
1

Klaus Mueller

Stony Brook University
Computer Science Center for Visual Computing

State of the Art in Data Representation for
Visualization:

Volumetric Points

2

Data Sources

• Volumetric sampling modalities
ù Medical scanners (MRI, CT, PET, SPECT, fMRI)
ù Industrial and security (CT)
ù Biology (confocal and electron microscopy)
ù Computational science (CFD, FE, FD)
ù Seismic devices (oil, precious metals, earthquake)
ù Engineering and industrial design (CAD/CAM)

3

Fundamental Representation

• Volumetric objects are sampled into points,
arranged in some 3D grid raster:

• Other common grids:

anisotropic rectilinear rectilinear curvilinear unstructured

cubic grid

4

X-Ray Rendering

• Estimate ray integral via discrete raycasting:

))()((jk
j

jk vshvs XX −⋅= ∑

∑∑ −⋅=
k

jk
j

ji vshvp))()((XX

∑ ∑ −=
j k

jkji vshvp))()((XX

pixel pi

image plane
interpolation kernel h

sample sk

point vj
Complete discrete ray integral:

Reversing the order of j and k:

5

X-Ray Rendering

• Estimate the ray integral via point projection:

∑ ⋅=
j

ijji rhvp)(

Footprint (splat)
of point vj:

image plane
interpolation kernel h

point vj

Compute continuous ray integral at pi:

pixel pi

∫
−

=
ext

ext
ii dssrhrh),()(

ray ri

6

X-Ray Point Splatting

• Example: projecting a volume of two points

3.

2.

1.

4.

add
footprints

rasterize
footprint

rasterize
footprint

7

X-Ray Point Splatting

• Re-ordering was first recognized by Hanson and
Wecksung for 2D CT (Hanson ‘85)

ù Later independently discovered by Westover for 3D
volume rendering (Westover ‘89)

• Facilitates computation of the true ray integral
ù not just a discrete Riemann sum (raycasting)

• Pre-integrated footprint is stored into a table
ù Need a kernel function for which mappings into the

footprint table can be defined for any orientation
ù The Gaussian is such a function

8

Point Projection

• Each point is represented by a 3D Gaussian GV:

ù GV is an ellipsoid to facilitate more general grids
ù It is a sphere for cubic grids

• A viewing matrix M transforms GV into GMVM:

)()(5.0
5.0

1

2
1 j

T
j vxVvx

V e
V

G −−− −

=
π

vj
GV

)(
1

1
TMvuG

M
G jMVMMVM T −−=

−
Mvj+T

GMVM

(Heckbert ‘89, Zwicker ‘01)

9

Point Projection

• Projection P of GMVM is screen ellipse P(GMVM)
ù Find vj’s screen projection P(M·vj + T)
ù Find linear mapping of P(GMVM) into footprint table
ù Rasterize footprint table under P(GMVM) at P(V·vj)

Footprint table
(circular Gaussian)P(GMVM)

P(M·vj + T) mapping ellipse � circle

10

Blending

• Note: Gaussian kernels do not blend perfectly
ù A small ripple always remains:

• The wider the Gaussians, the smaller the ripple
• In practice, a radius = 2.0 in volume space

works well (given the appropriate Gaussian)
• See (Crawfis and Max, Vis ‘93) for an optimized kernel

Typical range: (0.99845, 1.00249)
(assuming a function of unity)

11

Complexity

• Splatting seemingly reduces the interpolation
complexity by one dimension:
ù Raycasting: interpolation of samples in 3D
ù Splatting: rasterization of footprints in 2D

• But…

12

Complexity

• Consider magnification = 1
• Raycasting:

ù Commonly uses trilinear interpolation
ù Requires 8 points to calculate one ray sample point
ù Total complexity: O(8·n3)

• Splatting:
ù Uses Gaussian kernel of radius=2
ù Footprint rasterization touches 16 pixels
ù Total complexity: O(16·n3)

13

Complexity

• Does this mean that raycasting is more efficient
than splatting?

• It depends….
ù Spatially intricate objects are good candidates for

point-based rendering (splatting)
ù But the simplicity of splatting has advantages even

for less favorable objects

14

Storage Complexity

• Generally, only need to store relevant points
ù Non-air points, masked-out points, ROI-points

• Provides easy space-leaping for irregular objects
• Storage schemes (in increasing order of spatial

coherence):
ù List of points, sorted by value (fast iso-contouring)
ù RLE list of points (fast transformations and sparse)
ù Octree with hierarchical bins of points

#E #Fv1v2v3v4 #E #Fv1v2…
#E #Fv1v2v3 #E #Fv1v2v3…

RLE:

15

Rendering

• RLE list facilitates fast incremental arithmetic
for point projection in software

• Texture mapping hardware can also be used
ù Texture map footprint onto a square polygon
ù Set GL blending functions, etc.
ù Warp polygon according to point’s screen space

ellipse
ù Align the warped polygon with the screen
ù Project polygon to the screen

16

Aliasing

• In perspective or at low magnifications, some
volume portions may be sampled below Nyquist

Ray grid sampling rate
> volume grid sampling rate

→ no aliasing

Ray grid sampling rate
≤ volume grid sampling rate

→ aliasing

screen

oversampled
volume grid

undersampled
volume grid

17

Aliasing

• Effects of aliasing

checkerboard tunnel terrain

18

Anti-Aliasing

• Adapt kernel bandwidth for proper anti-aliasing
• Amounts to a stretch of the 3D kernel

screen

linearly increase splat kernel size
linearly decrease splat amplitude

constant splat kernel size

(Swan ‘97, Mueller ‘98)

19

Anti-Aliasing

• Conveniently done in perspective (ray-) space

screen

ray space

screen

camera space

20

Anti-Aliasing

• Compute the Gaussian ellipsoid in ray space
ù Calculate the Jacobian J of the local perspective

distortion (varies for each point)
ù Compute the ray space ellipsoid GJMV using J

generalized Gaussian
ellipsoid in camera space

)(
1

)(
1

1

1

kJMVJJMV

jMVMMV

xxG
J

G

TMvuG
M

G

T

T

−=

−−=

−

−

center of Gaussian in ray space

camera
space

ray
space

(Zwicker ‘01)

21

Anti-Aliasing - Results

aliased anti-aliased

22

Compositing - Raycasting

• Reconstruction followed by compositing

pixel pi

image plane
interpolation kernel h

Reconstruction of c(sk), α(sk) αααα

αα

+−⋅=

+−⋅⋅=

)1()(

)1()()(

k

kk

s

cssCc

Compositing:

23

Compositing - Splatting

• Reconstruction not separable from compositing
image planeinterpolation kernel h

point vj
C(vj), α(vj)

pixel pi

ray ri

αααα

αα

+−⋅⋅=

+−⋅⋅⋅⋅=

)1()()(

)1()()()()(

ij

ijij

rhv

crhvrhvCc
∫

−

=
ext

ext
ii dssrhrh),()(

compositing of
pre-integrated
kernel

24

Compositing

• Two strategies devised by Westover (Westover ‘89, ‘90)

• Composite every point:
ù Shown in previous slide
ù Fast and simple
ù Leads to “sparkling” in animated viewing

• Axis-aligned sheet-buffers:
ù Add splats within sheets most parallel to image plane
ù Composite these sheets in depth-order
ù Leads to “popping” artifacts in animated viewing

25

Axis-Aligned Sheet-Buffers

x

y
z volume slices

image
 pla

ne
at 7

0°

44.7° 45.2°

image plane at 30°

vol
um

e s
lice

s

Popping occurs:

Switch compositing
axis at 45°

binary cube

26

Image-Aligned Sheet-Buffers

sheet buffer

compositing buffer
image plane

• Eliminates popping
ù Slicing slab cuts

kernels into sections
ù Kernel sections are

added into sheet-buffer
ù Sheet-buffers are

composited

binary cube (Mueller ‘98)

27

Image-Aligned Sheet-Buffers

• Footprint mapping as usual
ù Requires multiple footprint rasterizations per point

axis-aligned image-aligned

28

Pre-Classified Splatting

normal

blurred
close-ups

29

Pre-Classified Splatting

Original edge

Sampled edge

Splatted with Gaussian kernel

Reconstruction: blurred edge image

Classification and shading

30

One Solution: Edge Splats

• Edge splats (Huang ‘98)

ù replace normal splat by special edge splat

• Shortcomings:
ù pre-processing required
ù problems with discontinuities
ù “micro-edges” are hard to resolve

31

Pre-Classified Rendering

Raw density
volume

Image

Classify
and shade

Splat into
sheet-buffer

Composite
sheet-buffer

Advance sheet-buffer

Color and
opacity volume

Rendering Loop

Viewing parameters

32

Post-Classified Rendering

Raw density
volume

Image

Classify
and shade

Splat into
sheet-buffer

Composite
sheet-buffer

Advance sheet-buffer

Rendering Loop

Viewing parameters

Note: this can only be done with image-aligned sheet buffers

(Mueller ‘99)

33

Post-Classified Splatting

Original edge

Sampled edge

Splatted with Gaussian kernel

Reconstruction: blurred edge

Classification: crisp edge image

34

Post-Classified Splatting

pre-shaded post-shaded,
gradient splats

post-shaded,
central difference

current+1
currentcurrent -1

current currentSh
ee

t b
uf

fe
rs

35

Post-Classified Splatting

post-shaded

pre-shaded

36

Occlusion Culling

• Culling occluded points saves lots of time
• A point is only visible if the volume material in

front of its footprint is not opaque

occluded point does not
pass visibility test

wall of occluding voxels

occlusion map = opacity image

screen

Require front-to-back rendering

37

Occlusion Culling

• Requirements for point visibiliy test:
ù Fast, efficient, simple
ù Hierarchical: quickly cull entire blocks of points
ù Accurate: the entire footprint must be occluded

opacity ≥ threshold

opacity < threshold

opacity = 0
occlusion map

project do not project

Slow, but accurate:
check all pixels under
the footprint first

38

opacity ≥ threshold

occlusion map

project do not project

opacity < threshold

opacity = 0

Occlusion Culling

• Better method (Mueller ‘00):
ù After compositing, convolve opacity image with a

box filter (size = projected footprint)
ù Then, when a pixel value > threshold, the entire

footprint neighborhood > threshold

Fast and accurate:
Only check pixel
nearest to projected
point center

39

Occlusion Culling

• Hierarchical occlusion maps (Lee ‘00):
ù Keep points in an octree
ù Maintain visibility map in form of a quadtree
ù Check projection of an octree node with

corresponding level of the visibiliy map quadtree
ù Cull occluded octree nodes
ù Subdivide octree node if not occluded
ù Rasterize points that fail the occlusion test
ù Update visibility map

visibility map

40

Multi-Resolution Points

• Render one large point in place of many small
points
ù Less rasterization cost (overlap areas)
ù Less storage required

• Control point size by volume content
ù Organize points into a tree
ù Use a local error metric to decide on point size
ù Laur and Hanrahan use RMS error (Laur ‘91)

ù User sets an error threshold to control tree traversal

41

Multi-Resolution Points

• Preliminary results:
ù Use a frequency-space metric to control error and

determine the size of the splatted point

Original resolution:
240k points

Multi-resolution:
90k points

(Welsh ‘02)

42

Compression

• Points provide a lossless data compression by
retaining only a list of relevant points

• Are there further lossless compression
opportunities?
ù Assume we deal with regular grids
ù Are there more efficient regular grids than the cubic

cartesian grid?

• The answer comes from the theory on sphere
packings and lattices (Conway ‘93)

43

Alternative Grids

frequency domain

main spectrum
1

spatial domain

Fourier
transform

replica

1
3/2

cubic
Cartesian

(CC)

hexagonal
grid

(13.4% less
samples) Fourier

transform

44

Alternative Grids

• Body-centered cartesian (BCC) grid:
ù Reduces # of required point samples to 70.3%

ù 4D BCC grid requires only 50% of the
equivalent 4D cubic grid samples

1
1

1

cubic
body-centered

2

2
2

2/6

45

Alternative Grids

• Notes:
ù BCC grids assume spherically bandlimited signal
ù Under that assumption compression is lossless

• Rendering (Theussl ‘01):
ù All usual point rendering methods are applicable
ù Need to shift slices by 2/1

CC BCC BCC

46

Alternative Grids

• Turbulent Jet 4D CC
ù 99 time steps (168M)
ù Relevant voxels: 9.4M
ù 3D extracted: 127k
ù Size RLE list: 146k
ù Render time: 1.23s

• Turbulent Jet 4D BCC
ù 138 time steps (87M)
ù Relevant voxels: 7.4M
ù 3D extracted: 107k
ù Size RLE list: 146k
ù Render time: 1.01s (71%)

(Neophytou ‘02)

47

Alternative Grids

• Animations of time-varying datasets:

turbulent jet

turbulent flow

48

Detail Modeling

• Footprints do not have to serve interpolation
alone (via the pre-integrated kernel function)

• They can be used to add additional detail or
information between the sample points

• The Gaussian footprint provides the blending

vector field splat

(Crawfis/Max ’93)

49

Space-Filling Points

• Points can also be used to “stuff” empty space
• Example:

ù One may fill cells of an irregular grid with Poisson
distributed points

ù Perform projection via point-based rendering

(Mao ’95)

50

Questions?

