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Abstract

Volume segmentation is an important part of computer based medical applica-
tions for diagnosis and analysis of anatomical data. With rapid advances in medical
imaging modalities and volume visualization techniques, computer based diagnosis
is fast becoming a reality. These computer based tools allow scientists and physi-
cians to understand and diagnose anatomical structures by virtually interacting with
them. Volume segmentation plays a critical role by facilitating automatic or semi-
automatic extraction of the anatomical organ or region-of-interest. In this review,
we provide an introduction to various segmentation algorithms found in the litera-
ture. We classify the algorithms into three categories: structural techniques, statis-
tical techniques and hybrid techniques. Under structural techniques we will review
algorithms which take into consideration structural information for segmentation.
Stochastic techniques are those which perform segmentation based on statistical anal-
ysis methods and under hybrid techniques we will review algorithms which make use
of structural information in addition to statistical analysis.
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1 Introduction To Volume Seg-
mentation

Rapid advances in the field of medical imaging
are revolutionizing medicine. Computed tomog-
raphy (CT), magnetic resonance imaging (MRI),
and other imaging modalities provide an effective
means of non-invasively mapping the anatomy of
a subject. This allows scientists and physicians
to virtually interact with anatomical structures
and learn potentially life saving information.

Today, the role of medical imaging is not lim-
ited to simple visualization and inspection of
anatomic structures, but goes beyond that to pa-
tient diagnosis, advanced surgical planning and
simulation, radiotherapy planning etc. Although
modern volume visualization techniques provide
extremely accurate and high quality 3D view of
anatomical structures, their utilization for accu-
rate and efficient analysis is still limited.

One of the main reasons for this is the highly
complex internal structure of animals and hu-
mans with vast number of anatomical organs
bunched together, hindering the physicians view
in more ways than one. Some visualization tricks
like making an object transparent do not work
in such cases. To tackle this issue, the anatom-
ical structure or the region of interest needs to
be delineated and separated out so that it can
be viewed individually. This technique is known
as image segmentation in the world of medi-
cal imaging. Since segmentation of organs or
region-of-interest from single image is of hardly
any significance for volume rendering, we only
concentrate on segmentation from 3D volumes
(which are basically consecutive images stacked
together). We thus refer to this technique as vol-
ume segmentation.

Segmentation in medical imaging is generally
considered a very difficult problem. This diffi-
culty mainly arises due to the sheer size of the
datasets coupled with the complexity and vari-
ability of the anatomic organs. The situation is
worsened by the shortcomings of imaging modal-
ities, such as sampling artifacts, noise, low con-

trast etc. which may cause the boundaries of
anatomical structures to be indistinct and dis-
connected. Thus the main challenge of segmen-
tation algorithms is to accurately extract the
boundary of the organ or region-of-interest and
separate it out from the rest of the dataset.

There are many approaches for segmentation
proposed in literature. These vary widely de-
pending on the specific application, imaging
modality (CT, MRI, etc.), and other factors. For
example., the segmentation of lungs has differ-
ent issues than the segmentation of colon. The
same algorithm which gives excellent results for
one application, might not even work for an-
other. Besides these, general imaging artifacts
like noise, motion and partial volume effect can
significantly affect the outcome of a segmenta-
tion algorithm. For example., a segmentation
algorithm could be robust against noise, but at
the same time, it might fail miserably in the
presence of partial volume effects. This variabil-
ity is what makes segmentation a very challeng-
ing problem. There is currently no segmentation
method that provides acceptable results for ev-
ery type of medical dataset. There are methods
in existence which are generalized and can be
applied to a variety of data, but methods spe-
cialized for the particular problem always give
better results. Often a segmentation approach
could consist of more than one segmentation al-
gorithms applied one after the other. Selection
of an appropriate algorithm or approach for seg-
mentation can therefore be a difficult dilemma.

We will now review the various segmentation
algorithms that have appeared in the literature
so far. We will try to understand the algorithms
by giving a brief overview of each of them and
then we will discuss their merits and down-falls.

2 Segmentation Techniques

The number of segmentation algorithms found in
the literature is very high. Due to the nature of
the problem of segmentation, most of these algo-
rithms are specific to a particular problem, thus,
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having little significance for most other prob-
lems. We will try to cover all the algorithms
that have a generalized scope and which are the
basis of most of the segmentation techniques to-
day. In addition, we will concentrate only on 3D
volumes and thus present each algorithm with
respect to its application on 3D volumes.

There are many good papers in the litera-
ture reviewing the various segmentation algo-
rithms [28][50][54]. Every paper has a different
structure of classifying the segmentation algo-
rithms. We try to classify the algorithms in the
following way.

We broadly classify the segmentation tech-
niques into three classes.

1. Structural techniques

2. Stochastic techniques

3. Hybrid techniques

The classification is done based on the ap-
proach used for segmentation. Under struc-
tural techniques, we will review those techniques
which utilize some information about the struc-
ture of the region in segmenting it. Stochastic
techniques are the ones that are applied on dis-
crete voxels without any consideration for the
structure of the region. Localized information on
a per-voxel basis is used to decide whether or not
the voxel belongs to the desired region. These in-
clude the traditional low-level segmentation al-
gorithms. The final category is the hybrid meth-
ods which include those techniques which posses
characteristics of both structural and stochastic
techniques.

2.1 Structural Techniques

As already discussed, structural techniques try
to find structural properties of the region to be
segmented. Structural properties such as inter-
secting surfaces (edges in 2D) are detected in the
volume and then combined to segment the re-
gion. In some algorithms, structure information

is saved and later retrieved to perform segmenta-
tion on a similar dataset (e.g., segmenting lever
from many abdominal datasets.)

2.1.1 3D Edge-Detection Techniques

Edge detection techniques are those which aim
at detecting edges or surfaces in the volume to
perform segmentation. Edges are formed at the
intersection of two regions with different intensi-
ties. They are one of the main cues for visual dis-
tinction of two regions [5]. Edge detection tech-
niques in three dimensions work in two stages:

1. Local edges are detected by using some form
of differentiation.

2. These local edges are grouped together to
form boundary contours that separate the
desired region voxels from other voxels.

A number of edge detecting operators have
been proposed for this purpose. Liu [42] pro-
posed a 3D surface detection algorithm that ex-
tends the classical Robert’s operator into 3D
space. Herman and Liu [32] later extended this
algorithm to 4D. Zucker and Hummel [90] [91]
developed an optimal three dimensional edge de-
tection operator, which was essentially a Sobel
operator.

One advantage of edge detection techniques is
that they work very well on datasets with good
contrast between different regions. The edges are
detected perfectly and can be verified visually.
On the down side, these algorithms detect all the
edges. It is very difficult to find the correlation
between the edges and the region-of-interest. In
addition, these algorithms do not perform well
on datasets with low contrast between regions.
These algorithms are also susceptible to noise.
In most of the cases, these algorithms are not
used on their own for segmentation, but coupled
with other segmentation algorithms to solve a
particular segmentation problem.
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2.1.2 Morphological Techniques

Mathematical morphology uses set transforma-
tions for image analysis [65]. It extracts the
impact of a particular shape on images via the
concept of structuring elements (SE). The SE
encodes the primitive shape information. The
shape is described as a set of vectors referenced
to a particular point, the center. During mor-
phological operations, the center scans the whole
image and the matching shape information is
used to define the transformation. The trans-
formed image is thus a function of the SE distri-
bution in the whole image. The basic morpho-
logical operations can be described on the basis
of an arbitrary space E. Let P (E) be the set
of all subsets XεE. With each point X of space
E, a spatially varying set B(X) called the SE
is associated. The set XεP (E) can be modified
based on set transformation of X by E. Let Bx
denote the translation of B by the vector x.

The two most fundamental transforms in
mathematical morphology are erosion and dila-
tion. These can be defined on the basis of the
above assumptions as

1. Erosion:{X : Bx ⊂ X}
The eroded set of X is the locus of centers
x of translated Bx included in the set X.
This is denoted as XθB and is given by

XθB =
⋂

bεB

Xb (1)

2. Dilation:
Dilation is dual transform of erosion and
can be expressed as

XC ⊕B = (XθB)C (2)

where ⊕ denotes dilation and C denotes the
compliment operation.

Morphological operations are generally simple
to understand and implement. At the same time,
these are generally difficult to control. For exam-
ple., it is difficult to control the dilation opera-

tion unless you give the upper limit to the num-
ber of times it dilates. Thus, these algorithms
generally require some external criteria to con-
trol them. These operations also have a risk of
changing the morphology of the input datasets.
It is well known that a series of dilations followed
by erode operations leads to loss of high frequen-
cies (for example, folds in a colon), and fills holes.
Similarly a series of erodes followed by dilations
can introduce holes and high frequencies. These
algorithms should be avoided when accuracy is
the primary concern and there is a risk of loss
of important data. As with edge detectors, mor-
phological operations are not segmentation algo-
rithms by themselves but they are generally an
integral part of a segmentation pipeline.

2.1.3 Graph-Searching Algorithms

In these algorithms, edges and surfaces in
a volume are represented as graphs and the
algorithm tries to find the lowest-cost path
between two nodes of the graph using a search
algorithm such as A∗ [2][20] or F ∗ [21]. These
algorithms are especially useful when the parti-
tions between regions in the desired segmented
volume are not well defined. The F ∗ algorithm
[62] is used extensively in biomedical imaging
and hence we will discuss it here.

F ∗ boundary-forming algorithm
In principle, both the F ∗ and the A∗ are similar.
In A∗ algorithm, a minimum-cost path from the
starting point (s) to the goal point (g) is itera-
tively constructed by extending the best partial
path available at each iteration. This is done
by selecting the point v that has the minimum-
cost path from s to g via v where the cost is the
sum of lowest-cost paths found so far from s to
v and the estimate of minimum cost paths from
v to g. For a simple implementation the algo-
rithm requires O(N 2) operations. Similarly, the
F ∗ algorithm finds the optimum path from s to
g using a cost array C by iteratively updating a
path array P . This array (P ) is initialized to in-
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finity except at s, which is set to C(s). The first
step in updating consists of adjusting all the ele-
ments of the yth row from left to right using the
rule,

P (x, y) = min{P (x− 1, y − 1) + C(x, y),

P (c, y − 1) + C(x, y),

P (x+ 1, y − 1) + C(x, y),

P (x− 1, y) + C(x, y), P (x, y)}

and then adjusting all the elements in the yth

row from right to left, using

P (x, y) = min{P (x+ 1, y) + C(x, y), P (x, y)}
(3)

Each additional pass involves a bottom-to-top
pass followed by a top-to-bottom pass using the
above two rules. When all the changes in P are
such that the new value is greater than P (g),
the algorithm terminates and the optimum path
can be found by backtracking from g and moving
along the minimum value of P at each neighbor-
hood until s is reached. Since the number of
iterations required is the amber of “row” index
reversals along the optimal path, this algorithm
performs better than A∗ in general.

The main advantage of this method is that it
can perform well even if the partitions between
regions is broken. At the same time, it also re-
quires these surfaces to be represented as graphs,
which could be tricky. Another disadvantage
(from volume visualization point of view) is that
this algorithm deals with surfaces. To get the
voxel representation of these surfaces, another
pass is needed to convert the surfaces to vox-
els [52].

2.1.4 Deformable Models

Deformable models are curves, surfaces or solids
defined within an image or volume domain and
they deform under the influence of external and
internal forces. In the physics-based modeling
paradigm, the data apply forces (external forces)
to the deformable model and as a result the
model moves towards the data, while internal

forces keep the model smooth during deforma-
tion. Deformable models gained popularity after
they were proposed to use in computer vision [74]
and computer graphics [76] by Terzopoulos and
others in 1988.

Mathematically, a deformable model moves
according to its dynamic equations and seeks the
minimum of a given energy function. The defor-
mation of a typical 2-D deformable model can
be characterized by the following dynamic equa-
tion:

µ(s)
∂2x(s, t)

∂t2
+ γ(s)

∂x(s, t)

∂t
= Fint + Fext (4)

where x(s, t) = (x(s, t), y(s, t)) is a paramet-
ric representation of the position of the model at
a given time t, and µ(s) and γ(s) are parame-
ters representing the mass density and damping
density of the model, respectively. Eq.(4) causes
the model to move according to the direction and
magnitude of the forces on the right hand side.
The most commonly used internal forces are

Fint =
∂

∂s
(α(s)

∂x(s, t)

∂s
)− ∂2

∂s2
(β(s)

∂2x

∂s2
) (5)

which represent internal stretching and blend-
ing forces. The most commonly used external
forces are computed as the gradient of an edge
map.

Physically based deformable models can be
divided into three categories: energy minimiz-
ing snakes, dynamic deformable models, and
probabilistic deformable models.

Energy minimizing snakes
Snakes [35] is the most popular form of de-
formable models. Snakes are planar deformable
contours that are useful in several image analysis
tasks. Using energy minimization formulation,
the goal of this approach is to find a parametric
model that minimizes the weighted sum of in-
ternal energy and potential energy. The internal
energy specifies the tension or the smoothness
of the surface of the model. The potential en-
ergy is defined over the volume domain and typ-
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ically possesses local minima at the edges occur-
ring at object boundaries. Minimizing the total
energy yields internal and potential forces. As a
result, these are attracted to image features such
as lines and edges.

We will now represent this mathematically. A
snake embedded in the image plane (x, y)ε<2 is
represented as v(s) = (x(s), y(s))T , where x and
y are the coordinate functions and sε[0, 1] is the
parametric domain. The shape of the contour
subject to an image I(x, y) is dictated by the
functional,

ξ(v) = ψ(v) + φ(v) (6)

The functional can be viewed as a representa-
tion of the energy of the contour and the final
shape of the contour corresponds to the mini-
mum of this energy. The first term of the func-
tional,

ψ(v) =

∫ 1

0
w1(s)|∂v

∂s
|2 + w2(s)|∂

2v

∂s2
|2ds (7)

is the internal deformation energy. It char-
acterizes the deformation of a stretchy, flexible
contour. Two physical parameter functions dic-
tate the simulated physical characteristics of the
contour: w1(s) controls the ‘tension’ of the con-
tour while w2(s) controls its ‘rigidity’. The sec-
ond term in (6) couples the snake to the image.
Traditionally,

φ(v) =

∫ 1

0
P (v(s))ds (8)

where P (x, y) denotes a scalar potential function
defined on the image plane. To apply snakes to
images, external potentials are designed whose
local minima coincide with intensity extrema,
edges and other image features of interest.

Dynamic deformable models
Although it is natural to think of energy mini-
mization as a static problem, a potent approach
to computing the local minima of functional
such as (6) is to construct a dynamical system

that is governed by the functional and allow the
system to evolve to equilibrium. Equilibrium is
achieved when the internal and external forces
balance and the contour comes to rest. This
leads to dynamic deformable models that unify
the description of shape and motion, making it
possible to quantify not just static shape, but
also shape evolving through time.

Probabilistic deformable models
Deformable models can also be viewed as a
model fitting process in a probabilistic frame-
work. This permits the incorporation of prior
model and sensor model characteristics in terms
of probability distributions. The probabilistic
framework also provides a measure of the uncer-
tainty of the estimated shape parameters after
the model is fitted to the image data [69].

Let u represent the deformable model shape
parameters with a prior probability p(u) on the
parameters. Let p(I/u) be the imaging (sensor)
model - the probability of producing an image I
giving a model u. Bayes’s theorem

p(u/I) =
p(I/u)p(u)

p(I)
(9)

expresses the posterior probability p(u/I) of a
model given the image, in terms of the imaging
model and the prior probabilities of model and
image.

The internal energy measure (Figure 7) of the
deformable model is converted into a prior dis-
tribution over expected shapes, with lower en-
ergy shapes given the highest probability. This
is done using a Boltzmann (or Gibbs) distribu-
tion of the form

p(u) =
1

Zs
exp(−S(u)) (10)

where S(u) is the discretized version of ψ(v) in 7
and Zs is a normalizing constant (called the par-
tial function). This prior model is then combined
with a simple sensor model based on linear mea-
surements with Gaussian noise

p(I/u) =
1

ZI
exp(−P (u)) (11)
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where P (u) is a discrete version of the potential
φ(v) in 8, which is a function of the image I(x, y).

The fitting of the models is done by finding
u which locally maximizes p(u/I) in 9. This is
known as the maximum a posteriori solution.

Deformable models in segmentation
Many researches have explored the use of de-
formable surface models for segmentation. Typ-
ically users initialized a deformable model near
the region-of-interest and allowed it to deform
into place. Users could then manually fine-tune
the fitting by using interactive capabilities of the
models. The first uses of deformable models in
medical images analysis was the application of
deformable contour models, such as snakes [35],
to segment structures in 2D images [13]. To
segment 3D medical datasets, each 2D slice was
segmented separately. Once a 2D slice was seg-
mented, the contour of that slice was used as
a reference contour for neighboring slices. This
reference contour was then deformed into place
in those slices. This process was repeated for all
the 2D slices. The resulting sequence of 2D con-
tours was then connected to form a continuous
3D surface model [13][14].

The 3D segmentation process described above
is both laborious and requires a post-processing
step to connect the sequence of 2D contours into
a continuous surface. In addition, the recon-
structed surface can have various inconsistencies.
A true 3D segmentation technique could over-
come all these shortcomings giving smooth 3D
surfaces. In one of the initial work on segmen-
tation using 3D deformable surfaces, Miller [48]
in 1991 constructed a balloon by approximating
a sphere using polygons. He then geometrically
deformed this balloon until its surface conformed
to the object surface in 3D CT data. The seg-
mentation process is formulated as the minimiza-
tion of a cost function, which is a weighted sum
of three terms : a deformation potential that
expands the model vertices towards the object
boundary, an image term that identifies features
such as edges and opposes the balloon expan-
sion, and a term that maintains the topology of

the model by constraining each vertex to remain
close to the centroid of its neighbors.

Deformable superquadrics proposed by Ter-
zopoulos et al. [75] and deformable gener-
alized cylinders, proposed by O’Donnell and
Gupta [70], incorporated global shape parame-
ters of a super-ellipsoid and generalized cylin-
der, respectively. Local degree of freedom was
based on elastic properties and action of exter-
nal forces. These models can be used to extract
gross shape features from visual data, which can
be used for indexing onto a database of stored
models to provide shape recognition. Local de-
formations help in reconstructing the details of
complex shapes to provide shape reconstruction.

In related work, Cohen and Cohen [12][14]
used finite-element techniques to implement
an elastically deformable cylinder. Later,
McInerney and Terzopoulos [47] used physics-
based techniques to implement an elastically
deformable sphere. Whitaker [85], Tek and
Kimia [72], Davatzikos and Bryan [18] and others
have also done notable work with 3D volumes.

Deformable models have the advantage that
they offer a coherent and consistent mathemat-
ical description and are robust to noise and
boundary gaps due to their incorporation of a
smoothness constraint. Another advantage is
that the offer sub-voxel accuracy for the bound-
ary representation that may be important to a
number of applications. A very important ad-
vantage of these models from the point of view of
medical imaging is that these models are capable
of accommodating the often significant variabil-
ity of biological structures over time and across
different individuals.

A disadvantage is that they require man-
ual interaction to place an initial model in the
dataset. Some researchers have attempted to de-
crease sensitivity to insignificant edges and ini-
tial model placement [60][31][9][22][8][45]. These
algorithms also require the user to choose appro-
priate initial parameters. Various methods have
been proposed to reduce sensitivity to initializa-
tion [14][3][56][26]. Another disadvantage from

8



the point of view of volume visualization is that
these methods work only on surfaces. There is
a lot of work being done to extend this idea to
volumetric solid models.

2.1.5 Isosurfaces and Level Sets

Isoserfaces are defined by connecting voxels with
intensities equal to the isovalue in a 3D volume.
level sets, introduced by Osher and Sethian in
1988 [49] are, in short, moving fronts (curves).
The underlying philosophy of this technique is to
use isosurfaces as a modeling technology that can
serve as an alternative to parameterized models
(section 2.1.4).

Figure 1: Original front (left) and level set func-
tion (right).

Figure 2: A level set surface.

Level-sets are numerical techniques designed
to track the evolution of interfaces, which in our

case would be the iso-surface. Other numerical
techniques attempt to follow moving boundaries
by putting a collection of marker points on the
evolving surface and then changing their position
to correspond to the moving surface. In contrast,
level-set methods exploit a strong link between
moving surfaces and equations from computa-
tional fluid equations.

Rather than follow the interface itself, the
level set approach instead takes the original
curve (red one in Figure 1), and build it into
a surface. The cone-shaped surface (shown also
in Figure 2) has a great property; it intersects
the xy plane exactly where ther curve sits. This
surface is called the level-set function; it takes
as input any point on the plane and returns the
height of that point. The red curve (Figure 1) is
called the zero level set, because it is the collec-
tion of all points that are at height zero.

Isosurface is an implicit surface model for a 3D
volume. It can be defined as a level set of scalar
function,

φ : Ux,y,zr 7→ Rk′ (12)

where U ⊂ R3 is the domain of the volume (and
the range of the surface model). Thus, a surface
S is

S = {x|φ(x) = k} (13)

The choice of k is arbitrary, and φ is sometimes
called the embedding. Notice that the isosurface
defined in this way divides U into a clear inside
and outside - thus, they are always closed when-
ever they do not intersect the boundary of the
domain.

Now the question comes, how to represent φ.
In this approach, a large number of local basis
functions are defined. This is the principle be-
hind using a volume as an implicit model. A
volume is a discrete sampling of the embedding
φ. It is also an implicit model with a very large
number of basis functions, as show in Figure 3.
The total number of basis functions, their posi-
tions (grid points), and extents are fixed. The
only change allowed to the basis function is its
magnitude. Thus, each basis function has only

9



Figure 3: A volume can be considered as an im-
plicit model with a large number of local basis
functions.

one degree of freedom. A typical volume of
256x256x256 will have over 16 million basis func-
tions. The shape of each basis function depends
on how one interpolates the values between grid
points. For example., a trilinear interpolation
implies a basis function that is piecewise cubic
polynomial with a value of one at the grid point
and zero at neighboring grid points.

The method of level-sets, proposed by Osher
and Sethian [44] [49][66], provides a set of nu-
merical methods that describe how to manipu-
late the grey-scale values in a volume, so that
the isosurfaces of φ move in a prescribed man-
ner (Figure 4). To understand this, we denote
the movement of a point on a surface as it de-
forms as dx/dt, and we assume that this motion
can be expressed in terms of the position of xεU
and the geometry of the surface at that point.
In this case, there are generally two options for
representing such surface movements implicitly:

Static: A single, static φ(x) contains a fam-
ily of level sets corresponding to surfaces at dif-
ferent times t. That is,

φ(x(t)) = k(t)⇒ Oφ(x).
∂x

t
=
dk(t)

dt
. (14)

To solve this static method requires construct-
ing a φ that satisfies equation 14. This represen-
tation has some significant limitations, because
by construction a surface cannot pass back over
itself over time, i.e., motions must be strictly

monotonic – inward or outward.

Dynamic: This is a one-parameter family
of embeddings, i.e., φ(x, t) changes over time, x
remains on the k level set of φ as it moves, and k
remains constant. The behavior of φ is obtained
by setting the total derivative of φ(x(t), t) = k
to zero. Thus,

φ(x(t), t) = k ⇒ ∂φ

∂t
= −Oφ.dx

dt
. (15)

Figure 4: Level-set models represent curves and
surfaces implicitly using 3D volume (a slice is
shown): a) an ellipse is represented as the level
set of an image, b) to change the shape, grey-
scale values at the voxels of the volume are mod-
ified.

This approach can accommodate models that
move forward and backwards and cross back over
their own paths (over time). However, to solve
this requires solving the initial value problem
(using finite forward differences) on φ(x, t) – a
potentially large computational burden. We will
now only look at the dynamic case, because of
its superior flexibility.

All surface movements depend on position and
geometry, and the level-set geometry is expressed
in terms of the differential structure of φ:

∂φ

∂t
= −Oφ.dx

dt
= −Oφ.F(x,Dφ,D2φ, ...) (16)

whereDnφ is the set of order-n derivatives of φ
evaluated at x. Because this relationship applies
to every level-set of φ, i.e. all values of k, this
equation can be applied to all of U , and therefore
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the movements of all the level-set surfaces em-
bedded in φ can be calculated from equation 16.

The level-set method has been shown to be
effective for segmentation in medical datasets.
Whitekar et al. have shown [87][86] that level
sets can be used to simulate conventional de-
formable surface models, and demonstrated this
by extracting skin and tumors from thick-sliced
(eg. clinical) MR data, and by reconstruct-
ing a fetal face from 3D ultrasound. Recently,
Sethian [67] presented several examples of level-
set curves and surface for segmenting CT and
MR data.

The level-set representation has a number of
practical and theoretical advantages over con-
ventional surface models, especially in the con-
text of deformation and segmentation. First,
level-set models are topologically flexible, they
can easily represent complicated surface shapes
that can, in turn, form holes, split to form multi-
ple objects, or merge with other objects to form
a single structure. These models can incorporate
many (millions) of degrees of freedom, and there-
fore can accommodate complex shapes. Thus,
there is no need to re-parameterize the model as
it undergoes significant changes in shape.

2.2 Stochastic Techniques

We will now look at algorithms which perform
segmentation by statistical analysis only. These
algorithms do not take into account any struc-
tural information.

2.2.1 Thresholding Approaches

Thresholding is probably the simplest of the seg-
mentation techniques for scalar volumes [84]. In
this technique a single value called threshold is
used to create a binary partition of voxel inten-
sities. All voxels with intensities greater than
the threshold are grouped together into one class
and those with intensities below the threshold
are grouped together into another class. Use of
a single threshold thus results in a binary seg-
mented volume.

 1
2 3
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Figure 5: Histogram of a volume with two
thresholds T1 and T2 dividing the histogram in
three regions.

This technique can be extended to using mul-
tiple thresholds, where a region is defined by
two thresholds, a lower threshold and an up-
per threshold. Each voxel of the input volume
then belongs to one of the regions based on its
intensity. This technique is known as multi-
thresholding [61]. In Figure 5 we showed his-
togram of a volume. To apply thresholding, we
take two thresholds T1 and T2 as shown. We
then get three distinct regions as seen from the
histogram.

Although simple, this technique is very effec-
tive in getting segmentation done in volumes
with a very good contrast between regions. This
is generally used as the first step towards seg-
mentation of a volume.

The main drawback of this technique is that
the results are too tightly coupled with the
thresholds used. Any change in the threshold
values can give a different segmented region. The
thresholds are usually generated interactively by
using visual feedback. Some automatic meth-
ods do exist with varying degree of success to
automate the process of finding correct thresh-
olds [34]. Another drawback which is a direct
consequence of the previous one is that the tech-
nique is very sensitive to noise and intensity in-
homogeneities. Thus it cannot be easily applied
to MRI and ultrasound volumes.
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2.2.2 Classification Techniques

Classification techniques are pattern recognition
techniques that seek to partition a feature space
derived from the volume using data with known
labels [55][64][7]. A feature space is the range of
an N-dimensional feature vector made from fea-
tures at each voxel. The features could include
the voxel intensity, the gradient at the voxel, the
distance of the voxel from the volume boundary
and so on. Mathematically, a feature space can
be the range space of any function of the volume.

Classifiers belong to the supervised category
as they require training data that are pre-
segmented (either manually or by other method).
The pre-segmented data is then used as refer-
ence to carry out automatic segmentation on new
data.

The simplest form of a classifier is the nearest-
neighbor classifier, where each pixel or voxel is
classified in the same class as the training da-
tum with the closest intensity. The k-nearest-
neighbor (kNN) classifier is the generalization of
this approach, where the pixel is classified ac-
cording to the majority of the k closest train-
ing data. Another example of a similar classifier
is the Parzen window, where the classification
is made according to the majority vote within
a predefined window of the feature space cen-
tered at the unlabeled voxel (mapped to feature
space). Both these classifiers are non-parametric
since they don’t make any assumption about the
statistical structure of the data.

Another commonly used classifier is the max-
imum likelihood (ML) or Bayes classifier. The
basic assumption is that the voxel intensities are
independent samples from a mixture of proba-
bility distributions, usually Gaussian. This mix-
ture, called a finite mixture model, is given by
the probability density function

f(yj ; θ, π) =
K∑

k=1

πkfk(yj ; θk) (17)

where yj is the intensity of pixel j, fk is a com-
ponent probability density function parameter-

ized by θk, and θ = [θ1, ..., θK ]. The variables πk
are mixing coefficients that weight the contribu-
tion of each density function and π = [π1, ..., πK ].
To collect the training data, representative sam-
ples from each component of the mixture model
are obtained. Each θk is estimated from them.
For Gaussian mixtures, this means estimating
K means, covariances, and mixing coefficients.
Classification of new data is obtained by assign-
ing each voxel to the class with the highest pos-
terior probability. When the data truly follows
a finite Gaussian mixture distribution, the ML
classifier can perform well and is capable of pro-
viding a soft segmentation composed of the pos-
terior probabilities.

Standard classifiers require that the struc-
ture to be segmented possess distinct quantifi-
able features. Because training data can be la-
belled, classifiers can transfer these labels to new
data as long as the feature space sufficiently
distinguishes each label as well. Being non-
iterative, they are relatively computationally ef-
ficient and unlike thresholding, they can be ap-
plied to multi-channel volumes. A disadvantage
of classifiers is that they generally do not per-
form any spatial modeling. This weakness has
been addressed by a recent work which incorpo-
rated neighborhood and geometric information.
Another disadvantage is the manual interaction
for obtaining training data. Training sets can
be acquired from each volume that requires seg-
mentation, but this can be time consuming and
laborious. On the other hand, use of the same
training set for a large number of scans can lead
to biased results which do not take into account
anatomical and physiological variability between
different subjects.

2.2.3 Clustering Algorithms

These are clustering-based techniques which use
characteristics of the voxel and its immediate
neighborhood to do clustering. Clustering can
be loosely defined as the process of grouping ob-
jects into groups, whose members show similar
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properties. In our case these “objects” are the
data voxels and the “groups” are the segmented
regions. “Similar properties” could be any prop-
erty the data voxel posses, like the density, gra-
dient, color (for a color dataset) etc.

Clustering-based segmentation is similar to
the classifier methods (2.2.1) with the excep-
tion that these do not use any training data.
These techniques thus come under the unsuper-
vised class of algorithms for segmentation. These
algorithms overcome the need for a training data
by iterating between segmenting the volume and
characterizing the properties of each class. We
could say that clustering-based algorithms train
themselves using the available data.

The various clustering algorithms available to-
day can be grouped into two broad categories :

1. Hierarchical methods
These methods include those techniques
where the input data is not partitioned into
clusters in a single step. A series of succes-
sive fusions of data are performed until each
cluster of size greater than one is composed
of smaller clusters.

2. Non-Hierarchical methods
In these methods, the desired number of
clusters is known or assumed at the begin-
ning of the clustering process. The end re-
sult is such that each data voxel gets as-
signed to exactly one cluster in this algo-
rithm.

As in the case of classification, voxel properties
such as intensity, gradient, neighborhood infor-
mation etc. are used to form an N-dimensional
feature vector for each voxel. Each class of the
region is assumed to form a distinct cluster in the
N-dimensional feature space. A suitable cluster-
ing algorithm, (K-means clustering, leader clus-
tering, spatial clustering, etc.) is then applied
to each voxel in the feature space. The resultant
clusters in the feature space are then mapped to
spatial domains to give the desired regions.

The most commonly used clustering al-
gorithms for segmentation are K-means

clustering [15],

K-means clustering
This algorithm takes as input a set of N di-
mensional vectors without any prior knowledge
about the set. After processing, the algorithm
forms K disjoint nonempty subsets such that
each subset minimizes some measure of dissimi-
larity. By minimizing dissimilarity of each subset
locally, the algorithm will globally yield an opti-
mal dissimilarity of all subsets. The dissimilarity
for a voxel is its distance from the mean of each
of the classes in the feature space. The mean for
each class is computed iteratively. The voxel is
added to the cluster whose mean is the nearest
to the voxel (meaning least dissimilarity between
the voxel and the cluster’s mean).

The algorithm has a time complexity
O(RKN), where K is the number of desired
clusters, and R is the number of iterations until
it converges.

fuzzy clustering
The input to the algorithm is a finite data set
X = x1, x2, ..., xn, each xiεX is a feature vector;
xi = (xi1, xi2, ..., xis) where xij is the jth feature
of subset xi, and s is the dimensionality of xi. A
function u : X → [0, 1] is defined, which assigns
to each xi in X its grade of membership in the
fuzzy set u. The function u is called a fuzzy
subset of X. The goal is to partition X by means
of fuzzy sets. A fuzzy c-partition is defined as c
x n matrix U such that

1. Each row Ui represents the ith fuzzy subset
of X.

2. Each column U j exhibits the membership
grades of datum j in every fuzzy subset.

3. The membership grades of each datum in
all fuzzy subsets adds up to 1.

4. No fuzzy subset is empty.

5. No fuzzy subset is all of X.
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Let Mfc denote the fuzzy c-partitions of X,
then UεMfc. The fuzzy c-means algorithm uses
iterative optimization to approximate minima of
an objective function Jm [1].

Jm(U, v) =
n∑

k=1

c∑

i=1

(Uik)
m(dik)

2 (18)

where v = (v1, v2, ..., vc) with vi being the cluster
center of class i; 1 ≤ i ≤ c and d2

ik =‖ xk − vi ‖2.

clustering using graph theory
Various graph-theoretic approaches
have been proposed for data cluster-
ing [33][46][89][78][37][88] We review an
algorithm presented by Wu and Leahy [88] in
1993. In this algorithm, the data to be clustered
are represented by an undirected adjacency
graph G. Each vertex of G corresponds to a
data point, and an arc links two vertices in G
if the corresponding data points are neighbors
according to a given neighborhood system. A
flow capacity is then assigned to each arc in G.
This is chosen to reflect the feature similarity
between the pair of linked vertices. The cluster-
ing is achieved by removing arcs of G to form
mutually exclusive subgraphs. For the case of
an unconstrained optimal K-subgraph partition
of G, the arcs selected for removal are those in
a set of K - 1 minimum cuts with the smallest
K - 1 values among all possible minimum cuts
separating all pairs of vertices. The method
minimizes the largest inter-subgraph maximum
flow among all possible K partitions of G, hence
minimizing the similarity between subgraphs,
which in this case are clusters. The reason for
this method of minimization can be explained
as follows.

The purpose of the clustering algorithm is to
group together components into a minimal num-
ber of clusters. This can be formulated in terms
of the adjacency graph G formed from the com-
ponents. G can be divided into a number of
unconnected subgraphs by removal of the arcs
connecting the subgraphs. The set of vertices

in each subgraph then represents a single clus-
ter. Each of the remaining subgraphs contains
a set of connected vertices or components whose
union represents a spatially connected region of
the volume. Since arc capacities are a measure
of the similarity between connected neighbors,
partitioning a graph G into two subgraphs with
as dissimilar features as possible would involve
minimizing the maximum flow between the two
subgraphs [88].

Although clustering algorithms do not require
training data, they do require an initial segmen-
tation (or equivalently, initial parameters). The
expectation-minimization (EM) [41] algorithm
has demonstrated greater sensitivity to initial-
ization than the K-means or fuzzy c-means al-
gorithms [19]. Like classifier methods, cluster-
ing algorithms do not directly incorporate spa-
tial modeling and can therefore be sensitive to
noise and intensity inhomogeneities. This lack
of spatial modeling, however, can provide sig-
nificant advantages for fast computation. Work
on improving the robustness of clustering algo-
rithms to intensity inhomogeneities in MR im-
ages has demonstrated excellent success [25][53].
Robustness to noise can be incorporated using
Markov random field modeling as we will see in
the next section.

2.2.4 Markov Random Fields

Markov random field (MRF) modeling itself is
not a segmentation method but a statistical
model which can be used within segmentation
methods. MRFs model spatial interaction be-
tween neighboring or nearby voxels. These local
correlations provide a mechanism for modeling
a variety of image properties [40]. In medical
imaging, they are typically used to take into ac-
count the fact that most pixels belong to the
same class as their neighboring pixels. In physi-
cal terms, this implies that any anatomical struc-
ture that consists of only one pixel has a very low
probability of occurring under a MRF assump-
tion.
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MRFs are often incorporated into clustering
segmentation algorithms such as the K-means
algorithm under a Bayesian prior model [51][57]
[30][25]. The segmentation is done by maximiz-
ing the a posteriori probability of the segmenta-
tion given the volume data using iterative meth-
ods such as iterated conditional modes [6] or sim-
ulated annealing [24].

A difficulty associated with MRF models is
proper selection of the parameters controlling
the strength of spatial interactions[40]. Too high
a setting can result in an excessively smooth seg-
mentation and a loss of important structure de-
tails. In addition, MRF methods usually require
computationally intensive algorithms. Despite
these disadvantages, MRFs are widely used not
only to model segmentation classes, but also to
model intensity inhomogeneities that can occur
in MR images [30] and texture properties [59].

2.3 Hybrid Approaches

In this section we will look at the segmentation
algorithms which cannot be classified into the
previous two categories. These algorithms use
something from both the previous two types of
segmentation algorithms.

2.3.1 Region Growing

This is probably the simplest among the hybrid
techniques. Region growing is a technique to ex-
tract a connected region from a 3D volume based
on some pre-defined connecting criterion. This
criteria can be as simple as the voxel intensity
or could be the output of any other segmenta-
tion algorithm [28]. In the simplest form, region
growing requires a seed point to start with. From
the seed point, the algorithm grows till the con-
necting criteria is satisfied.

As with thresholding, region growing is sim-
ple, but not often used for segmentation by it-
self. More often than not, region growing forms
a part of a segmentation pipeline for a partic-
ular approach. It is often used as the primary

method to understand a 3D data before more
complex segmentation is applied to it.

The primary disadvantage of this algorithm
is that it requires seed points which generally
means manual interaction. Thus for each region
to be segmented, a seed point is needed. Region
growing can also be sensitive to noise and par-
tial volume effect causing the extracted region to
have holes or disconnections. Some recent work
has been reported which tries to alleviate these
problems. In another recent work, fuzzy analo-
gies to region growing have also been developed.

2.3.2 Split and Merge

This algorithm is similar to region growing we
saw earlier. This algorithm requires the input
data to be organized into a pyramidal grid struc-
ture of regions, with each region organized in
groups of eight (for 3D) [5]. Any region can be
split into eight subregions and the appropriate
eight can be merged into a single larger region.
As in region growing, the criteria for merging
(growing for region-growing) could be anything.
It could be as simple as voxel intensity or some
condition checking based on the output of some
previous segmentation stage. Let us assume that
the criterion is C. The algorithm can be written
down in two steps as follows:

1. Pick a region R in the grid structure. If
C(R) is false, split the region into eight sub-
regions. If for eight regions R1, R2, ..., R8,
C(R1∪R2∪...∪R8) = true, merge into single
region. When no regions can be merged,
stop.

2. If there are neighboring regions Ri and Rj
such that C(Ri ∪ Rj) = true, merge these
regions.

The big advantage of this method over region-
growing is that no seed points are needed and
hence no manual interaction is needed. On the
down side, it requires the input to be organized
into a pyramidal grid structure which could be
undesirable for the huge datasets in use today.
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2.3.3 Atlas-Guided Approaches

Atlas-guided approaches use a standard atlas or
template to perform segmentation. The atlas
is generated by compiling information on the
anatomy that requires segmentation. This at-
las is then used to segment other images. The
standard atlas-guided approach treats segmen-
tation as a registration [43] problem. It first
finds a one-to-one transformation that maps a
pre-segmented atlas image to the target image
that requires segmentation. This process is of-
ten referred to as atlas-warping. The warp-
ing can be performed using linear transforma-
tions [71][39][4].

Atlas guided approaches have been mainly ap-
plied in MR brain imaging. An advantage of
atlas-guided approaches is that labels are trans-
ferred as well as the segmentation. The main
shortcoming of this method is due to anatomical
variability. To overcome this problem, many re-
searchers have tried to apply a sequence of linear
and non-linear transformations [10][16][17][63].
Even with this, accurate segmentation of com-
plex structures is very difficult. Thompson and
Toga in 1997 [77] introduced probabilistic at-
lases to model anatomical variability, but their
method required additional time and interaction
to accumulate data. Hence, these approaches are
best suited for segmenting structures which are
stable over the population of study.

2.3.4 Artificial Neural Networks

Conventional segmentation algorithms based on
structural knowledge often require considerable
user expertise. The Artificial neural networks
(ANN) based approaches tried to partially over-
come these drawbacks. ANNs are massively par-
allel networks of processing elements or nodes
that simulate biological learning. Each node
in an ANN is capable of performing elementary
computation. Learning is achieved through the
adaptation of weights assigned to the connec-
tions between nodes. A more detailed descrip-
tion of ANNs can be found in [11] [29].

The main features of ANNs which the segmen-
tation algorithms try to use are :

1. Learning from examples and generalizing
that knowledge

2. Noise rejection

3. Fault tolerance

4. Optimum seeking behavior

Valli [79] presented three architectures for
medical image segmentation based on ANNs.
These architectures showed that ANNs can suc-
cessfully exploit and integrate different kinds of
a priori information contained in medical im-
ages. His experiments demonstrated robustness
and sensitivity of the approach, but at the ex-
pense of generality.

ANNs are widely used in segmentation as a
classifier [27][23], where the weights are deter-
mined using training data, and the ANN is then
used to segment new data. ANNs can also be
used in an unsupervised fashion as a clustering
method [7] [58], as well as for deformable mod-
els [80].

Since the ANNs are tightly interconnected,
spatial information can be easily incorporated
into its classification procedures. Although
ANNs are inherently parallel, their processing is
usually simulated on a standard serial computer,
thus reducing this potential computational ad-
vantage.

2.3.5 LEGION Based

These segmentation methods are based on a bi-
ologically inspired oscillator network, called the
locally excitatory globally inhibitory oscillator
network (LEGION) [82][73][83]. LEGION was
proposed by Terman and Wang [82] [73] as a bi-
ologically plausible computational framework for
image analysis. The network was proposed based
on theoretical and experimental considerations
that point to oscillatory correlation as a repre-
sentational scheme for the working of the brain.
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Figure 6: Diagram of a single oscillator in a LE-
GION.

The oscillatory correlation theory assumes that
the brain groups and segregates visual features
on the basis of correlation between neural oscil-
lations [82] [81]. It has been shown theoretically
and later, by experiments that neural oscillations
in the visual cortex are a possible mechanism by
which the brain detects and binds features in a
visual scene.

LEGION is a network of relaxation oscilla-
tors, each constructed from an excitatory unit
x and an inhibitory unit y as shown in Figure 6.
Unit x sends excitation to unit y which responds
by sending inhibition back. When external in-
put stimulus I is continuously applied to x, this
feedback loop produces oscillations. Neighboring
oscillators are connected via mutual excitatory
coupling, as well as the global inhibitor.

The formal definition of LEGION can be
found in [83]and [73]. The behavior of each os-
cillator, indexed by i in a network, is defined by
the following equations:

ẋi = 3xi−x3
i+2−yi+ρ+IiH(pi+exp(−αt)−θ)+Si

(19)
ẏi = ε(γ(1 + tanh(xi/β))− yi) (20)

ṗi = λ(1− pi)H[
∑

kεN2(i)

TikH(xk − θx)− θp]− µpi

(21)

Si =
∑

kεN2(i)

WikH(xk− θx)−WzH(z− θz) (22)

ż = φ(σo − z) (23)

The explanation of these equations can be
found in [68]. To summarize , after a number
of oscillation cycles a block of oscillators corre-
sponding to a major image region will oscillate
in synchrony, while any two oscillator blocks cor-
responding to two different major regions will
desynchronize from each other. For other vox-
els which do not belong to any major region,
the corresponding oscillator will stop oscillating
shortly after the system starts.

Simulation of a LEGION network is computa-
tionally expensive since it requires numerically
integrating a huge number of differential equa-
tions. This makes it almost impossible to seg-
ment large volume datasets using this technique.
To make it feasible, Wang and Terman [83] pro-
posed a simplified algorithm. Recently Shareef
et al. [68] further simplified the Wang and Ter-
man algorithm for efficiency purposes, which are
particularly important from the point of view of
volume segmentation.

A few of the advantages of this method are: re-
quires less intervention compared to most of the
structural techniques, initial parameter setting
can be fully automated, and can achieve good
noise tolerance. On the other hand, due to gen-
erality, domain-specific knowledge is not utilized
to the full compared to the structural techniques.

3 Conclusions

We have reviewed and discussed most of the seg-
mentation algorithms widely used for segment-
ing 3D medical datasets. We classified the ap-
proaches into three categories : structural tech-
niques, stochastic techniques and hybrid tech-
niques. Under structural techniques, we re-
viewed algorithms which try to find structural
properties like edges and then segment the or-
gan or region-of-interest. On the other hand,
stochastic techniques do not give any consider-
ation to structural information. They aim at
performing segmentation based on mathemat-
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ical analysis of data. Hybrid techniques are
those which contain components from the pre-
vious two.

Structural techniques reviewed in here have
the advantage that they can segment out a single
organ or region-of-interest. The accuracy of seg-
mentation depends on the quality of input data.
Since these algorithms locate structural informa-
tion, any noise in the input data could affect the
outcome. A lot of research has been done to
make these techniques robust against noise with
varying degree of success. This is especially use-
ful when we consider MRI datasets, which are
known to have a lot of noise. Structural tech-
niques also need good contrast between the re-
gions to be segmented in the input dataset. A
low contrast means difficulty in finding “edges”,
which might affect these algorithms. Another
disadvantage for structural techniques is that
they are difficult to automate. Manual interven-
tion is mostly needed to select seed points inside
the desired region-of-interest.

Stochastical techniques presented here per-
form segmentation on the entire dataset. This
results in the segmentation of entire datasets into
different regions. Although this process of seg-
mentation is fully automated (baring the selec-
tion of initial parameters), selecting the region
among the segmented regions could be tedious
and may need manual intervention. For eg., if
we classify the visible human dataset, we will get
all bones classified as one region. If we are just
interested in one of them, say the skull, we will
have to manually locate the skull and remove all
other bones. This is generally done by running
the dataset through another pass of an algorithm
like region-grow to mark the selected region and
to remove everything else. The accuracy and
quality of segmentation in these algorithms de-
pends on the selection of initial parameters. This
could be good and bad. The good part being
that with proper selection of parameters, the al-
gorithm could be made robust against noise for
a particular problem. It could also be tuned to
perform segmentation on low-contrast datasets.

On the other hand, the selection of parameters
is too critical. Any incorrect selection could lead
to undesirable segmentation. These properties
make some of these techniques more suitable to
MRI datasets than the structural techniques.

Where are we heading to? If we glance at
the history of “image segmentation”, we observe
that the initial work was done with 2D images.
As computers became powerful and surface ren-
dering techniques started to evolve, the focus
shifted to segmenting 3D volumes. But this gen-
erally meant constructing a surface for the seg-
mented region, either during segmentation (eg.,
deformable models, graph-searching algorithms
etc.) or after segmentation (eg., stochastical
techniques). Then started the era of volume vi-
sualization. Volume visualization is considered
to be a superior technique to surface rendering
due to the ability to look through the volume.
Until recently, interactive volume visualization
was a difficult task, but with the availability of
special-purpose hardware[36], it is now possible
to interactively visualize volumes even on low-
end PCs. This has resulted in a considerable
interest in volume rendering based tools.

Due to these advances in volume rendering
techniques, the focus of segmentation is now
shifting slowly to volume segmentation. Tech-
niques such as level-sets (section 2.1.5) con-
vert the surface-based deformation techniques
to volume-based deformation. They directly al-
ter the voxel intensities in the volume to get
the desired effect of deformation. Due to this
voxel-based approach, these techniques are gain-
ing a lot of interest. All the stochastic techniques
mentioned before (section 2.2) are already used
for voxel based volume segmentation. Other
techniques [38] are also being developed which
are of special interest to volume rendering. To
describe this in one line, the day is not far when
image segmentation is known as volume segmen-
tation.

Another important desired feature of segmen-
tation is “automation”. Performing automated
segmentation still remains one of the most diffi-
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cult problems in the world of segmentation. Al-
though researchers have shown success with au-
tomation in some cases, there is no generic al-
gorithm which can perform automatic segmen-
tation on any given dataset.
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