Introduction to the Discrete Fourier Transform

Lucas J. van Vliet
www.ph.tn.tudelft.nl/~lucas

Linear Shift Invariant System

A discrete image can be decomposed into a weighted field of equi-spaced impulses.

\[f(x) = \sum_{n=-\infty}^{+\infty} f(n)\delta(x-n) \]

\[g(x) = \sum_{n=-\infty}^{+\infty} f(n)h(x-n) \equiv f(x) * h(x) \]

Image \(g \) is the result of a convolution between image \(f \) and \(h \)
Convolution revisited

- **Convolution**: Replace the central pixel by a weighted sum of the gray-values inside an $n \times n$ neighborhood. Impulse response $h(x)$ is the filter.

![Convolution Examples](image)

Eigenfunction of LSI systems

- **Eigenfunctions of LSI systems** are complex exponentials $\varphi(x)$.

 $$\varphi_\omega(x) = e^{j\omega x} = \cos \omega x + j \sin \omega x$$

 $$\varphi_{\omega1}(x) = +j$$
 $$\varphi_{\omega2}(x) = +j$$
 $$\varphi_{\omega3}(x) = +f$$

- LSI system $h(x)$

 $$K \varphi_\omega(x) = \sum_{n=-\infty}^{\infty} \varphi(n) h(x-n)$$

- $e^{j\omega x}$

 $$g(x) = \sum_{n=-\infty}^{\infty} e^{j\omega x} h(x-n) = e^{j\omega x} \sum_{n=-\infty}^{\infty} h(m) e^{-j\omega m}$$

 $$= e^{j\omega x} H(\omega)$$

- An LSI system multiplies each eigenfunction $\exp(j\omega x)$ by its corresponding eigenvalue $H(\omega)$.

- The Fourier transform decomposes an image into a weighted set of complex exponentials of varying frequency ω. “The Fourier spectrum”

- The system function $H(\omega)$ is the Fourier Transform of $h(x)$.
Convolution property

A convolution between an image \(f(x) \) and an impulse response \(h(x) \) in space, corresponds to a multiplication of the Fourier spectra \(F(\omega) \) and \(H(\omega) \) in the Fourier domain.

\[
\begin{align*}
LSI \text{ system } & \quad f(x) \to h(x) \\
\longrightarrow & \quad f(x) * h(x) = \sum_{n=-\infty}^{\infty} f(n\Delta) h(x - n\Delta) \\
F \{ f(x) * h(x) \} & = \sum_{x=-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} f(n) h(x - n) \right] e^{-jx}
\end{align*}
\]

\[
= \sum_{n=-\infty}^{\infty} f(n) e^{-jn} \sum_{m=-\infty}^{\infty} h(m) e^{-jm}
\]

\[
= F(\omega) H(\omega)
\]

Gaussian derivatives

How to compute a derivative in digital space?

\[
f_x[x,y] \triangleq \frac{\partial}{\partial x} f[x,y] = ?
\]

Introduce (Gaussian) scale

\[
f^{(\sigma)}[x,y] = f^{(0)}[x,y] \otimes g^{(\sigma)}[x,y]
\]

\[
f^{(\sigma-5)}[x,y] = f^{(\sigma-3)}[x,y] \otimes g^{(\sigma-4)}[x,y]
\]

Derivative at scale \(\sigma \) is computed by convolution of the discrete image \(f[x,y] \) with discrete Gaussian derivative

\[
f_x^{(\sigma)}[x,y] = f^{(0)}[x,y] \otimes g_x^{(\sigma)}[x,y]
\]

Note that the Gaussian function is known analytically, compute the derivative(s), and then sample to produce a discrete filter. The sampling of the Gaussian should be high enough, i.e. \(\sigma > 0.9 \) pixels.
Fourier filters: Gaussian

Gaussian derivative filters

- In continuous space: the derivative operator corresponds to multiplication of the Fourier spectrum with $j\omega$

$$f(x) \xrightarrow{F} F(\omega)$$

$$\frac{d}{dx}f(x) \xrightarrow{F} j\omega F(\omega)$$

$$\frac{d^2}{dx^2}f(x) \xrightarrow{F} -\omega^2 F(\omega)$$

- In discrete space: combine the derivative operator with Gaussian smoothing
Fourier: Gaussian derivative

Fourier: Laplace & sharpening
Each image can be decomposed in weighted sum of complex exponentials (sines and cosines) of frequency \(f \) and angle \(\phi \). (or two frequency components \(u \) and \(v \))

\[
g(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} G(u,v) e^{j \frac{2\pi}{N} (ux + vy)}
\]

\[
G(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} g(x,y) e^{-j \frac{2\pi}{N} (ux + vy)}
\]

For real-valued images:

\[
\text{Ev}\{g(x,y)\} \xrightarrow{F} \text{Re}\{G(u,v)\}
\]

\[
\text{Od}\{g(x,y)\} \xrightarrow{F} j \text{Im}\{G(u,v)\}
\]

For real-valued images:

\[
F(u,v) \text{ is the complex amplitude of the eigenfunction } \exp(j \frac{2\pi}{N}(ux + vy))
\]

Note that \(\exp(j \frac{2\pi}{N}(ux + vy)) = \cos(\frac{2\pi}{N}(ux + vy)) + j \sin(\frac{2\pi}{N}(ux + vy)) \)

Standard display is the logarithm of the magnitude: \(\log(|F(u,v)|) \)
An image is a weighted sum of \(\cos \) (even) and \(\sin \) (odd) images.

Eigenfunctions: Even & Odd

Real & even
\[
1 + \cos \left(\frac{2\pi}{N} u_0 x \right) = \frac{1}{1 + \frac{2 e^{\frac{2\pi}{N} u_0 x} + e^{-\frac{2\pi}{N} u_0 x}}{2}}
\]

Real & odd
\[
\sin \left(\frac{2\pi}{N} u_0 x \right) = \frac{e^{\frac{2\pi}{N} u_0 x} - e^{-\frac{2\pi}{N} u_0 x}}{2j}
\]

Imag & odd
\[
\frac{1}{\pi} \begin{bmatrix} -\frac{1}{2} \delta(u-u_0,v) \\ \frac{1}{2} \delta(u-u_0,v) + \frac{1}{2} \delta(u+u_0,v) \end{bmatrix}
\]
Orientation & frequency

Getting used to Fourier (1)

- Graphite surface by Scanning Tunneling Microscopy
- Atomic structure of graphite shows a hexagonal surface

$$(c,r) = (0,0)$$
$$(u,v) = (-\frac{1}{2}N, -\frac{1}{2}N)$$
$$(c,r) = (\frac{1}{2}N, \frac{1}{2}N)$$
$$(u,v) = (0,0)$$
$$(c,r) = (N-1, N-1)$$
$$(u,v) = (\frac{1}{2}N-1, \frac{1}{2}N-1)$$
Superposition

Fourier spectrum

\[F \]

\[\begin{align*}
\mathcal{F} & = \mathcal{F} + \mathcal{F} + \mathcal{F} + \mathcal{F} \\
\mathcal{F} & = \mathcal{F} \end{align*} \]

Fourier transforms

\[\mathcal{F} \]

magnitude

phase
Magnitude & phase

\[|F(u,v)| \]

\[e^{jF(u,v)} = \frac{F(u,v)}{|F(u,v)|} \]

Local variance filter: power

Recipe: local variance filter (filter size = \(n \))
1. Compute the local mean (blurring filter of size \(n \))
2. Subtract the local mean.
3. Compute the square of each pixel value
4. Suppress the "double" response by local averaging (blurring filter of size \(n \))

Local variance is a measure for the local squared-contrast.

1. Compute the local mean (blurring filter of size \(n \))
2. Subtract the local mean.
3. Compute the square of each pixel value
4. Suppress the "double" response by local averaging (blurring filter of size \(n \))
Scaling: local vs global

- Problem: Choosing the proper scale is an important, but tedious task.
 - Scale too small: Local characteristics are missed which yields an incomplete data description.
 - Scale too large: Confusion (mixing) of adjacent objects, lack of localization, and blindness for detail.

- Solution: Multi-scale analysis.
 - Analyze the image as function of scale: from fine detail to course “image-filling” objects.

\[
g(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \xrightarrow{F} G(u,v) = e^{-\left[\left(\frac{x^2}{\sigma^2}\right)^2 + \left(\frac{y^2}{\sigma^2}\right)^2\right]/2}
\]

Multi-Scale

Series of images of increasing scale: Scale-space
- Sample the scales logarithmically using filters of size \(\text{base}^\text{scale} \) yields \(n \) scales per octave

\[
\text{size} = \text{base}^\text{scale}
\]

\[
\text{base} \in \{2^1, 2^\frac{3}{2}, 2^\frac{5}{2}, ..., 2^n\}
\]
Scale-spaces

- Morphological scale-space: Use openings (closings)
- Gaussian scale-space: Use Gaussian filters

Increasing scales

Fourier domain with “footprints” of Gaussian filters of increasing scale

Filter size is inversely proportional to “footprint” in Fourier domain

Chirp example
Gaussian derivatives

\[f^{(0)}(x,y) \]

\[f^{(1)}(x,y) \]

\[f^{(5)}(x,y) \]

\[f_x^{(0)}(x,y) = ? \]

\[f_x^{(1)}(x,y) \]

\[f_x^{(5)}(x,y) \]

Sampling

\[f \]

\[F \]

\[F^* \]
Interpolation

- Zero-order hold
- First-order hold
- B-spline

Periodic images

- Periodic image yields Fourier spectrum with impulses