3D Surface Data Acquisition

For class CSE612

Presented by Song Zhang

Department of Mechanical Engineering SUNY at Stony Brook Oct. 16, 2003

	Passive	Active
Monocular	shape-from- shading, texture, etc.	time-of-flight
Binocular	stereo	laser ranging, structure lighting
Multiple frames	shape-from- motion	computer tomography

Depth extraction (2) (cont'd)

- Disparity is inversely proportional to depth—so stereo is most accurate for close objects.
- Once we have found depth, the other coordinates in 3-D follow easily — e.g. taking either one of the images:

$$X = \frac{xZ}{f} = \frac{xB}{d}$$

where *x* is the image coordinate, and likewise for *y*.

Correlation-based method

• Take a small patch of the left image as a mask and convolve it with the part of the right image close to the epipolar line.

- Over an area

• The peak of the convolution output gives the position of the matching area of the right image, and hence the disparity of the best match.

Coded structured light methods (cont'd)

Direct coding

- Creating a pattern so that every pixel can be labeled by the information represented on it. Thus, the entire codeword for a given point is contained in a unique pixel.
 - ➤ Sensitive to noise and color
 - Not suit for dynamic scenes (usually need to take one or more reference images) ?

Color encoded phase-shifting methods (Huang

et al. 02)

Advantages

- High spatial resolution
- Fast.. How fast? (Projector's projection speed is the limit. 120Hz for single chip DLP projector, 3D speed can goes up to 360Hz)
- It is possible to capture moving scenes accurately (RMS for Z, < 0.01mm)
- Need not change the projected patterns during capturing images. (Our experience: changing projected patterns is very slow)
- Black and white?

Problems Ambiguity Periodic pattern, for sharp changing shape. High-speed data transferring Over 60MB / sec data collecting speed Real-time 3D grabbing, processing and displaying (30Hz) Possible? Grabbing > 30Hz, Processing > 30Hz Rendering? 30Hz (Points: 532 x 500 @ 16bits) How? Parallel processing + high-speed rendering