOR have the same privacy parameter ǫ.

We then formulate necessary conditions for existence of a differentially-private two-party pro-
tocol implementing a randomized two-party Boolean functionality (Section 3.2), and use these
conditions towards tight analysis of accuracy of AND and XOR gates achievable via differentially-
private protocols (Sections 3.3 and 3.4).

The main results of the section are plotted numerically in Figure 1.
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3.1 Embedded XOR and AND functionalities

We show that every non-trivial Boolean function f(x, y) defined over x, y ∈ {0, 1}n for n ∈ N,
embeds either an AND or an XOR function on two adjacent inputs. Function f is trivial if it does
not depend on the inputs of both parties.

Definition 6 A function f : {0, 1}n×{0, 1}n 7→ {0, 1} is said to be trivial if there exists a function
g : {0, 1}n 7→ {0, 1} such that

for all x, y ∈ {0, 1}n f(x, y) = g(x)

or
for all x, y ∈ {0, 1}n f(x, y) = g(y).

If f is not a trivial function, we say that f is non-trivial.

Definition 7 A function f : {0, 1}n × {0, 1}n 7→ {0, 1} embeds the XOR function on two adjacent
inputs if there exists a bit b, and inputs x, x′, y, y′ ∈ {0, 1}n such that x and y are adjacent to x′

and y′ respectively (i.e. |x− x′|h = |y − y′|h = 1) and it holds that:

f(x, y) =f(x′, y′) = b,

f(x, y′) = f(x′, y) = 1− b.

We say that f embeds the AND function on two adjacent inputs if

f(x, y) = b,

f(x, y′) = f(x′, y) = f(x′, y′) = 1− b.

Lemma 1 Every non-trivial function f : {0, 1}n × {0, 1}n 7→ {0, 1} embeds either the XOR or the
AND function on two adjacent inputs.

Proof: Assume the opposite: the function f is non-trivial but does not embed the XOR or the
AND on adjacent inputs.

Let N = 2n and (g1, . . . , gN ) be the Gray encoding of all binary vectors in {0, 1}n. Recall that
a Gray encoding is a permutation over {0, 1}n with the property that for every i ∈ [N ], gi and
gi+1 are adjacent vectors: |gi − gi+1|h = 1. Let T denote the truth table of f arranged in the Gray
encoding sequence, i.e., T is an N ×N matrix such that T (i, j) = f(gi, gj).

We colors cells of T black if they hold a zero, and white otherwise. We say that a row (resp.,
column) of T is monochromatic if all entries of that row (resp., column), are of the same color.

It is easy to verify that f is trivial if and only if either all rows or all columns of T are
simultaneously monochromatic. Therefore, if f is non-trivial then there must exist a row that is
not monochromatic.

We claim that two adjacent rows of T are either identical or the negatives of each other. Indeed,
consider two adjacent rows i and i+ 1 and label the column j with ‘=’ if T (i, j) = T (i+ 1, j) and
‘6=’ if T (i, j) 6= T (i+1, j). If there are two columns anywhere labeled with different symbols, there
must be two adjacent columns j and j + 1 labeled with ‘=’ and ‘6=’. Without loss of generality,
T (i, j) = T (i + 1, j) and T (i, j + 1) 6= T (i + 1, j + 1). It is immediate that f embeds the AND
function on inputs gi, gi+1, gj , gj+1. Therefore, all columns must all be labeled with either ‘=’ or
‘6=’, which means that the adjacent rows must be either be identical or the negatives (inverses) of
each other.
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Moreover, if the row i is not monochromatic, then its adjacent rows i + 1 and i − 1 must be
identical to it. As we have shown, the alternative is for the adjacent row to be the negative of the
ith row. Considering two adjacent entries of the ith row that are of different colors, we find that
in that case f must embed the XOR function.

We just proved that if there is a single non-monochromatic row, then its adjacent rows, and by
induction, all rows of the matrix are equal to it. Since T contains a non-monochromatic row, it
means that all its rows are identical, and all columns are monochromatic. This is a contradiction
since f is non-trivial.

3.2 Differential privacy and protocol compatibility

We begin by introducing several definitions pertaining to properties of matrices that describe joint
distributions of protocol outcomes as a function of two inputs. For compactness we will use λ = eǫ

without stating it explicitly throughout the section.

Definition 8 (ǫ-DP matrix) A 2n × 2n matrix P indexed by strings x, y ∈ {0, 1}n is ǫ-DP if its
elements satisfy the following conditions for all adjacent pairs x, x′ ∈ {0, 1}n and y, y′ ∈ {0, 1}n:

pxy ≤ λ · pxy′ ,
pxy ≤ λ · px′y,

Definition 9 (Protocol-compatible matrix) A 2n × 2n matrix P is protocol compatible if for
all x1, x2, y1, y2 ∈ {0, 1}n it holds that

px1y1 · px2y2 = px1y2 · px2y1

The next two definitions extend the concepts of differential privacy and protocol compatibility
to two-party Boolean functionalities. By convention, we say that a 2n × 2n matrix P represents a
randomized Boolean functionality f of two inputs if pxy = Pr[f(x, y) = 0] for all x, y ∈ {0, 1}n.

Definition 10 (ǫ-DP functionality) We call a 2n × 2n matrix P an ǫ-DP functionality if both
P and 1− P are ǫ-DP matrices, where 1 is the all-ones matrix.

Definition 11 (Protocol-compatible ǫ-DP functionality) A 2n × 2n matrix P is protocol-
compatible ǫ-DP functionality if both matrices P and 1− P can be expressed as sums of protocol-
compatible ǫ-DP matrices, where 1 is the all-ones matrix.

The following theorem establishes necessary conditions for existence of a differentially-private
two-party protocol for computing a randomized predicate of two n-bit inputs.

Theorem 1 Let π be a randomized ǫ-DP two-party protocol defined over x, y ∈ {0, 1}n and π(x, y)
be the Boolean output of the protocol. Let P be a matrix of probabilities pxy = Pr[π(x, y) = 0].
Then P is a protocol-compatible ǫ-DP functionality.

Proof: We start by showing that P can be expressed as sums of protocol-compatible ǫ-DP
matrices. The proof for 1− P is analogous.

Let T0 be the set of all transcripts τ for which the protocol output is 0, i.e. π(x, y) = 0. For a
fixed x, y, let τ ← π(x, y) denote that event that in a random execution of π with inputs (x, y), the
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transcript is τ . Let Pτ be a 2n × 2n matrix indexed by n-bit strings such that Pτ (x, y) = Pr[τ ←
π(x, y)] = pτ,xy (say). Then,

pxy = Pr[π(x, y) = 0] =
∑

τ∈T0

Pr[τ ← π(x, y)] =
∑

τ∈T0

pτ,xy.

Therefore, it holds that P =
∑

τ∈T0
Pτ . It is easy to verify that the matrices Pτ are ǫ-DP

matrices. To complete the proof, we now show that each Pτ is protocol-compatible (following
[Kil00]).

Let X and Y be independently and uniformly distributed random variables taking values in
{0, 1}n. Then, using Bayes’ rule we see that for any two strings x, y, pτ,xy = Pr[X = x, Y = y|τ ←
π(X,Y )] · Pr[τ ← π(X,Y )]/Pr[X = x, Y = y]. It is well known in communication complexity
(e.g., see [MMP+10]) that for any two-party protocol π, if the inputs X and Y are independent
before the execution, then for any transcript τ of the protocol, X and Y remain independent when
conditioned on the transcript being τ . That is, Pr[X = x, Y = y|τ ← π(X,Y )] = Pr[X = x|τ ←
π(X,Y )] · Pr[Y = y|τ ← π(X,Y )]. Using this with our previous relation, we see that

pτ,xy = px,τ · py,τ · pτ · 22n,

where px,τ = Pr[X = x|τ ← π(X,Y )]; py,τ and pτ are defined analogously. It then follows that for
any distinct x1, y1, x2, y2,

pτ,x1y1 · pτ,x2,y2 = px1,τpx2,τpy1,τpy2,τ · p2τ · 24n = pτ,x1y2 · pτ,x2,y1 .

This completes the proof for protocol-compatibility, and hence the theorem.
The following lemma plays a critical role in our analysis, as it replaces a per-transcript quadratic

constraint imposed by the protocol-compatibility condition with a system of linear inequalities.

Lemma 2 If P is protocol-compatible ǫ-DP functionality, then for all adjacent pairs x, x′ ∈ {0, 1}n
and y, y′ ∈ {0, 1}n

pxy′ + px′y ≤ pxy/λ+ px′y′ · λ,
pxy′ + px′y ≤ pxy · λ+ px′y′/λ,

and

pxy + px′y′ ≤ pxy′/λ+ px′y · λ,
pxy + px′y′ ≤ pxy′ · λ+ px′y/λ.

Proof: We first verify the statement for protocol-compatible ǫ-DP matrices Q. Indeed, by the
ǫ-DP condition qxy′ , qx′y ∈ [qxy/λ, qx′y′ ·λ] and by protocol-compatible qxy′ · qx′y = qxy · qx′y′ . If the
product of two reals is fixed, their sum is maximized when they are most apart, which corresponds
exactly to the endpoints of the feasible interval for qxy′ , qx′y. To formalize this, we observe that by
simple algebra, the condition

qxy/λ ≤ qxy′ ≤ qx′y′ · λ
is equivalent to the quadratic inequality

q2xy′ − (qxy/λ+ qx′y′ · λ)qxy′ + qxy · qx′y′ ≤ 0,
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since all probabilities must be non-negative. Rewriting this inequality and dividing by qxy′ , and
using the fact that qx′y = qxy · qx′y′/qxy′ , we obtain the desired bound:

qxy′ + qx′y ≤ qxy/λ+ qx′y′ · λ.

Moreover, the bound is linear in all qxy, qxy′ , qx′y, qx′y′ and holds for all protocol-compatible
ǫ-DP matrices. Therefore, it would also hold for the sum of these matrices, and thus for protocol-
compatible ǫ-DP functionalities. The other bounds follow similarly and this completes the proof.

Lastly, we introduce the following definition that relaxes the notion of the protocol-compatible
ǫ-DP functionality to allow for a (typically small or negligible) fraction of non-private transcripts.

Definition 12 (Protocol-compatible ǫ-DP δ-close functionality) A 2n×2n matrix P is protocol-
compatible ǫ-DP functionality if both matrices P and 1 − P − ∆ can be expressed as sums of
protocol-compatible ǫ-DP matrices, where 1 is the all-ones matrix and all entries of ∆ are between
0 and δ.

An analogue of Theorem 1 exists for (ǫ, δ)-functionalities defined over binary inputs:

Theorem 2 Let π be a randomized (ǫ, δ)-DP two-party protocol defined over x, y ∈ {0, 1} and
π(x, y) be the Boolean output of the protocol. Let P be a matrix of probabilities pxy = Pr[π(x, y) = 0].
Then P is a protocol-compatible (ǫ+

√
δ)-DP O(

√
δ)-close functionality.

Proof: In the notation of the previous theorem, define the set of “bad” transcripts B as

B = {τ : ∃ adjacent x, x′, y, y′ ∈ {0, 1}, s.t. Pτ (x, y) > eǫ+
√
δPτ (x

′, y′)}.

We claim that for all x, y ∈ {0, 1}, the probability that Pr[τ ∈ B : τ ← π(x, y)] < O(
√
δ). Applying

Theorem 1, it is sufficient to prove the claim.
For any two pairs of adjacent inputs x, x′, y, y′ define

Bx,x′,y,y′ = {τ : Pτ (x, y) > eǫ+
√
δPτ (x

′, y′)}. (1)

The probability of seeing a transcript from Bx,x′,y,y′ on input (x, y) is less than O(
√
δ), since by

the guarantee of (ǫ, δ)-DP and (1):

Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x, y)} ≤ eǫ Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x′, y′)}+ δ <

< e−
√
δ Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x, y)} + δ,

from which a O(
√

(δ)) bound on Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x, y)} follows immediately.
Applying the (ǫ, δ)-DP condition again, we find that Pr[τ ∈ Bx,x′,y,y′ : π(x

′′, y′′)] for all x′′, y′′ ∈
{0, 1} is bounded by eǫO(

√
δ). Since the event B is the union of all events Bx,x′,y,y′ , summing over

all pairs of adjacent inputs and assuming that ǫ is constant, we complete the proof.
The next two sections apply Theorem 1 to tight analysis of accuracy of differentially private

protocols for computing two Boolean functionalities of two bit inputs: AND and XOR.
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3.3 Analysis of the AND functionality

We first define accuracy of a Boolean functionality for computing the AND of two bit inputs specified
as a 2× 2 matrix of probabilities. Recall that by convention, the matrix P consists of elements pxy
signifying the probability of obtaining output 0 on inputs (x, y).

Definition 13 (AND-Accuracy) Define AND-accuracy of a 2× 2 matrix
(

p00 p01
p10 p11

)

as

AND-Acc(
(

p00 p01
p10 p11

)

) = min(p00, p01, p10, 1− p11).

Note that this notion is identical to the accuracy defined in section 2. We prove the following
theorem establishing the maximal accuracies achievable by protocol-compatible and arbitrary ǫ-DP

functionalities and, in particular, showing that there is a gap between the two quantities.

Theorem 3 For any λ ≥ 1 and a 2× 2 matrix M we have the following:

1. If M is a ǫ-DP functionality, then AND-Acc(M) ≤ λ
1+λ

, where λ = eǫ.

2. If M is a ǫ-DP protocol-compatible functionality, then AND-Acc(M) ≤ λ(λ2+λ+2)
(1+λ)3

.

In both cases the equality can be achieved.

Proof: Let M =
(

p00 p01
p10 p11

)

and a = AND-Acc(M).

Claim 1. The accuracy condition implies p01 ≥ a and 1 − p11 ≥ a. On the other hand, by the
ǫ-DP constraint p01 ≤ p11 ·λ. Put together we have a/λ ≤ p11 ≤ 1−a, which implies a ≤ λ/(1+λ).

The following matrix is indeed a ǫ-DP functionality with accuracy λ/(1 + λ):

M =

(

λ/(1 + λ) λ/(1 + λ)
λ/(1 + λ) 1/(1 + λ)

)

.

Claim 2. The following conditions relate the probabilities p00, p01, p10, p11 to each other and to
the accuracy parameter a:

p11 ≤ 1− a

p01 + p10 ≥ 2 · a
p01 + p10 ≤ p00/λ+ p11 · λ

(1− p01) + (1− p10) ≤ (1− p00) · λ+ (1− p11)/λ.

The first two inequalities are implied by the accuracy requirement, the last two by applying Lemma 2
to M and

( 1−p00 1−p01
1−p10 1−p11

)

.
By introducing a new variable q = p01 + p10 and rewriting the above inequalities, we have

q ≥ 2 · a (2)

q ≤ p00/λ+ p11 · λ (3)

q ≥ 2− (λ+ 1/λ) + p00 · λ+ p11/λ. (4)

Consider the intersection of two lines bounding the half-planes (2) and (4), where q and p00 are
considered as free variables and λ, a, and p11 are parameters. It is easy to verify that the lines
intersect at the point (p∗00, q

∗), where

p∗00 = 1 + 1/λ2 − 2/λ + 2a/λ− p11/λ
2 and q∗ = 2 · a.

The following lemma argues that (p∗00, q
∗) satisfies (3):
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Lemma 3 Let p∗00 be defined as above. Then the following holds:

2 · a ≤ p∗00/λ+ p11 · λ.

Proof [Lemma 3]: Towards a contradiction, assume that

2 · a > p∗00/λ+ p11 · λ. (5)

Consider two cases:
Case p00 ≤ p∗00. Then

q
(3)

≤ p00/λ+ p11 · λ ≤ p∗00/λ+ p11 · λ
(5)
< 2 · a,

contradicting (2).
Case p00 > p∗00. Then

(p00 − p∗00)/λ+ 2 · a
(5)
> p00/λ+ p11 · λ

(3)

≥ q
(4)

≥ 2− (λ+ 1/λ) + p00 · λ+ p11/λ =

= (p00 − p∗00) · λ+ p∗00 · λ+ 2− (λ+ 1/λ) + p11/λ
def of p∗

00= (p00 − p∗00) · λ+ 2 · a,

which is a contradiction since λ ≥ 1 and p00 > p∗00. [Lemma 3]
Finally, by substituting the value of p∗00 into the statement of Lemma 3 and using that p11 ≤ 1−a,

we have

2 · a ≤ (1 + 1/λ2 − 2/λ+ 2a/λ− p11/λ
2)/λ+ p11 · λ ≤ λ+ 1/λ− 2/λ2 + a · (2/λ2 − λ+ 1/λ3),

from which after collecting like terms and simplifying, the claim AND-Acc(M) = a ≤ λ(λ2 + λ +
2)/(1 + λ)3 follows.

The protocol with optimal accuracy is shown in Figure 2 thus proving tightness of the bound.

We remark that Claim 2 of Theorem 3 also applies to δ-close ǫ-DP protocol compatible func-
tionalities, with the upper bound on the accuracy increasing by (2 + λ+ 1/λ)δ = O(δ). The proof
changes in its application of Lemma 2 to

( 1−p00 1−p01
1−p10 1−p11

)

that becomes instead
( 1−p00−δ00 1−p01−δ01
1−p10−δ10 1−p11−δ11

)

,
where δ00, δ01, δ10, δ11 ∈ [0, δ]. It is easy to verify that changes in the inequality (4) can be absorbed
by reducing the value of a by (2 + λ+ 1/λ)δ = O(δ).

Maximal accuracies attained by ǫ-DP functionalities and protocol-compatible ǫ-DP functional-
ities are shown in Figure 1.

3.4 Analysis of the XOR functionality

Definition 14 (XOR-Accuracy) Define XOR-accuracy of a 2× 2 matrix
(

p00 p01
p10 p11

)

as

XOR-Acc(
(

p00 p01
p10 p11

)

) = min(p00, 1 − p01, 1− p10, p11).

Note that this notion is identical to the accuracy defined in section 2. The following theorem
bounds XOR-accuracy of DP functionalities and protocol-compatible DP functionalities.

Theorem 4 For any λ ≥ 1 and a 2× 2 matrix M we have the following:

1. If M is a ǫ-DP functionality, then XOR-Acc(M) ≤ λ
1+λ

.

2. If M is a ǫ-DP protocol-compatible functionality, then XOR-Acc(M) ≤ 1+λ2

(1+λ)2
.

In both cases the equality can be achieved.

Proof: Let M =
(

p00 p01
p10 p11

)

and a = AND-Acc(M).
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Figure 1: Bounds on accuracy: for arbitrary Boolean functionalities (DP bound); for protocol
compatible ǫ-DP AND and XOR. Every ǫ-DP protocol for any non-trivial Boolean functionality
must be subject to either the AND or XOR bound.

Claim 1. By the accuracy condition p00 ≥ a and 1 − p01 ≥ a. On the other hand, by the ǫ-
DP constraint p00 ≤ p01 · λ. Put together we have 1 − a ≥ p01 ≥ p00/λ ≥ a/λ, which implies
a ≤ λ/(1 + λ).

The following matrix is indeed a ǫ-DP functionality with accuracy λ/(1 + λ):

M =

(

λ/(1 + λ) 1/(1 + λ)
1/(1 + λ) λ/(1 + λ)

)

.

Claim 2. Lemma 2 gives the following bounds on the entries of ǫ-DP protocol-compatible ma-
trices:

p00 + p11 ≤ p10/λ+ p01 · λ,
p00 + p11 ≤ p10 · λ+ p01/λ.

Summing the inequalities and dividing by two, we have

p00 + p11 ≤
λ2 + 1

2λ
(p10 + p01). (6)

Observe that XOR-Acc(M) = min(p00, 1− p01, 1− p10, p11) ≤ min(p00+p11
2 , 1− p10+p01

2 ). Denote
p00+p11

2 by x and p10+p01
2 by y, and write

XOR-Acc(M) = min(x, 1− y)
(6)

≤ min(x, 1 − 2λ

1 + λ2
x),
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which attains its maximal value when x = 1 − 2λ
1+λ2x. Solving this for x and substituting in the

above expression, we prove that

XOR-Acc(M) ≤ 1 + λ2

(1 + λ)2
.

This value of accuracy for computing the XOR functionality is achieved by the randomized
response protocol, Figure 2.

Alice Bob

ã = fxor(a)
ã

b̃ = fxor(b)

b̃

ã⊕ b̃

Alice Bob

ã = fand(a)
ã

b̃ = fand(b)

b̃

gand(ã, b̃)

fxor(x) =

{

x w/probability λ
1+λ

x w/probability 1
1+λ

fand(0) =















0 w/probability λ
1+λ

1 w/probability λ
(1+λ)2

S w/probability 1
(1+λ)2

fand(1) =















0 w/probability 1
1+λ

1 w/probability λ2

(1+λ)2

S w/probability λ
(1+λ)2

gand(ã, b̃) =

{

1 if ã = S or b̃ = S

ã ∧ b̃ otherwise

Figure 2: Optimal XOR and AND protocols.

4 One-Way Functions from CDP

In this paper, we show that one-way functions are implied by the existence of a family of compu-
tationally differentially private (CDP) two-party protocols that achieve better accuracy than the
bounds proven for DP two-party protocols proven in the previous section. We show this by pre-
senting a more general result: we show that if one-way functions do not exist, then the existence of
a family of CDP protocols imply the existence of DP protocols with only negligible loss in accuracy
and privacy.

Definition 15 An infinite family of two-party protocols Π = {πk} is defined to be an infinite family
of (ǫ, δ = negligible)-DP protocols achieving accuracy a for a functionality F if for every constant
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c > 0, there exists an infinite sequence of πk ∈ Π such that each πk is an (ǫ + k−c, δ = k−c)-DP
protocol with accuracy a− k−c for functionality F .

Our main theorem is the following:

Theorem 5 Suppose that one-way functions do not exist. Then given any infinite family Π of
efficient ǫ-IND-CDP two-party protocols achieving accuracy a for a functionality F , it must be that
there is an infinite subfamily Π′ ⊂ Π such that Π′ is an infinite family of (ǫ, δ = negligible)-DP
protocols achieving accuracy a for the functionality F .

Proof: Suppose that one-way functions do not exist, and yet the statement of the theorem does not
hold with respect to some family Π = {πk} of ǫ-IND-CDP two-party protocols achieving accuracy
a for a functionality F . Then there must exist some constant c > 0 and a number k0 such that for
all k > k0, it is the case that πk achieves accuracy a− k−c for F (this follows by assumption) and
yet the protocol is not (ǫ+ k−c, δ = k−c)-DP.

Without loss of generality, let us assume that the two parties are named Alice and Bob, and
it is Alice’s privacy that is violated with respect to the (ǫ + k−c, δ = k−c)-DP definition. Let us
denote Bob’s view in the protocol π on inputs (x, y) by the random variable π(x, y), and let us
write π to denote πk to ease our notation. Then it must be that there exist two neighboring inputs
x0, x1 for Alice, an input y for Bob, and a subset S of views of Bob such that:

Pr[π(x0, y) ∈ S] > e(ǫ+k−c) Pr[π(x1, y) ∈ S] + k−c.

Our goal is to show that Alice’s privacy is also violated with respect to the ǫ-IND-CDP definition,
thereby reaching a contradiction. To show this, we will need to replace the test subset S with an
efficiently recognizable test. We will do this in several steps. (Note that we do not attempt to
optimize choice of parameters in this proof.) First, let us consider the following subset of S:

S′ =
{

v ∈ S
∣

∣

∣
Pr[π(x0, y) = v] > e(ǫ+k−c) Pr[π(x1, y) = v]

}

.

It is immediate that we have:

Pr[π(x0, y) ∈ S′] > e(ǫ+k−c) Pr[π(x1, y) ∈ S′] + k−c.

since views in S that are not in S′ contribute only negatively toward satisfying this condition.
Finally, we now consider the potentially larger set T :

T =
{

v
∣

∣

∣
Pr[π(x0, y) = v] > e(ǫ+k−c) Pr[π(x1, y) = v]

}

.

Again, since S′ ⊂ T , and by the definition of T , it is immediate that:

Pr[π(x0, y) ∈ T ] > e(ǫ+k−c) Pr[π(x1, y) ∈ T ] + k−c.

We will now show there exists an efficient test that very closely approximates testing whether
or not a view is from T , thus violating the ǫ-IND-CDP condition. To do this, we first define the
following function family:

fk(x0, x1, y, b, rA, rB) = (x0, x1, y, πk(xb, y; rA, rB)).

In the function above, x0, x1 come from the domain of Alice’s inputs to the functionality F ,
while y comes from the domain of Bob’s inputs to the functionality F . Note that these domains
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are of fixed size, independent of k. Above, b is a single bit, and rA, rB are the randomness of Alice
and Bob, respectively. Let t(k) denote the total length of the input to fk. By the efficiency of Π,
we have that t(k) is bounded by some fixed polynomial in k.

We first define an efficient test that assumes oracle access to a perfect inverter I for the function
family fk. That is, we assume that I(1k, y) samples uniformly from the preimage space f−1

k (y). We
will later show that we can relax the perfectness condition, and implement a good-enough inverter
efficiently if one-way functions do not exist.

The test EI on input v does the following: Let Ib(x0, x1, y, v) denote the output of executing
I(x0, x1, y, v) and returning the inverted value of b. E runs Ib(x0, x1, y, v) a total of ℓ = 16 · eǫ ·k2c ·
t(k)2 times, and collects statistics on how often b = 0 and b = 1. If the number of times b = 0 is at

least a factor of e(ǫ+
1

2
·k−c) larger than the number of times b = 1, then E outputs 1.

Note that E is a polynomial-time oracle machine. If I is a perfect inverter, by a Chernoff bound,
we have that if v is such that

Pr[π(x0, y) = v] ≤ eǫ+
1

4
·k−c

Pr[π(x1, y) = v],

then the probability that EI outputs 1 is less than 2−2k+t(k), since we have that eǫ+
1

2
·k−c−eǫ+ 1

4
·k−c

>
1
4k

−c. On the other hand, by another application of Chernoff’s bound, for every v ∈ T , the

probability that EI outputs 0 is less than 2−2k+t(k). There are at most 2t(k) possible views v, and
so by a union bound, we have that except with probability 2−k, EI does not output 1 on any view
v such that Pr[π(x0, y) = v] ≤ eǫ+

1

4
·k−c

Pr[π(x1, y) = v], but EI outputs 1 on all v ∈ T .
Thus, except with probability 2−k, we have that:

Pr[EI(π(x0, y)) = 1] > e(ǫ+
1

4
·k−c) Pr[EI(π(x1, y)) = 1] + k−c.

And so, overall for large enough k, we have that:

Pr[EI(π(x0, y)) = 1] > e(ǫ+
1

4
·k−c) Pr[EI(π(x1, y)) = 1] +

1

2
· k−c.

Finally, to make this an efficient attack, we replace the perfect inverter with an efficient inverter
guaranteed to exist for infinitely many k if one-way functions do not exist [IL89]. Such an inverter I ′

is polynomial-time and has the property that for infinitely many k, the following two distributions
D1 and D2 have statistical distance at most 1/(2d · ℓ · k2c), where d is the size of the domain of
Alice squared times the size of the domain of Bob:

D1 = (fk(α0, α1, β, b, rA, rB), (α0, α1, β, b, rA, rB))

and
D2 = (v = πk(αb, y), I

′(α0, α1, β, v)),

where in the above distributions, α0, α1, β, b, rA, rB are all chosen uniformly from their respective do-
mains. Note that the distributionD1 is identical to the distribution D̂2 = (v = πk(αb, y), I(α0, α1, β, v)),
where I is the perfect inverter.

By a union bound over choice of α0, α1, β, we immediately obtain that the following two distri-
butions D′

1,D
′
2 have statistical distance at most 1/(2 · ℓ · k2c):

D′
1 = (fk(x0, x1, y, b, rA, rB), b)

and
D′

2 = (v = πk(xb, y), I
′
b(x0, x1, y, v)),
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where in the above distributions only b, rA, rB are chosen uniformly from their respective domains.
Thus, since EI′ calls I ′b exactly ℓ times, by a union bound we have that for infinitely many k,

Pr[EI′(π(x0, y)) = 1] > e(ǫ+
1

4
·k−c) Pr[EI′(π(x1, y)) = 1] +

1

4
· k−c.

This contradicts the ǫ-IND-CDP property of Π, finishing the proof.
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