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SALIENT ISO-SURFACE DETECTION WITH MODEL-INDEPENDENT STATISTICAL
SIGNATURES

Shivaraj Tenginakai, Jinho Lee, Raghu Machiraju

Computer and Information Science

The Ohio State University
ABSTRACT

Volume graphics has not been accepted for widespread use. One of
the inhibiting reasons is the lack of general methods for data-anal-
ysis and simple interfaces for data exploration. An error-and-trial
iterative procedure is often used to select a desirable transfer func-
tion or mine the dataset for salient iso-values. New semi-automatic
methods that are also data-centric have shown much promise
[1][7]. However, general and robust methods are still needed for
data-exploration and analysis. In this paper, we propose general
model-independent statistical methods based on central moments
of data. Using these techniques we show how salient iso-surfaces
at material boundaries can be determined. We provide examples
from the medical and computational domain to demonstrate the
effectiveness of our methods.

CR Categories and Subject Descriptors:1.3.3 [Computer
Graphics]: Picture/Image Generation - Viewing Algorithms; 1.3.6
[Image Processing and Computer Vision]: Feature Measurement -
Feature Representation.

Keywords: Iso-values, Transfer Functions, Surface Extraction,
Direct Volume Rendering

1. INTRODUCTION

Direct volume rendering is a key technology for the visualization
of large 3D datasets from scientific or medical applications. Con-
sider the example of visualizing a 3D Computed Tomography (CT)
dataset of the Visible Man from the National Library of Medicine.
It is known for instance that the bowels can be extracted when the
intensity value is set at700. The muscle can be displayed when
intensity range includes the value1010. For many datasets, one is
often ignorant of the salient iso-values; rather they have to be
determined. In other words one needs to divide the voxel intensity
space into segments that delineate homogenous materials, if at all
possible. This is akin to feature mining in sample space. Similarly,
one can employ transfer functions for opacity and color that best
produce material interfaces and boundaries. Salient iso-value
detection and transfer function design are related [7] and in this
paper we will limit our discussion to the former.

Pat Hanrahan called data exploration (including transfer function
design) one of the top ten problems in volume visualization in his
inspiring keynote address at theSymposium on Volume Visualiza-
tion '92.Recent research has focused on automatic and semi-auto-
matic techniques for creating transfer functions and data
exploration [1][2][4][5][7][8]. In the panel session on transfer
function design at the Visualization’00 conference [10] three
classes of techniques were identified.
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One of the classes included techniques that required an error-a
trial approach. The other classes contained techniques that
either image- or data-centric. Of all the techniques, it was felt th
data-centric techniques held most promise. These techniq
required assumptions to be made about the data [7] or that com
able signature functions be obtained [1]. Image-centric metho
[8] on the other hand are based on searching a large space and
little user control. The effectiveness of error-and-trial method
rests very heavily on the expertise and intuition of the user. In a
case, the need for new work that offered general solutions was f
It was also realized that these methods should be at least se
automatic giving assistance to the practitioner rather than be
completely automatic. Methods that eliminate the human from t
exploration process are dangerous and should be avoided s
they can generate images that may fulfill the expectations of t
observer, but are not necessarily true to the nature of the data.

In this paper, we propose to employ data-signatures to expl
data. These signatures are obtained from localizedk-order central
moments. The histogram is an example of the first-order cent
moment. There exists a strong relationship between the vario
central moments and this relationship is influenced by the prese
of material interfaces. Thus, these signatures can be used to lo
salient iso-values which occur at material interfaces. An attract
trait is that these methods are general and robust to noise.
assumption about the boundary’s thickness or it’s suitability
made for a given dataset. Also, the signatures based on mom
are all related in a more comprehensible manner than those use
[1] and are relatively much easier to compute. Finally, our pr
posed method is not completely automatic; it provides ample cu
to the presence of material interfaces.

Section 2 describes previous work in salient contour extraction a
transfer function design. In Section 3, we introduce various math
matical concepts and derive and analyze our fundamental equat
the general moment equation. Section 4 describes the use of lo
higher order moments to detect boundaries in spatial domain a
sample space. In Section 5, we present results that validate
analysis, while Section 6 offers a summary and describes fut
work.

2. PREVIOUS WORK

In general, the visualization process should be guided by inform
tion about the goal of the visualization, and specific informatio
about the particular dataset in question. There exist techniques
employ a model of the desired feature, e.g., the boundary betw
homogeneous regions. This approach was taken by Kindlmann
Durkin [7]. An initial step in this process is the definition of a
boundary. The boundary is essentially a Gaussian smoothed
function. The spatial component of the boundary is then remov
by creating a 3D histogram of the data value and its first and s
ond derivative. This histogram is very informative and the pre
ence of sharp boundaries can be easily discerned from
projected plots of vs. and vs. . The number of zero
crossings in the second plot (or maximas in the first plot) esse
tially determines the number of interfaces. Based on analysis
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this histogram, a distance function is created which tries to bridge
the unintuitive space of data values to a synthetic, but intuitive,
spatial domain: a signed distance to the middle of the nearest
boundary. The calculation of the distance function is largely auto-
mated. Defining opacity as a function of position within a bound-
ary becomes a more intuitive task than defining opacity as a
function of data value. The success of this method is limited when
the boundary model is not Gaussian and far from being ideal.
Other notable work has been conducted by Sato et al. [11]. They
define a gradient based measure for certain shapes of human tissue.

What information about the dataset can one exploit? Bajaj and his
associates devised the contour spectrum which can guide the selec-
tion of iso-values for contouring [1]. A 1D plot of geometric and
topological characteristics or signatures (volume and gradient inte-
gral) are plotted against the function value. A viable selection of
salient iso-values is thus facilitated. The contour spectrum tech-
nique does not employ any particular model for the boundary inter-
face. Rather, they exploit geometrical and/or topological properties
of the volume. Statistical techniques are gaining popularity in data-
mining applications. Only a few reported statistics-based methods
exist for volume data-analysis and exploration. In [3][6] statistical
inference methods (e.g. Bayesian) are employed to determine the
material density of each voxel. Multiscale statistical techniques
have also been proposed by Yoo [13]. Histograms and local higher
order moments have been used in computer vision and image anal-
ysis research to describe shapes of objects. The histogram certainly
has some potential as described in [7]. However, not much has
been explored with histograms and other statistical moments as a
statistical entity to facilitate volumetric data-analysis.

Instead of tweaking input parameters another approach such as
inverse design can be used for data-analysis. Inverse design is a
general paradigm for computer-aided design of graphics, where
the user supplies an objective function over the output values. This
function will generate a high score (say) for desirable output val-
ues, and a low score for other output values. The computer then
searches for a set of input parameters that will maximize the objec-
tive-function score. He et al. implemented a genetic algorithm to
seek transfer functions with limited success [5]. A primary reason
for failure is the difficulty of specifying a suitable objective func-
tion. A more viable approach entails a search that creates an
ensemble of unique images which are then displayed in such a
fashion that the differences are easily discerned. Embodying this
approach is the Design Galleries approach that was used to explore
parameter spaces for a host of graphics and animation applications
[8]. Generated images are used in an evolutionary search algorithm
in the parameter space. On termination, the chosen images are gen-
erated by a unique set of transfer functions. The problem with
inverse design methods are that they are automatic in nature and do
not allow for much control to be exercised on the process.

3. STATISTICAL SIGNATURES OF DATA

In this section we first define the concepts related to higher order
moments. We then introduce our definition of a physical boundary,
and proceed to define local higher order moments. This is followed
by a derivation of the general moment equation, and its analysis.
We use results of this section to present techniques for detecting
boundaries in Section 4.

3.1  Higher Order Moments (HOMs)
Higher order moments (HOMs)are model-independent statistical
estimators of central tendency of a data distribution, i.e. they mea-
sure the tendency of a distribution to cluster around some particu-
lar value [12]. Usually, the value around which clustering of a

distribution,x1, x2, x3,...., xN, is measured is themean (M)of the
distribution, given by:

(1)

Thehigher order moment of the same distribution is defined as:

(2)

where,mk is thehigher order momentof orderk. We can see that
there are infinitely many HOMs. The second moment evaluat
variance, while the third and fourth moments evaluate skewne
and kurtosis. For a symmetric set of samples, the skewness ev
ates to zero, while, for positively skewed samples, the histogram
the sample will have a heavy tail on the right. A sample s
obtained from theNormaldistribution will have kurtosis equal to
zero. When a sample is more dense than that derived from a n
mal distribution, then the sample’s likely distribution is ascribed
negative kurtosis value. Otherwise it is positive. Thus, one c
completely characterize the shape of any function if infinite num
ber of central moments are known. HOMs are used in nonline
signal processing for signal and image estimation [9].

3.2  Boundary Model and Local Higher
Order Moments

The methods presented in this paper are for the following mode
boundary or material interface (though, all the discussion below
for R2, it generalizes easily to higher dimensions). Consider a wi
dow W of size in a two-dimensional dataset, centered at
point P, (see Figure 1). At the boundary sample values of points
W change fromC1 to C2. Here we assume thatW is small enough
to contain just one boundary. Similar mixture model was employ
in [6]. However, we use much simpler analysis.

Since the size ofW is , it follows that there arew2 particles
or sample points inW. We call the particles with sample valueC2
boundaryparticles, since they are introduced by the presence
the boundary. Further, letm be the number of such particles. Also,
let n be the number of particles or sample points with sample val
C1. We call all such particlesnon-boundaryparticles. It follows

M
1
N
---- xj

j 1=

N

∑=

mk
1
N
---- xj M–( )k

j 1=

N

∑=

w

w C1 C2
P

Figure 1: The boundary model (w = 3) for a small
2D window. C1 andC2 are the two materials sepa-
rated by a material interface.
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that,n + m = w2. Assuming that our algorithm sweeps points left
to right, we make the following observations:

• if m = 0 or n = 0, then there is no boundary inW, and we clas-
sify such a window as anon-boundaryregion.

• if m > 0 andn > 0, then there exists a boundary inW, and we
classify such a window as aboundaryregion. Further,

• if n is greater thanm, then the majority of particles in
W arenon-boundaryparticles, and the pointP lies left
of the boundary. We classify such a window as aleft-
boundaryregion.

• if m is greater thann, then the majority of particles in
W areboundaryparticles, and the pointP lies right of
the boundary. We classify such a window as aright-
boundary region.

• if n equal tom, then the number ofboundaryparticles
and non-boundaryparticles inW are equal, and the
point P lies on the boundary. We classify such a win-
dow as anon-boundaryregion.

For purpose of further analysis, we introduce the concept oflocal
higher order moments (LHOMs). LHOMs are HOMs calculated
over the distribution of the sample values in a windowW. Associ-
ated is also the concept oflocal meanwhich is themeanof sample
values inW. The equation oflocal mean (LM)could be derived
from Equation 1 as:

(3)

and theLHOM of orderk is thus:

(4)

It should be noted that for anyW there are infinitely many
LHOMs. We now show the derivation of the general moment equa-
tion based on the concepts introduced above.

3.3  Derivation of the General Moment
Equation
In this section we proceed to simplify Equation 4, based on our
model of boundary. Using our boundary model, the local mean is:

(5)

This model essentially assumes that any one material follows the
binomial distribution in this small area. Further, the expression
LHOM of k-thorder reduces to:

(6)

Let , and substitute , in the above equa-
tion. This yields the general moment equation:

(7)

Equation 7 can be rewritten as:

(8)

wheref(m,n) is defined as thedistribution function. It determines
behavior of thek-th order LHOM in boundary regions. We now
analyze Equation 7 for moments of various orders and exam
various LHOMs for boundary presence.

3.4  Analysis of the General Moment
Equation
If then W is aboundaryregion (elseC1 would be same as
C2,, and would be zero). From Equation 7, it is clear that for an
non-zero even-order LHOMs cannot be zero, i.e. aboundary
region implies existence of non-zero even-order LHOMs. Co
versely, if any even-order LHOMs is non-zero in aW, then can-
not be zero in that windowW. Also, any non-zero, even-order
LHOM implies that the associated region is aboundaryregion.
The same argument holds for odd-order LHOMs, except tha
odd-order LHOM will be zero if the associated region is anon-
boundaryregion, and will be non-zero if the associated region
either aleft-boundaryregion or aright-boundaryregion. Since
both even-order and odd-order LHOMs are zero innon-boundary
regions, we confine our interest toboundary regions.

Second Order LHOM: The equation for second-order LHOM is
obtained as:

(9)

It can be shown that this equation has one maxima atm=n=w2/2,
i.e. when the associated region is anon-boundaryregion. The
value ofm2 at the location of this maxima is0.25∆2, which is inde-
pendent of the size of the associated region and the actual distr
tion in the region.

Third Order LHOM : The moment equation for the third-orde
LHOM reduces to:

(10)

This equation has one maxima at0.21w2 and a minima at0.79w2

as measured from the center of the cell. The value ofm3 at the
location of the maxima is0.1∆2 and its value at the location of the
minima is-0.1∆2. Also, this equation is zero atm=n=w2/2, i.e.
when the associated region is anon-boundaryregion. Here again,
it is to be noted that the value ofm3 at the location of maxima and
minima is independent of the size of the associated region and
actual distribution in the region.

Fourth Order LHOM : The general moment equation for the
fourth-order moment reduces to:

(11)
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Figure 2: The plot of the distribution function for various LHOMs
(one dimensional window of size 3 is used).
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It can be shown that this equation has two maximas at locations
0.21w2 and0.79w2 respectively. The value ofm4 at the location of
these maximas is0.083∆4. Also, this equation has one local min-
ima atm=n=w2/2, i.e. when the associated region is anon-bound-
ary region. The value ofm4 at the location of this minima is
0.0625∆4.

Skew: This is a non dimensional quantity, and it characterizes the
degree of asymmetry of a distribution around its mean. It is defined
as:

(12)

It can be further shown that the equation forskew reduces to:

(13)

Also, it can be shown that skew is monotonically decreasing and is
zero atm=n=w2/2, i.e. when the associated region is anon-bound-
ary region. It follows thatleft-boundaryregions have positive
skew,andright-boundaryregions have negativeskew.

Kurtosis: This another non-dimensional quantity which measur
the relative peakedness or flatness of a distribution. It is defined

(14)

It can be shown that the general moment equation forkurtosisin a
regionW reduces to:

(15)

It can shown that this equation has a minima atm=n=w2/2, i.e.
when the associated region is anon-boundaryregion. The value of
kurtosisat the location of this minima is-2. It is important that for
theon-boundaryregions the value ofkurtosisis a constant. Figure
2 shows the plots of thedistribution functioncorresponding to the
various LHOMs. The plots confirm the analysis presented abo
for the second-, third-, and fourth-order LHOMs, and also forskew
andkurtosis.
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Figure 3: LHOMs plots for a step function (one dimensional window of size 3 was used).
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4. BOUNDARY DETECTION USING HOMS

From the above analysis and plots in Figure 2, we know that if a
region for which we are calculating LHOMs is anon-boundary
region then all of the following hold: second order LHOM is
locally maximum, third order LHOM is locally zero, fourth-order
LHOM is locally minimum, skew has a zero crossing, andkurtosis
has a constant minima of-2. Using some or all of these criterions it
is easy to detect all theon-boundaryregions in a given dataset.
Figure 3 shows the results of calculating LHOMs for a step func-
tion, from these plots it is clear that theon-boundary regionsoccur
at the location of boundaries in the original signal. Since, we can
detecton-boundaryregions, we can indirectly obtain the spatial
location of boundaries in a dataset. In the graph of fourth-order
LHOM we see just a maxima, instead of a minima located between
two maximas. This is likely due to the closeness of the maximas
and the minima they appear merged when plotted.

For detection of salient iso-values in a dataset we need a method
for obtaining boundaries in sample space rather than in spatial
domain. From previous analysis we have observed the behavior of

LHOMs in the spatial domain in the neighborhood of a boundar
Using the arguments offered by Kindlmann and Durkin in [7],
we plot the values of LHOMsvs.the sample values at their associ
ated points, we expect to preserve the relation betweenleft-and
right-boundary andon the boundary itself. Figure 4 illustrates this
point for LHOMs:m2 andm3.

5. RESULTS

Figure 5 shows the scatter plots for LHOMsvs.sample values for a
CT Tooth dataset. The widthw of each regionW is five. Values
corresponding to all the possible regions, i.e. regions associa
with all the sample points in the dataset are considered. The sh
of the scatter plots justifies the reasoning given in previous sect
for salient iso-surface detection using local central moments. W
see from the plots that there are three distinct boundaries. Th
are in neighborhood of 200, 600, and 1100. The iso-surfaces co
sponding to these boundaries are shown in Figure 6. Figur
showskurtosisandskewscatter plots for the CT Head dataset, her
again our methodology predicts three distinct boundaries in t
neighborhood of 600, 1600, and 3500. The iso-surfaces cor
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Figure 4: Relationship between f, m2, m3. (a) The plot on the left shows the dependence of the various LHOMs on the presence of an edge.
(b) The plot shows the same relationship in an inverse manner.
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m2
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(a) f, m2, m3 vs. position (b)m2, m3 vs. f
sponding to these boundaries are shown in Figure 8. It is clear that
the first iso-value represents the skin, the second skull, and the
third teeth. Figure 9 shows the result of our analysis for computa-
tional dataset of flow over a delta wing. Here again we see that
boundaries are in the range of 800, and 1000 (the original data was
scaled and quantized). Iso-surface associated with an iso-value in
this range is also shown in the same figure. The shape of the object,
and the shape of the vortex and the shock in the flow are clearly
visible.

6. SUMMARY AND FUTURE WORK

We presented a method to explore volume data for salient iso-val-
ues. We employ statistical signatures based on localized central
moments. We relate these localized moments to presence of
boundaries. Later, we show the effectiveness of boundary and
salient iso-value detection through examples. Future work includes
MRI datasets which yield highly noisy LHOM plots. Denoising
techniques are needed for further use. Also, we wish to exploit the
relationship of moments to boundaries to create simple yet tangi-
ble interfaces for volume exploration.
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(a)m2 vs. sample value (b)m3 vs. sample value

(c) m4 vs. sample value (d)Skewvs. sample value

(e)Kurtosisvs. sample value

Figure 5: LHOM scatter plots for the tooth dataset (a window of
dimensions was used).5 5× 5×

Figure 6: Iso-surfaces associated with the three salient iso-values predicted by the scatter plots in Figure 5:(left) 200,(center)600, and

(right) 1100.



(a)Kurtosisvs. sample value (b)Skewvs. sample value

Figure 7: LHOMs scatter plots for the CT head dataset (a window of dimensions was used).3 3× 3×

Figure 8: Iso-surfaces associated with the three salient iso-values predicted by scatter plots in Figure 7:(left) 600,(center)1600, and

(right) 3500.

Figure 9:(left) Scatter plot ofSkew vs.sample value for the delta wing dataset, and(right) iso-surface for iso-value of 900

(a window of dimensions was used).3 3× 3×
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