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Fourier Transforms Overview

• Discussed in CSE 564

- fundamentals of the Fourier Transform (FT)

- various interpolation and gradient filters in time and frequency domain

- causes of aliasing and its prevention

- choice of filter width as a function of sampling rate

- separabilty of common filters for higher dimensions (>1D) 

• To be discussed now, in CSE 612

- more details on the continuous and discrete FT

- useful properties of the FT

- the Fast Fourier Transform (FFT)

- popular applications of the FFT

- spherical harmonics (“FT” on a sphere)
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From Continuous to Discrete

• FT of a non-periodic signal (Continuous FT): 

- infinite continuous signal and infinite continuous spectrum

• FT of a periodic signal (Fourier Series):

- periodic continuous signal (period=T), but infinite discrete spectrum (spacing=1/T)

• FT of a periodic sampled signal (Discrete FT or DFT):

- periodic discrete signal (N samples) both in spatial and frequency domain

• See “Introduction to the Discrete Fourier Transform” slides by van Vliet for more info
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Fourier Transform Properties

• Linearity:  

• Time Shifting:     and Frequency Shifting:   

• Differentiation:      and Integration:  

• Scaling:  

• Convolution: 

• Time-Flip:  

• Additional notes:

- all properties work both ways, from space to frequency domain and vice versa

- a zero-phase filter is a filter that leaves the phases alone, it has a phase slope of φ=0

- a linear-phase filter scales the phases via a linear slope in φ, φ=k (shifts the signal in space)

- all filters that are symmetric about 0 are zero-phase filters (box, linear, cubic, Gaussian,..)

- Fourier Slice Theorem: “The FT of an X-ray projection is a slice across the f-domain”
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The Fast Fourier Transform (FFT)

• Fast method to compute a DFT

• See presentation “FFT basics” for more detail

- in this presentation: 

• Notes:

- in FFT, the center data point is “aliased” and belongs to both the left and the right side of the 

spectrum 

• Applications that take advantage of the FFT

- convolution with a large filter

- rotations with minimal error

- patch matching using Euclidian distance

- cross-correlation

- resampling and zooming with minimal error
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Spherical Harmonics

• A transform pair on the sphere:

• The basis functions:

where 

and the  are the Legendre polynomials

and the  are the 

associated Legendre polynomials
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Spherical Harmonics - Plots

• Since a complex basis function would require 4D, let’s plot the real part:
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Spherical Harmonics - Plots

• Alternatively, plot the magnitude:

more info: mathworld.wolfram.com/SphericalHarmonic.html       
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Spherical Harmonics Applications

• Quantum mechanics 

• Molecular modeling (need large L >14)

- coefficent-wise comparisons, docking)

• BRDF (Bidirectional Reflection Distribution Function) modeling

- gives sparse representation, but (like Fourier synthesis) 

will give somewhat smooth representation and does not 

offer much local control

Dave Ritchie, www.csd.abdn.ac.uk/~dritchie/graphics/    
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Spherical Harmonics Applications

• Modeling of shapes:

Paul Bourke, astronomy.swin.edu.au/~pbourke/surfaces/sphericalh/   
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