CSE 612: Advanced Visualization

Lecture 2: Information Visualization

Klaus Mueller

Stony Brook University

Computer Science Department

(with some material taken from presentations by Profs. Jürgen Döllner, University of Potsdam, and Daniel Keim, University of Konstanz)

© Klaus Mueller, Stony Brook 2003

Data Analysis

- Data in visualization:
 - digital data generated from mathematical models or computations
 - digital data generated from human or machine collection
- Purpose of data analysis:
 - all data collected are linked to a specific relationship or theory
 - relationships are detected as patterns in the data
 - note: the relationship may either be functional (good) or coincidental (bad)
 - note: data analysis and interpretation are functionally subjective
- Logical analysis:
 - applying logic to observations (the data) creates conclusions (Aristotle)
 - conclusions lead to knowledge (at this point the data become information)
- There are two fundamental approaches to generate conclusions:
 - induction
 - deduction

Induction vs. Deduction

The Data

- Data origin:
 - real world data measured from real-world objects and processes (sensors, statistics, surveys)
 - model data computed by machines (numerical simulations, scientific computations)
 - design data edited by humans
- Data size:
 - number of samples and data items (kB, GB, MB, TB)
- Data type:
 - scalar or multi-variate, N-dimensional: number of attributes per data item (attribute vector)
 - scalar or vector (e.g., flow direction)
- Data range and domain:
 - qualitative (non-numerical measurements) vs. quantitative (numerical measurements)
- Data value:
 - categorical (nominal): categoricies are disjunct, no intrinsic rank (e.g., {yellow, red, green})
 - ordinal data: data members of ordered sequence of categories (e.g. {tiny, small, large, huge})

The Data

- Data structure:
 - sequential (list, array)
 - relational (tables)
 - hierarchical (tree)
 - network (relationship graph)

inaccurate and imprecise

- Accuracy:
 - an estimate of the probably error of a measurement compared with the true value of the property being measured
 - accuracy is a property of the measurement itself, not the apperatus with which we generate it
- Precision:
 - an indication of the spread of values generated by repeated measurements
 - property of the experiment and/or the apperatus being used to generate the measurements

Dataset Dimensionality

- Number of variables involved and dimension of each variable
- Univariate data:
 - a single variable
 - visualization can be a simple plot v = f(x)
- Bivariate data
 - two variables
 - visualization can be a surface v = f(x, y)
- Trivariate data
 - three variables
 - visualization can be volume rendering v = f(x, y, z)
 - occlusions become a problem since we must visualize a

3D dataset on a 2D screen (see later lectures)

- Multivariate or N-D data (for N > 2)
 - visualization becomes challenging

Multivariate Data - Practical Example

- You are a multi-dimensional data point when it comes to your statistical properties, examples are:
 - annual salary, rent, mortage, stock revenues and losses, life insurance, credit card balance
 - number of children, pets, cars, computers, telephones, cell phones, kidneys
 - money spent on CDs, computer games, eating out, movies, comic books, DVDs
 - hours spent surfing the web, sick leaves, vacations, watching TV, making phone calls
 - location of residence (zip code), profession, nationality, family status, age, interests
- There is a large commercial interest to identify and target certain groups of people
- Another example: Categorize all web pages or text documents (the "Yahoo!" problem)
- The general task is:
 - identify the cluster of datapoints that fit a certain metric or set of criteria
- The general problem is:
 - automated (statistical) methods usually fail for large and fuzzy problem spaces
- Visualization can help:
 - but... how does one visualize data in N-space?

Dimension Reduction

- Method of Principal Component Analysis (PCA):
 - find new axis system that captures most of the variations in the data (principal components)
 - this can reduce the number of axes (and variables)

- there is a significant covariance in the distribution of the x2 and x3 coordinates, none for x3

- PCA analysis will find new (orthogonal) coordinate axes that minimize covariances
- In this example, after PCA:
 - the major variation is along the new y1 axis, and minor variation along the new y2 axis
 - one can drop the y3 axis, and even y2 if some loss of information is acceptable

Projection of N-Dimensional Data

- Note: dimension reduction can reduce the number of variables
 - the new variables (axes) are combinations versions of the initial variables (axes)
 - the result may not be as intutive (quantitative)
- What happens if one projects N-D data into 2-D?
 - good news: it can be done
 - but occlusions cannot be resolved when a projection reduces more than one dimension
 - exercise: try to project a 2-D image onto a point (0-D)
 - the result is an X-ray projection

• Multi-Dimensional Scaling (MDS)

projection of a 5D dataset

Multi-Dimensional Scaling (MDS)

- Technique to stretch out the N-D data in space to reduce occlusions
 - this "stretched" N-D dataset can now be projected onto 2D with little occlusions

- Force-directed methods can remove remaining occlusions/overlaps in the 2D projection space:
 - forces are used to position clusters according to distance (and variance) in N-space
 - insert springs within each node
 - the length of the spring encodes the desired node distance
 - starting at an initial configuration, iteratively move nodes until an energy minimum is reached

The Terrain Plot

- Example: VxInsight (Sandia Nat'l Lab)
- Applications:
 - viewing of large library collections
 - citation databases
 - each document/book has N attributes
 (authors, major subjects, minor subjects, references, etc)

• Idea:

- related data will form close-by mountains
- zooming in will reveal more detail
- a flight simulator interface is used for navigation
- MDS and force-directed methods are used for the layout

Pixel Displays

• Display all N(N-1)/2 2-D projections of the dataset into a scatterplot matrix

Dimensional Stacking

- Partioning of the N-dimensional attribute space in 2-dimensional sub-spaces which are "stacked" into each other
- Partitioning of the attribute value ranges into classes
- The most important attributes should be used on the outer levels
- Adequate esoecially for data with ordinal attributes of low cardinality

Parallel Coordinates

• An attempt to map an N-D plot into a 2-D plot:

- Many N-D points in N-D space yield an equal number of lines in the parallel coordinate display
 - clustering N-D points can be easily visualized as clustering lines in 2-D

Parallel Coordinates

- Viewing currency data collected from the NY currency markets from 1985-1993
 - shown here: contrasting the data of different years

Parallel Coordinates

- Handles quantitative as well as categorical data and handles any number of dimensions
- Characteristics:
 - find clusters of similar data
 - find "hot spots", i.e., exceptional items in otherwise homogeneous regions
 - show relationships between multiple variables
 - retrieve similarity rather than boolean matching, show near misses
- Can be used for information discovery and analysis
- Interactive configuration to focus on selected items and features is key:
 - hierarchical interface to zoom in and out
 - ability to re-arrange/skip columns to better reveal patterns
- Advantages: scalable, simple and uniform data representation
- Disadvantages: large datasets are difficult, arrangement of axes critical

select local detail view in ParCor

The Power of Reordering Table Entries

Kiviat Graphs

- Another form of parallel coordinates:
 - arrange data on a circle (polar coordinate system) instead of a cartesian plane
 - gives rise to a compact, star-like arrangement

star plot of networking data

integrated representation of minimal, average, and maximal values of measurements

Tree Map

- Good to show hierarchical data organized into a tree
- Algorithm works by recursively subdividing an initially empty rectangle
 - traverse tree level-by-level
 - for a given node, subdivide available space into parts equivalent to the size of the child nodes
 - proceed recursively for each child node, using its corresponding part as available space

- one disadvantage of tree maps is that the box borders take up space as well, and the com-

bined effect of the nested boxes distort the relative size proportions among the box nodes 19

Tree Map Example

• Tree map of a disk drive hierachy

Tree Map Example

• Tree map organizing a large dataset of one million items (J. Fekete)

Tree Map Example

• Cushion tree map (J. Van Wijk) show depth of nesting by using shadows and specular highlights

Display of Abstracted Relationships

• Most appropriately conveyed in the form of trees or graphs

- Desirable features of the graph layout:
 - planarity (no crossing edges)
 - clarity in reflecting the relationships among the nodes
 - clean, non-convoluted design
 - hierarchical relationships should be drawn directional

3D Graph Layout Designs

used by permission of A. Frick, University of Karlsruhe

Cluster-Optimized 3D-Graph

Narcissus [HDWB 95]

S animated 3D visualizations of hierarchical data

file system structure visualized as a cone tree

cone tree

visualization of a large number of web pages

visualization of complex highly interconnected data (e.g., graphs such as the web)

Dealing with Limited Display Area

scrolling

- Too much data, too little display area
- Must overcome limitations in screen resolution and screen space
- Typical solution: scrolling
- Problems with scrolling:
 - navigation in the whole mapped data space is difficult
 - large parts are hidden and abruptly switched off/on
 - hard to preserve a "mental map" of the entire information space
- Must provide some means to maintain context
 - use "fisheye" scrolling technique

Zooming While Maintaining Local Context

- Assume you have a graph plotted on your screen and you would like to zoom in on a subgraph
 - a simple solution that is the *magnifying glass* (recall ghostview)

- The problem: the local context is lost by the superposition of the magnified region
 - would like to maintain the global context while increasing the local focus (magnification)
 - use a *fisheye lens* in place of the magifying glass

- S graph visualization using a fisheye perspective
- Shows an area of interest quite large and with detail and the other areas successively smaller and in less detail

3D Fisheye Views

Focus + Context: Bifocal Lens

- General principles:
 - distorted view to the whole information space
 - focus of attention gets most space
 - periphery holds context information
 - fisheye views are examples of effective contex + focus techniques
 - generalizations are many
- Bifocal displays:

Focus + Context: Perspective Wall

- Perspective Wall
 - details on the center panel are at least three times larger than the details on a flat wall that fits the field of view
 - Perspective Wall makes three times as much information possible as a flat wall that has details of the same size
 - smooth animation / transition of views helps users perceive object constancy
 - highlights relationships between objects in detail and context (objects bend around corner)
 - ease in adjusting the ratio of detail to context, as the user desires
 - intutive and easy to learn
 - combine with fisheye lenses

Mackinlay 91

Focus + Context: InfoTube

- Places information into a real space:
 - street (similar to Motomachi street, Yokohama, Japan)
 - magazine
 - an "infotube" where information is placed at random (similar to large advertising on buildings like in Shinjuku, Tokyo, Japan)

Wakita 03

Focus + Context: "Ryukyu Alive" Web Browser

- Puts web pages into a galactic space (an information galaxy)
 - Ryukyu is the old name for Okinawa and means "flowing ball"
 - ALIVE stands for "Access Log Information Visualization Engine"
 - (icons of) pages recently accessed move to the outside
 - icons of pages with little access move to the center, get absorbed and vanish gradually
 - clicking on an icon will pop up the webpage

Zoom and Pan

- Panning
 - smooth movement of a viewing frame over a two-dimensional image of greater size
- Zooming
 - increasing magnification of a decreasing fraction (or vice-versa) of a 2-D image under the constraint of a viewing frame of constant size
- Transfer of the focus of attention:
 - zoom out --> pan --> zoom in
 - how to do it efficiently and while maintaining context
 - use space-scale diagrams

pan

zoom

transfer of focus

Semantic Zoom

- Zooming affect geometric size
- Semantic zooming additionally changes appearance and parts of objects

Interaction Techniques - Linking and Brushing

• Making a change in one display changes other display synchronously

Brushing in linked displays: highlighting a cluster of data in the climate-housing display automatically highlights the sane data in the longitude-latitude display.

Brushing of 6-cylinder cars:

climate and housing data of the US

Data Exploration and Mining Techniques - The User in the Loop

- View refinement and navigation loop:
 - view and navigation control is important for extended and detailed visual spaces that contain (visually) mapped data

- working memory needs focus+context to perform better

Data Exploration and Mining Techniques - The User in the Loop

- Problem solving loop (recall pre-attentive processing):
 - visualizations function in a straightforward way as memory extensions
 - visualizations enable cognitive operations that would otherwise be impossible
 - visualization-centered problem-solving loop involves both computer-based modeling and a cognitive model integrated through a visualization
 - visualizations enhance hypothesis generation and testing operations of working memory

Data Exploration and Mining Techniques - Man-Machine Interface

- Kieras + Meyer's unified extended cognitive model: contains both human and machine processing systems
- Key memory categories:
 - iconic memory
 - working memory
 - long-term memory
 - chunks and concepts
 - (pre-compiled knowledge)

