State of the Art in Data Representation for Visualization:

Volumetric Points

Klaus Mueller

Stony Brook University
Computer Science Center for Visual Computing

Data Sources

- Volumetric sampling modalities

Medical scanners (MRI, CT, PET, SPECT, fMRI)
Industrial and security (CT)
Biology (confocal and electron microscopy)
Computational science (CFD, FE, FD)
Seismic devices (oil, precious metals, earthquake)
Engineering and industrial design (CAD/CAM)

Fundamental Representation

- Volumetric objects are sampled into points, arranged in some 3D grid raster:
cubic grid
- Other common grids:

anisotropic rectilinear

rectilinear

curvilinear

unstructured

X-Ray Rendering

- Estimate ray integral via discrete raycasting:

Complete discrete ray integral:

$$
p_{i}=\sum_{k} \sum_{j} v_{j} \cdot h\left(\boldsymbol{X}\left(s_{k}\right)-\boldsymbol{X}\left(v_{j}\right)\right)
$$

Reversing the order of j and k :

$$
p_{i}=\sum_{j} v_{j} \sum_{k} h\left(\boldsymbol{X}\left(s_{k}\right)-\boldsymbol{X}\left(v_{j}\right)\right)
$$

X-Ray Rendering

- Estimate the ray integral via point projection:
 image plane

ray r_{i}

Compute continuous ray integral at p_{i} :

$$
p_{i}=\sum_{j} v_{j} \cdot \bar{h}_{j}\left(r_{i}\right)
$$

X-Ray Point Splatting

- Example: projecting a volume of two points

1.

3.

2.

4.

X-Ray Point Splatting

- Re-ordering was first recognized by Hanson and Wecksung for 2D CT (Hanson ${ }^{85}$)

Later independently discovered by Westover for 3D volume rendering (Westover '89)

- Facilitates computation of the true ray integral not just a discrete Riemann sum (raycasting)
- Pre-integrated footprint is stored into a table Need a kernel function for which mappings into the footprint table can be defined for any orientation The Gaussian is such a function

Point Projection

- Each point is represented by a 3D Gaussian G_{V} :

$$
G_{V}=\frac{1}{2 \pi|V|^{0.5}} e^{-0.5\left(x-v_{j}\right)^{T} V^{-1}\left(x-v_{j}\right)}
$$

G_{V} is an ellipsoid to facilitate more general grids
It is a sphere for cubic grids

- A viewing matrix M transforms G_{V} into $G_{M V M}$:

$$
G_{M V M}=\frac{1}{\left|M^{-1}\right|} G_{M V M^{T}}\left(u-M v_{j}-T\right)
$$

Point Projection

- Projection P of $G_{M V M}$ is screen ellipse $\mathrm{P}\left(G_{M V M}\right)$

Find v_{j} 's screen projection $\mathrm{P}\left(\mathrm{M} \cdot v_{j}+T\right)$
Find linear mapping of $\mathrm{P}\left(G_{M V M}\right)$ into footprint table
Rasterize footprint table under $\mathrm{P}\left(G_{M V M}\right)$ at $\mathrm{P}\left(\mathrm{V} \cdot v_{j}\right)$

Blending

- Note: Gaussian kernels do not blend perfectly

A small ripple always remains:
Typical range: $(0.99845,1.00249)$
(assuming a function of unity)

- The wider the Gaussians, the smaller the ripple
- In practice, a radius = 2.0 in volume space works well (given the appropriate Gaussian)
- See (Crawfis and Max, Vis ${ }^{\bullet} 93$) for an optimized kernel

Complexity

- Splatting seemingly reduces the interpolation complexity by one dimension:

Raycasting: interpolation of samples in 3D
Splatting: rasterization of footprints in 2D

- But...

Complexity

- Consider magnification = 1
- Raycasting:

Commonly uses trilinear interpolation

Requires 8 points to calculate one ray sample point
Total complexity: $\mathrm{O}\left(8 \cdot \mathrm{n}^{3}\right)$

- Splatting:

Uses Gaussian kernel of radius=2
Footprint rasterization touches 16 pixels Total complexity: $\mathrm{O}\left(16 \cdot \mathrm{n}^{3}\right)$

Complexity

- Does this mean that raycasting is more efficient than splatting?
- It depends....

Spatially intricate objects are good candidates for point-based rendering (splatting)
But the simplicity of splatting has advantages even for less favorable objects

Storage Complexity

- Generally, only need to store relevant points

Non-air points, masked-out points, ROI-points

- Provides easy space-leaping for irregular objects
- Storage schemes (in increasing order of spatial coherence):

List of points, sorted by value (fast iso-contouring)
RLE list of points (fast transformations and sparse)
Octree with hierarchical bins of points
RLE: $\begin{aligned} & \# \mathrm{E} \# \mathrm{Fv}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{4} \# \mathrm{E} \# \mathrm{Fv}_{1} \mathrm{v}_{2} \ldots \\ & \# \mathrm{E} \# \mathrm{Fv}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \# \mathrm{E} \# \mathrm{Fv}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \ldots\end{aligned}$

Rendering

- RLE list facilitates fast incremental arithmetic for point projection in software
- Texture mapping hardware can also be used

Texture map footprint onto a square polygon Set GL blending functions, etc.
Warp polygon according to point's screen space ellipse
Align the warped polygon with the screen
Project polygon to the screen

Aliasing

- In perspective or at low magnifications, some volume portions may be sampled below Nyquist

Aliasing

- Effects of aliasing

checkerboard tunnel

terrain

Anti-Aliasing

- Adapt kernel bandwidth for proper anti-aliasing
- Amounts to a stretch of the 3D kernel

Anti-Aliasing

- Conveniently done in perspective (ray-) space

screen
camera space
ray space

Anti-Aliasing

- Compute the Gaussian ellipsoid in ray space Calculate the Jacobian J of the local perspective distortion (varies for each point)
Compute the ray space ellipsoid $G_{J M V}$ using J

generalized Gaussian ellipsoid in camera space

Anti-Aliasing - Results

aliased

anti-aliased

Compositing - Raycasting

- Reconstruction followed by compositing

Compositing - Splatting

- Reconstruction not separable from compositing

Compositing

- Two strategies devised by Westover (Westover '89, ‘90)
- Composite every point:

Shown in previous slide
Fast and simple
Leads to "sparkling" in animated viewing

- Axis-aligned sheet-buffers:

Add splats within sheets most parallel to image plane
Composite these sheets in depth-order
Leads to "popping" artifacts in animated viewing

Axis-Aligned Sheet-Buffers

image plane at 30°
Switch compositing axis at 45°

Popping occurs:

Image-Aligned Sheet-Buffers

- Eliminates popping

Slicing slab cuts kernels into sections

Kernel sections are added into sheet-buffer Sheet-buffers are composited

Image-Aligned Sheet-Buffers

- Footprint mapping as usual

Requires multiple footprint rasterizations per point

axis-aligned

image-aligned

Pre-Classified Splatting

normal
blurred
close-ups

Pre-Classified Splatting

Original edge

Sampled edge

Classification and shading

Splatted with Gaussian kernel

Reconstruction: blurred edge image

One Solution: Edge Splats

- Edge splats (Huang '98) replace normal splat by special edge splat

- Shortcomings: pre-processing required
 problems with discontinuities "micro-edges" are hard to resolve

Pre-Classified Rendering

Post-Classified Rendering

(Mueller ‘99)

Note: this can only be done with image-aligned sheet buffers

Post-Classified Splatting

Original edge

Sampled edge

Splatted with Gaussian kernel

Reconstruction: blurred edge

Classification: crisp edge image

Post-Classified Splatting

pre-shaded

post-shaded, central difference

post-shaded, gradient splats

Post-Classified Splatting

pre-shaded
post-shaded

Occlusion Culling

- Culling occluded points saves lots of time
- A point is only visible if the volume material in front of its footprint is not opaque
occluded point does not pass visibility test

Require front-to-back rendering

Occlusion Culling

- Requirements for point visibiliy test:

Fast, efficient, simple
Hierarchical: quickly cull entire blocks of points Accurate: the entire footprint must be occluded

occlusion map
do not project
\square opacity \geq threshold
\square opacity < threshold
\square opacity $=0$

Occlusion Culling

- Better method (Mueller ‘00):

After compositing, convolve opacity image with a box filter (size = projected footprint)
Then, when a pixel value > threshold, the entire footprint neighborhood > threshold

Occlusion Culling

- Hierarchical occlusion maps (Lee '00):

Keep points in an octree
Maintain visibility map in form of a quadtree
Check projection of an octree node with corresponding level of the visibiliy map quadtree
Cull occluded octree nodes
Subdivide octree node if not occluded
Rasterize points that fail the occlusion test
Update visibility map

Multi-Resolution Points

- Render one large point in place of many small points

Less rasterization cost (overlap areas)
Less storage required

- Control point size by volume content

Organize points into a tree
Use a local error metric to decide on point size
Laur and Hanrahan use RMS error (Laur '91)
User sets an error threshold to control tree traversal

Multi-Resolution Points

- Preliminary results:

Use a frequency-space metric to control error and determine the size of the splatted point

Original resolution: 240k points

Multi-resolution: 90k points

Compression

- Points provide a lossless data compression by retaining only a list of relevant points
- Are there further lossless compression opportunities?

Assume we deal with regular grids
Are there more efficient regular grids than the cubic cartesian grid?

- The answer comes from the theory on sphere packings and lattices (Conway 93)

Alternative Grids

cubic
Cartesian (CC)

Alternative Grids

Body-centered cartesian (BCC) grid: Reduces \# of required point samples to 70.3%
 body-centered

4D BCC grid requires only 50% of the equivalent 4D cubic grid samples

Alternative Grids

- Notes:

BCC grids assume spherically bandlimited signal
Under that assumption compression is lossless

- Rendering (Theussl '01):

All usual point rendering methods are applicable
Need to shift slices by $1 / \sqrt{2}$

Alternative Grids

Turbulent Jet 4D CC
99 time steps (168M)
Relevant voxels: 9.4 M
3D extracted: 127k
Size RLE list: 146k
Render time: 1.23s

- Turbulent Jet 4D BCC

138 time steps (87M)
Relevant voxels: 7.4M
3D extracted: 107k
Size RLE list: 146k
Render time: 1.01s (71\%)
(Neophytou '02)

Alternative Grids

- Animations of time-varying datasets:

Detail Modeling

- Footprints do not have to serve interpolation alone (via the pre-integrated kernel function)
- They can be used to add additional detail or information between the sample points
- The Gaussian footprint provides the blending

vector field splat

Space-Filling Points

- Points can also be used to "stuff" empty space
- Example:

One may fill cells of an irregular grid with Poisson distributed points
Perform projection via point-based rendering

Questions?

