
Generalized Josephus Problem

Naman Banati

3 March 2022

1 Problem Statement

• Given n people numbered 0..n − 1 in a circle waiting to be executed.
Starting with the first person, we eliminate every kth person in a circular
manner until only 1 survivor is left.

• Given the values of n and k, design an efficient algorithm to find the
survivor’s number J(n, k) in the initial circle.

2 Definitions

J(n,k) = Survivor’s position in a circle of n people
with every kth person being executed

3 Approach

• Instead of executing 1 person in an iteration, we execute as many number
of people we can execute in a single iteration.

• If n is the number of people in the circle, we can remove ⌊n
k ⌋ in a single

iteration. This process is repeated till n becomes less than k (step size).

• When n < k, we follow the naive algorithm given by the recurrence:

J(n, k) = (J(n− 1, k) + k)%n

• When n >= k, we follow the generalized approach which computes J(n, k)
in a more efficient way.

1

Naive Approach

2

Naive Approach : Mapping & General Formula

3

Efficient Approach

4

Efficient Approach : Mapping & General Formula

4 Derivation

• Consider a circle having j people (say j = 7 as an example) waiting to be
executed. Then after the first iteration exactly j - ⌊ j

k ⌋ people are left in
the circle.

• We define this new circle to contain i people where:

i = j − ⌊ j
k ⌋

• To reiterate, we are considering two circles now - one having j people and
the other circle formed after 1 iteration of the execution process, having
exactly i people.

• Thus, j can be written as:

j = ⌊ j
k ⌋ ∗ k + j%k

And i can we written as:

i = ⌊ j
k ⌋ ∗ (k − 1) + j%k

5

• Therefore, we can visualize j to be made up of ⌊ j
k ⌋ batches of k length

and a length j%k. Similarly, i can be seen as made up of ⌊ j
k ⌋ batches of

(k − 1) length and a length j%k.

• It is clear from the above diagram that a portion of length of the circle
(j%k) remains constant while the k ∗ ⌊ j

k ⌋ part of the circle reduces to

(k − 1) ∗ ⌊ j
k ⌋.

• Now, let us take the example of a circle having 7 people (i.e. n = 7) and
k = 3. Since j − ⌊ j

k ⌋ = 7 - ⌊ 7
3⌋ = 5. There are 5 people in the second

circle. This can be visualized as follows:

• In the above diagram, we see that every kth person is executed and a
mapping between the new (i circle) and the old circle (j circle) is done.

• Currently, the circles has the 0th (or the first person) being on the side of
the ⌊ j

k ⌋ ∗ k length portion and the (j − 1)th person aligned with the j%k
length portion of the circle.

6

• Since, it is a circle, we can realign this axis by moving clockwise or anti-
clockwise. We can move the j circle by n%k clockwise or ⌊ j

k ⌋ ∗ k anti-
clockwise so that it align the j%k portion of the outer circle (j circle) with
the 0 of the inner circle (i circle). This will lead to a shift in the mapping
between the two circles.

• We did this because we observe that there are two portions of each circle.
The j%k portion does not change in size while the ⌊ j

k ⌋∗k portion changes
in size. Depending upon the location of the last survivor in the i circle, we
can calculate the corresponding location in the j circle. In doing so, the
difference in the growth of the two portions of the circle play a big role.
We aligned the same length portion of the two circles together so that we
can compare the lengths of the other portions easily.

• Let us define s as the position of the survivor in the i circle and r = j%k.
Therefore,

7

s = J(j − ⌊ j
k ⌋, k)

• s can be anywhere in the circle i and hence we get two cases as below:

Case I - (s < r):
Since, s lies in the portion j%k which remains of the same length in the
two circles, there is no other additional shift in the position of s in the j
circle. However, since we realigned the axis of the outer j circle, a shift of
⌊ j
k ⌋ ∗ k is introduced (since we rotated by that amount).

Therefore,
J(j, k) = s+ ⌊ j

k ⌋ ∗ k = s+ j − j%k

Case II - (s >= r):
Since, s lies in the portion that changes in length, there would be an ad-
ditional shift while mapping from the i circle to the j circle. This would
be accompanied by the shift caused by the realignment of the axis.

We know that, ⌊ j
k ⌋ = ⌊ i

k−1⌋ = number of blocks of size k (j circle) or
(k-1)(i circle).

Therefore, for a distance of (s− r) in the i circle, a distance of k∗(s−r)
k−1 is

there in the j circle. Thus, the additional shift is:

= k∗(s−r)
k−1 − (s− r)

= (s− r)[k
k−1 − 1]

= (s−r)
(k−1)

Therefore,

J(j, k) = (s+ ⌊ j
k ⌋ ∗ k + (s−r)

(k−1))%j = (s+ j − j%k + (s−r)
(k−1))%j

but j%k = r.
Hence, J(j, k) = ((s− r)(1 + 1

(k−1)))%j

= k∗(s−r)
(k−1) %j

8

5 Final Recurrence

6 Pseudo Code

7 Complexity

• During each iteration, the number of people decreases by a factor of (1− 1
k).

Thus, at the end when only 1 survivor remains:

n ∗ (1− 1
k)

x = 1

• Taking natural log both sides,

ln(n) + x ∗ ln(1− 1
k) = 0

x = − ln(n)

ln(1− 1
k)

• Expanding using taylor series,

x = k ln(n)

9

• Therefore, time complexity is O(klog n).

• Space complexity is O(n).

8 References

• https://cp-algorithms.com/others/josephus problem.html

• https://developer.aliyun.com/article/602333

10

