

# **ITS 102: Visualize This!**

# Lecture 1: The Visual System

Klaus Mueller

Computer Science Department Stony Brook University

## The Visual Brain

Over 50% of the human brain is dedicated to vision and visual representations,

- decoding visual information
- high-level processing of visual information
- thinking with visual metaphors



#### **Input Device: The Eye**



## Sensor: The Cones and Rods

#### Two types of receptors on retina: rods and cones

Rods:

- spread all over the retinal surface (75 150 million)
- low resolution, no color vision, but very sensitive to low light (*scotopic* or dimlight vision)

#### Cones:

- a dense array around the central portion of the retina, the fovea centralis (6 - 7 million)
- high-resolution, color vision, but require brighter light (*photopic* or bright-light vision)



#### Wiring: The Visual Pathways



## **Processing Unit: The Visual Cortex (V1, V2)**

#### Visual cortex breaks input up into different aspects:

<complex-block>

If you want it or not: some features are always detected And fast – within 200 ms or less



## **Pre-Attentive Processing**

Why is it so fast?

Well, because 50% of the brain is dedicated to vision

Vision is a MASSIVELY parallel processor dedicated to

- detect
- analyze
- recognize
- reason with

visual input

#### **Pre-Attentive Processing**

#### Sensitivity to differences in:

• color, orientation, size, shape, motion, shading, 3D depth, ...



#### **Pre-Attentive Processing**

But there are limits: conjunctions don't work well



Some features/cues are stronger than others:

Look at the chart and say the <u>COLOUR</u> not the word

# YELLOW BLUE ORANGE BLACK RED GREEN PURPLE YELLOW RED ORANGE GREEN BLACK BLUE RED PURPLE GREEN BLUE ORANGE

#### Left – Right Conflict

Your right brain tries to say the colour but your left brain insists on reading the word.

## **Pre-Attentive Processing**

Words are patterns, which form strong pre-attentive feature • this would have been different if this had been done in Arabic

There are limits, however

• let's see the next experiment

#### Reading 1

Aoccdrnig to a rscheearch at an Elingsh uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht frist and Isat Itteer is at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae we do not raed ervey Iteter by it slef but the wrod as a wlohe

#### **Pre-Attentive Processing**

Now, is tihs ture? Raed on....

#### Reading 2

Anidroccg to crad cniyrrag lcitsiugnis planoissefors at an uemannd, utisreviny in Bsitirh Cibmuloa, and crartnoy to the duoibus cmials of the ueticnd rcraeseh, a slpmie, macinahcel ioisrevnn of ianretnl cretcarahs araepps sneiciffut to csufnoe the eadyrevy oekoolnr

## **Pre-Attentive Processing**

#### Reading 2

According to card carrying linguistics professionals at an unnamed, university in British Columbia, and contrary to the dubious claims of the uncited research, a slpmie, macinahcel ioisrevnn of ianretnl cretcarahs araepps sneiciffut to csufnoe the eadyrevy oekoolnr

#### Reading 2

According to card carrying linguistics professionals at an unnamed, university in British Columbia, and contrary to the dubious claims of the uncited research, a simple, mechanical inversion of internal characters appears sufficient to confuse the everyday onlooker

## What To Learn From This

The human visual system (HSV) tolerates (visual) noise very well

- it can read the randomly garbled text very well
- machines (equipped with computer vision) are poor at this

Humans have only limited computational capacity

- hard to execute a fixed rule to decipher text
- especially once the text gets longer (7±2 rule of working memory)
- this is where computers excel

The fact that computers deal poorly with noisy patterns is exploited in CAPTCHA

- CAPTCHA: Completely Automated Public Turing Test to tell Computers and Humans Apart
- used to ensure that an actual human is interacting with a system
- some examples:
  - creating a new gmail or yahoo account (prevent spammer accounts)
  - submitting files, data, email

## CAPTCHA

CAPTCHA: noisy and vastly distorted patterns that are difficult to recognize by machines



# САРТСНА

But computer vision algorithms have become more sophisticated at CAPTCHA *character* recognition

• the latest approach is object recognition





# More Optical Illusions



# **Optical Illusions**



## **Optical Illusions**



Are the horizontal lines parallel or do they slope?

# **Optical Illusions**



How many legs does this elephant have?

#### **Optical Illusions**

Keep staring at the black dot. After a while the gray haze around it will appear to shrink.



# **Optical Illusions**



#### **Optical Illusions**

Follow the instructions:

1) Relax and concentrate on the 4 small dots in the middle of the picture for about. 30-40 secs.

- 2) Then, take a look at a wall near you ( any smooth, single coloured surface)
- 3) You will see a circle of light developing
- 4) Start blinking your eyes a couple of times and you will see a figure emerging...
- 5) What do you see? Moreover, who do you see?



#### **Explanation**

While the retina can perceive a high range of intensities, it cannot handle all simultaneously

- at any given time, each region adapts to a small intensity range determined by the local intensity
- that is why you have to wait a while when you step from a bright into a dark room (say, a dark movie theater from a brightly lit lobby)





# Optical IllusionsImage: Descent of the second of the s

## **Optical Illusions**



You should see a man's face and also a word... Hint: Try tilting your head to the right, the world begins with 'L'

# **Optical Illusions: Sidewalk Art**



#### Julian Beever

# **Optical Illusions: Sidewalk Art**





Julian Beever

# **Optical Illusions: Sidewalk Art**





Julian Beever

## **Explanation**







 $\rightarrow$  The science of visualization

#### **This Course**

A historical note, and the do's and the dont's of visualization More on perception and neuroscience How to present information visually: some examples Some insight into color Computer graphics: how to make stuff look 3D on a flat screen And why are graphics boards so fast? Photorealistic vs. non-photorealistic: illustrative visualization Borrowing visuals from the real world: textures, images Simulating the real world: fire, smoke, water Visualization in the medical field: visual medicine Visualization in science: turn numbers into visuals