

State of the Art in Data Representation for Visualization:

Volumetric Points

Klaus Mueller

Stony Brook UniversityComputer ScienceCenter for Visual Computing

Data Sources

- Volumetric sampling modalities
 - Medical scanners (MRI, CT, PET, SPECT, fMRI)
 - Industrial and security (CT)
 - Biology (confocal and electron microscopy)
 - Computational science (CFD, FE, FD)
 - Seismic devices (oil, precious metals, earthquake)
 - Engineering and industrial design (CAD/CAM)

• Volumetric objects are sampled into points, arranged in some 3D grid raster:

cubic grid

• Other common grids:

unstructured

anisotropic rectilinear

rectilinear

curvilinear

• Estimate ray integral via discrete raycasting: image plane interpolation kernel h pixel p_i 0 0 0 Ο 0 0 0 0 0 \circ 0 Ο 0 0 0 \mathbf{O} 0 Complete discrete ray integral: point v_i 0 Ο 0 0 O'Ο 0 $p_i = \sum \sum v_j \cdot h(\mathbf{X}(s_k) - \mathbf{X}(v_j))$ Ο \bigcirc \mathbf{O} Ο \mathbf{O} \mathbf{O} 0 0 0 0 0 0 0 Reversing the order of *j* and *k*: sample s_k $p_i = \sum_{i} v_j \sum_{j} h(\boldsymbol{X}(s_k) - \boldsymbol{X}(v_j))$ $s_k = \sum v_j \cdot h(\mathbf{X}(s_k) - \mathbf{X}(v_j))$

Estimate the ray integral via point projection: image plane interpolation kernel h pixel p_i Footprint (splat) Ο Ο Ο Ο 0 of point v_i . 0 0 \circ 0 0 0 0 point v_i 0 Q $\overline{h}(r_i) = \int h(r_i, s) ds$ \mathbf{O} 0 0 0 ray

Compute continuous ray integral at p_i :

$$p_i = \sum_j v_j \cdot \overline{h}_j(r_i)$$

• Example: projecting a volume of two points

- Re-ordering was first recognized by Hanson and Wecksung for 2D CT (Hanson '85)
 - Later independently discovered by Westover for 3D volume rendering (Westover '89)
- Facilitates computation of the true ray integral
 not just a discrete Riemann sum (raycasting)
- Pre-integrated footprint is stored into a table
 - Need a kernel function for which mappings into the footprint table can be defined for any orientation
 - The Gaussian is such a function

Point Projection

• Each point is represented by a 3D Gaussian G_V :

$$G_{V} = \frac{1}{2\boldsymbol{p}|V|^{0.5}} e^{-0.5(x-v_{j})^{T}V^{-1}(x-v_{j})}$$

- G_V is an ellipsoid to facilitate more general grids
- It is a sphere for cubic grids
- A viewing matrix *M* transforms G_V into G_{MVM} :

$$G_{MVM} = \frac{1}{|M^{-1}|} G_{MVM^{T}} (u - Mv_{j} - T)$$

$$G_{MVM}$$

(Heckbert '89, Zwicker '01)

Point Projection

- Projection P of G_{MVM} is screen ellipse P(G_{MVM})
 Find v_i's screen projection P(M·v_i + T)
 - Find linear mapping of $P(G_{MVM})$ into footprint table
 - Rasterize footprint table under $P(G_{MVM})$ at $P(V \cdot v_i)$

Blending

- Note: Gaussian kernels do not blend perfectly
 - A small ripple always remains:

Typical range: (0.99845, 1.00249) (assuming a function of unity)

- The wider the Gaussians, the smaller the ripple
- In practice, a radius = 2.0 in volume space works well (given the appropriate Gaussian)
- See (Crawfis and Max, Vis '93) for an optimized kernel

- Splatting seemingly reduces the interpolation complexity by one dimension:
 - Raycasting: interpolation of samples in 3D
 - Splatting: rasterization of footprints in 2D
- But...

- Consider magnification = 1
- Raycasting:

- Commonly uses trilinear interpolation
- Requires 8 points to calculate one ray sample point
- Total complexity: $O(8 \cdot n^3)$
- Splatting:
 - Uses Gaussian kernel of radius=2
 - Footprint rasterization touches 16 pixels
 - Total complexity: $O(16 \cdot n^3)$

• Does this mean that raycasting is more efficient than splatting?

- It depends....
 - Spatially intricate objects are good candidates for point-based rendering (splatting)
 - But the simplicity of splatting has advantages even for less favorable objects

- Generally, only need to store relevant points
 - Non-air points, masked-out points, ROI-points
- Provides easy space-leaping for irregular objects
- Storage schemes (in increasing order of spatial coherence):
 - List of points, sorted by value (fast iso-contouring)
 - RLE list of points (fast transformations and sparse)
 - Octree with hierarchical bins of points

- RLE list facilitates fast incremental arithmetic for point projection in software
- Texture mapping hardware can also be used
 - Texture map footprint onto a square polygon
 - Set GL blending functions, etc.
 - Warp polygon according to point's screen space ellipse
 - Align the warped polygon with the screen
 - Project polygon to the screen

• In perspective or at low magnifications, some volume portions may be sampled below Nyquist

• Effects of aliasing

checkerboard tunnel

terrain

- Adapt kernel bandwidth for proper anti-aliasing
- Amounts to a stretch of the 3D kernel

• Conveniently done in perspective (ray-) space

camera space

ray space

- Compute the Gaussian ellipsoid in ray space
 - Calculate the Jacobian J of the local perspective distortion (varies for each point)
 - Compute the ray space ellipsoid G_{JMV} using J

camera space

ray space

$$G_{MV} = \frac{1}{|M^{-1}|} G_{MVM^{T}} (u - Mv_{j} - T)$$

 $G_{JMV} = \frac{1}{|J^{-1}|} G_{JMVJ^T} (x - x_k)$

generalized Gaussian ellipsoid in camera space

(Zwicker '01)

center of Gaussian in ray space

Anti-Aliasing - Results

aliased

anti-aliased

Reconstruction followed by compositing

Compositing - Splatting

• Reconstruction not separable from compositing

- Two strategies devised by Westover (Westover '89, '90)
- Composite every point:
 - Shown in previous slide
 - Fast and simple
 - Leads to "sparkling" in animated viewing
- Axis-aligned sheet-buffers:
 - Add splats within sheets most parallel to image plane
 - Composite these sheets in depth-order
 - Leads to "popping" artifacts in animated viewing

Axis-Aligned Sheet-Buffers

Image-Aligned Sheet-Buffers

- Eliminates popping
 - Slicing slab cuts kernels into sections
 - Kernel sections are added into sheet-buffer
 - Sheet-buffers are composited

sheet buffer

image plane

binary cube

compositing buffer

- Footprint mapping as usual
 - Requires multiple footprint rasterizations per point

image-aligned

axis-aligned

Pre-Classified Splatting

Pre-Classified Splatting

One Solution: Edge Splats

- Edge splats (Huang '98)
 - replace normal splat by special edge splat

- Shortcomings:
 - pre-processing required
 - problems with discontinuities
 - "micro-edges" are hard to resolve

Pre-Classified Rendering

Post-Classified Rendering

(Mueller '99)

Note: this can only be done with image-aligned sheet buffers

Post-Classified Splatting

Post-Classified Splatting

pre-shaded

post-shaded, gradient splats

Post-Classified Splatting

pre-shaded

post-shaded

- Culling occluded points saves lots of time
- A point is only visible if the volume material in front of its footprint is not opaque

- Requirements for point visibiliy test:
 - Fast, efficient, simple
 - Hierarchical: quickly cull entire blocks of points
 - Accurate: the entire footprint must be occluded

- Better method (Mueller '00):
 - After compositing, convolve opacity image with a box filter (size = projected footprint)
 - Then, when a pixel value > threshold, the entire footprint neighborhood > threshold

- Hierarchical occlusion maps (Lee '00):
 - Keep points in an octree
 - Maintain visibility map in form of a quadtree
 - Check projection of an octree node with corresponding level of the visibiliy map quadtree
 - Cull occluded octree nodes
 - Subdivide octree node if not occluded
 - Rasterize points that fail the occlusion test
 - Update visibility map

visibility map

- Render one large point in place of many small points
 - Less rasterization cost (overlap areas)
 - Less storage required
- Control point size by volume content
 - Organize points into a tree
 - Use a local error metric to decide on point size
 - Laur and Hanrahan use RMS error (Laur '91)
 - User sets an error threshold to control tree traversal

• Preliminary results:

 Use a frequency-space metric to control error and determine the size of the splatted point

Original resolution: 240k points Multi-resolution: 90k points

(Welsh '02)

- Points provide a lossless data compression by retaining only a list of relevant points
- Are there further lossless compression opportunities?
 - Assume we deal with regular grids
 - Are there more efficient regular grids than the cubic cartesian grid?
- The answer comes from the theory on sphere packings and lattices (Conway '93)

- Body-centered cartesian (BCC) grid:
 - Reduces # of required point samples to 70.3%

4D BCC grid requires only 50% of the equivalent 4D cubic grid samples

• Notes:

- BCC grids assume spherically bandlimited signal
- Under that assumption compression is lossless
- Rendering (Theussl '01):
 - All usual point rendering methods are applicable
 - Need to shift slices by $1/\sqrt{2}$

- Turbulent Jet 4D CC
 - 99 time steps (168M)
 - Relevant voxels: 9.4M
 - 3D extracted: 127k
 - Size RLE list: 146k
 - Render time: 1.23s

- Turbulent Jet 4D BCC
 - 138 time steps (87M)
 - Relevant voxels: 7.4M
 - 3D extracted: 107k
 - Size RLE list: 146k
 - Render time: 1.01s (71%)

(Neophytou '02)

• Animations of time-varying datasets:

turbulent jet

CARTESIAN

turbulent flow

- Footprints do not have to serve interpolation alone (via the pre-integrated kernel function)
- They can be used to add additional detail or information between the sample points
- The Gaussian footprint provides the blending

vector field splat

(Crawfis/Max '93)

- Points can also be used to "stuff" empty space
- Example:
 - One may fill cells of an irregular grid with Poisson distributed points
 - Perform projection via point-based rendering

Questions?