
1

Klaus Mueller

Stony Brook University
Computer Science Center for Visual Computing

State of the Art in Data Representation for
Visualization:

Surface Points and Images

2

From Volume To Surface

• Iso-surface of a volumetric point-based object
is represented by a hull of Gaussian kernels

• Flattening the points in direction of the surface
normals yields a more exact representation

• In the limit get a surface composed of 2D
Gaussians (aka surface points or surfels)

Iso-contour

Volumetric points

Flattened points

3

Volumetric vs. Surface Points

• Volumetric points:
ù Most often on a regular lattice
ù Represent both boundary and interior
ù Overlapping points reconstruct volumetric object
ù Different iso-surfaces, shapes, and compositions

can be produced via transfer functions on the fly

• Surface points:
ù Irregular distribution (on the surface)
ù Usually located only on boundaries

4

Points vs. Triangles (1)

• Points are favorable when the geometric detail is
less than the size of a pixel (triangle size < 1)
ù Intricate objects with great geometric detail
ù Minified objects when reduced detail reaches the

resolution of the screen

• In these cases overhead for triangle rasterization
and shading is overkill

from Pfister ‘00

5

Points vs. Triangles (2)

• Polygons are better when the image resolution is
greater than the projected geometry resolution
ù Flat or slightly curved surfaces
ù Magnified objects

• In these cases triangle rasterization is more
efficient and yields better quality

Points
Same # of polygons,
same rendering time

Same # of vertices
2x the rendering time

from Rusinkiewicz ‘00

6

Points vs. Triangles (3)

• Hybrid solutions have been proposed (Chen ‘01,
Cohen ‘01)

ù Use triangles for magnified and original detail
ù Use points for minified object portions

from Chen ‘01

7

Surface Point Generation

• Point cloud output by laser range scanners
ù Natural source of surface points
ù No tedious geometry generation required

• Geometry-to-surfel conversion
ù Replace vertices by overlapping points

• Volume-to-surfel conversion
ù Go from Marching Cubes directly to surface points

ù Image-Based Visual Hull
ù From object silhouettes to points

from Pfister ‘01

8

Surface Points Pioneers

• Geometric subdivision leads to points (Catmull ‘74)

• Particle systems (Reeves ‘83, ‘85, Szeliski ‘92)

• Points as a display primitive (Levoy ‘85)

• Dividing Cubes (Cline et al., ‘88)

ù Used to extract iso-surfaces from volume datasets
ù Create “surface points” instead of triangles
ù Trilinearly interpolate normals from grid points
ù Subdivide volume cells until extracted

surface points are pixel-size

9

More Recent Work

• Layered Depth Images (Shade ‘98)

• Point-based rendering system (Grossman ‘98)

• Surfels (Pfister ‘00)

• Qsplat (Rusinkiewicz ‘00)

• Raytracing of point-based geometry (Schauffler ‘00)

• Point set surfaces (Alexa ‘01)

• Surface Splatting (Zwicker ‘01)

• Opacity Hulls (Matusik ‘02)

10

Issues

• What shape does a point have?
ù Small dot, square, rectangle, circle, ellipse,…

• How to deal with the lack of connectivity?
ù Blending, visibility and occlusion, holes,…

• How to adapt to local resolution?
ù Hierarchical representation for level-of-detail

Gaussian
Square

Circle
from Rusinkiewicz ‘00

11

Data Structure

• A popular points data structure is the LDC tree
ù LDC tree = Layered Depth Cube tree

• The LDC tree is a hierarchical LDC
• An LDC consists of 3 orthogonal LDIs (Lischinski ‘98)

ù LDI = Layered Depth Image (Shade ‘96)

• Strategy:
ù Acquire a set of LDIs
ù Merge LDIs into one LDC
ù Calculate the LCD tree

12

LDI Acquisition

• For each LDI, cast a set of parallel rays
ù or use visual hull

• Calculate the ray-object intersections (depths)
• Store the depths into the LDI

LDI 1
LDI 2

from Pfister ‘00

13

LDC Construction

• Partition the LDC into square blocks 16 LDI
pixels large

• Merge all LDIs into the LDC

• This forms level 0 of the LDC tree

from Pfister ‘00

14

LDC Tree Construction

• Progressively sub-sample the level 0 LDC

• Samples on upper level LDCs are also present
in lower levels LDCs

Level 0 Level 1 Level 2

from Pfister ‘00

15

Alternative Data Structures

• Qsplat:
ù Start from a triangular mesh and

compute a sphere for each vertex
ù Ensure good overlap among neighboring spheres
ù Build a hierarchy of spheres with a recursive

algorithm
ù Quantize both radius and position of spheres
ù Store tree in breadth-first order to exploit locality of

resolution
storage order

Sphere at vertex v = largest bounding

sphere of the faces sharing v

(two spheres merge into their bounding sphere)

16

Associated Appearance Data

• Given in the form of images
ù Textures
ù Radiance images (object photographs)
ù Alpha (opacity) hulls (Matusik ‘02)

ù Reflectance field (for re-illumination) (Debevec ‘00)

• Distinguish
ù View-independent point coloring (texture mapping)
ù View-dependent point coloring (lumigraph,

lightfield) (Levoy ‘96, Gortler, ‘96, Buehler ‘01)

17

View-Independent Coloring

• The texture function
on the object surface is
given by:

• Find the wk via an optimization procedure:
ù Warp the (isotropic) texture reconstruction kernels

from texture space into object surface space
ù Find the wk through an error minimization procedure

)()(k
Nk

kkc uurwuf −= ∑
∈ rk = basis function (reconstruction kernel)

from Zwicker ‘01

18

View-Dependent Coloring (1)

• Unstructured lumigraph:
ù Collection of radiance images taken from many

different viewpoints
ù Point color = weighted sum of the n closest

acquired pixels (rays)

(point-based)
object surface

desired view
acquired views

19

View-Dependent Coloring (2)

• Reflectance fields (Debevec ‘00):
ù Collection of radiance images taken from

• many different viewpoints and
• under different illumination directions

• Use these “illumination basis functions” to re-
light the object from a new set of light sources
ù This results in a new set of radiance images

Two image pixels viewed from a
constant location and lit from a number

of different light source locations

20

Point Rendering

• Traverse point hierarchy top to bottom
• Cull point blocks outside the viewing frustum
• Project points from object to screen space

ù Use fast incremental forward warping (Grossman ‘98)

ù Visibility cones to cull blocks with backfacing points

• Three-pass algorithm (Surfels, Qsplat):
ù 1. Project points into the z-buffer
ù 2. Blend colors of visible points, fill holes
ù 3. Shade in image space

21

Surfels and QSplat

• Traverse point hierarchy from top to bottom
ù For each block of points, find level where the local

resolution of the projected point set matches the
screen resolution (oversample for better quality)

• Splat the selected points into the z-Buffer
• Blend visible points, fill holes, shade

hole

reconstr.
filter

from Zwicker ‘01

22

Surface Splatting - Concepts

• High quality texture reconstruction in screen
space

basis function rk

)()(k
Nk

kkc uurwuf −= ∑
∈

point color wk

warped basis function
= screen footprint

23

Surface Splatting - Algorithm

• Enable z-buffer, determine front-facing points
• For each point:

ù Determine resampling kernel =
screen footprint ⊗ screen lowpass filter

ù Rasterize resampling kernel to screen
ù Perform z-buffer test on each fragment
ù Accumulate normals and texture colors

• Deferred shading
ù Shade pixels after all points have been projected
ù Use filtered normals and blended texture colors

24

Surface Splatting - EWA Filter

• The resampling kernel is called EWA filter:
ù It combines the Gaussian footprint with a screen

space Gaussian low-pass filter
ù Analytical formulation:

))((1)()()
1

CxVWVWG
W

hqxg hqT −+=⊗=
−

W: Warp and projection
matrix

Vq: 3D reconstruction kernel

screen space filterfootprint

from Zwicker ‘01

25

Results

• Surface Splatting:
ù Transparencies via a layered z-buffer technique

• Surface Splatting with opacity hulls:
ù Composite semi-transparent points
ù Use for fuzzy objects, fur and feathers

from Zwicker ‘01, Matusik ‘02

26

Questions?

